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Tests for Gene Clustering

DANNIE DURAND1 and DAVID SANKOFF2

ABSTRACT

Comparing chromosomal gene order in two or more related species is an important ap-
proach to studying the forces that guide genome organization and evolution. Linked clusters
of similar genes found in related genomes are often used to support arguments of evolution-
ary relatedness or functional selection. However, as the gene order and the gene comple-
ment of sister genomes diverge progressively due to large scale rearrangements, horizontal
gene transfer, gene duplication and gene loss, it becomes increasingly dif� cult to determine
whether observed similarities in local genomic structure are indeed remnants of common
ancestral gene order, or are merely coincidences. A rigorous comparative genomics requires
principled methods for distinguishing chance commonalities, within or between genomes,
from genuine historical or functional relationships. In this paper, we construct tests for
signi� cant groupings against null hypotheses of random gene order, taking incomplete clus-
ters, multiple genomes, and gene families into account. We consider both the signi� cance
of individual clusters of prespeci� ed genes and the overall degree of clustering in whole
genomes.

Key words: comparative genomics, whole genome comparison, polyploidization, comparative
mapping, gene order, conserved segments.

1. INTRODUCTION

Comparison of gene order and content in related genomes is a rich source of information concern-
ing genome evolution and function. Already an established approach in linkage genetics, comparative

mapping has taken on new signi� cance with the advent of whole genome sequencing. The biology liter-
ature contains an increasing number of articles in which local similarities in two or more genomes are
presented as evidence of evolutionary relatedness or functional selection on gene order. To be convincing,
such reports should reject the hypothesis that the observed similarities could have occurred by chance, yet
many of those reports present no statistical analysis and those that do usually rely on intuitive criteria, ad
hoc tests or, at best, randomization simulations. Very few formal probabilistic analyses of gene clustering
have been presented, and there is no consensus among them on what criteria best re� ect biologically
important features of gene clusters.

Biological background and signi� cance: Speciation results in offspring genomes that initially have
identical gene content and order. Similarly, whole genome duplication creates a new genome with two
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identical copies of the ancestral genome embedded in it. In both cases, the gene complement and gene
order of the offspring genomes will diverge over time. Gene duplication and loss and horizontal gene
transfer result in changes in gene complement, while gene order is disrupted by large scale rearrangements,
including translocation, transposition, inversion, and chromosome � ssion and fusion.

In the absence of selective pressure on gene order, successive rearrangement will lead to randomization of
gene order. Therefore, similarity in genomic organization is a source of evidence for inferring evolutionary
relationships and/or for predicting the functional roles of gene clusters. The availability of comprehensive
linkage maps for numerous plant and animal species, as well as a rapidly growing number of whole genome
sequences, has stimulated many lines of inquiry based on this evidence. For example, comparison of genetic
maps of two or more species has been used to infer patterns of chromosomal rearrangement (Coghlan and
Wolfe, 2002; Ehrlich et al., 1997; Nadeau and Sankoff, 1998b; Nadeau and Taylor, 1984; Seoighe and
Wolfe, 1998) and as a basis for alternative phylogenetic approaches (Blanchette et al., 1999; Cosner et al.,
2000; Hannenhalli et al., 1995; Sankoff et al., 2000a; Sankoff et al., 2000b; Tamames et al., 2001).
Comparison of a genetic map from a single species with itself has been used to analyze patterns of gene
duplication in genome evolution (Arabidopsis Genome Initiative, 2000; El-Mabrouk and Sankoff, 2003; El-
Mabrouk et al., 1998; Gu et al., 2002; McLysaght et al., 2002; Semple and Wolfe, 1999; Seoighe and
Wolfe, 1999; Venter et al., 2001; Vision et al., 2000; Wolfe and Shields, 1997). Interest in such questions
has spawned a growing body of research in algorithms for inferring the history of rearrangements (see,
for example, Pevzner [2000] and Sankoff and El-Mabrouk [2002] for surveys.) In microbial genomics,
comparisons of gene content and order have also been used to study the importance of spatial organization
in genome function including functional selection (Huynen and Bork, 1998; Kolsto, 1997; Overbeek et al.,
1999; Tamames, 2001; Tamames et al., 1997), operon formation (Bork et al., 2000; Ermolaeva et al., 2001)
and horizontal transfer (Lawrence and Roth, 1996).

Identi� cation of conserved chromosomal segments is a major problem for many of these analyses.
Intuitively, rearrangement processes should result in a pattern of conserved segments, pairs of chromosomal
regions, one in each genome, that are descended from a single, contiguous region in the ancestral genome.
Closely related species should manifest a few long conserved segments, while distantly related species
should have many short segments, since each rearrangement cuts one or more segments into shorter pieces.
Because rearrangements may involve transfers of arbitrarily long chromosomal fragments to arbitrary
locations within the genome, conserved segments that are adjacent in one genome will not necessarily be
close to each other in the sister genomes.

According to the most stringent de� nitions, conserved segments are de� ned to be two or more contigu-
ous regions that contain the same genes in the same order (Nadeau and Sankoff, 1998a; O’Brien et al.,
1997) and, in some cases, in the same orientation (Overbeek et al., 1999; Tamames, 2001; Wolfe and
Shields, 1997). However, it is common practice in indicating conserved segments in comparative genomic
maps to disregard small deviations from strict conservation of gene order (Goldberg et al., 2000; Sankoff
et al., 1997). For example, the human–mouse comparisons in recent genome sequencing reports (Inter-
national Human Genome Sequencing Consortium, 2001; Mouse Genome Sequencing Consortium, 2002)
indicate only around 200 segments, many of which are known to contain small inversions and other
inconsistencies.

In studies that focus on large scale genome organization and rearrangements, less strictly de� ned gene
clusters are the units of interest. Under some rearrangement regimes (e.g., short inversions, single gene
insertion, loss, or duplication), a high degree of gene proximity is conserved, even while gene order is
rapidly scrambled (Sankoff, 2002). Strict notions of conserved segment lead to unstable estimates of the
number of segments if these may be as small as one or two genes (e.g., Kumar et al., 2001). Strict de� nitions
are also inappropriate in the presence of positional errors. These observations have led to formalizations
of a more � exible concept of gene cluster, as well as algorithms for � nding gene clusters given these more
relaxed de� nitions (Arabidopsis Genome Initiative, 2000; Bansal, 1999; Bergeron et al., 2002; Bork et al.,
2000; Goldberg et al., 1999; Heber and Stoye, 2001a, 2001b; Nadeau and Sankoff, 1998a; O’Brien et al.,
1997; Overbeek et al., 1999; Tamames, 2001; Venter et al., 2001).

Our Results: Given a method for identifying gene clusters, how can we assess whether they are statis-
tically meaningful? The issue of cluster signi� cance arises in two types of analysis: detailed study of the
history or function of a particular set of genes and large scale studies of the selective forces acting on the
genome as a whole. This leads to two statistical questions:
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Individual clusters: Is it signi� cant to � nd a particular set of genes in close proximity in two or more
distinct, genomic regions?

Whole genome clustering: Given two genomes, is the observation that a certain number of gene clusters
appear in both genomes signi� cant?

The problem of signi� cance testing for gene clusters has been introduced by previous authors (Trachtulec
and Forejt, 2001; Venter et al., 2001). Their results, described in Section 5, use combinatorial analysis to
model clusters found under a limited set of conditions. In the current paper, we model a broad range of
scenarios, taking into account the size of the gene families in the genomes where the cluster is found,
the completeness of the cluster, the number of instances of the cluster observed, and how the cluster
was found (i.e., the size of the search space considered). The number of factors that contribute to cluster
signi� cance, as well as the complexity of the interactions between these factors, makes it dif� cult to predict
how signi� cance varies as a function of basic parameters. The goal of the current paper is to address this
problem through detailed probabilistic models. In Section 2, we focus on a single cluster of prespeci� ed
genes, providing exact expressions for the probability of � nding a given set of m genes in a window of
size r. In Section 3, we extend these results to derive signi� cance tests for individual clusters, including
incomplete clusters found in two or more genomes with gene families. Probabilistic clustering models
of whole genome comparison, including both genome self-comparison and comparison of genomes from
different species, are presented in Section 4. The application of these results to speci� c biological problems
is discussed in Section 6.

2. SIMPLE CLUSTER PROBABILITIES

We begin by introducing a simple de� nition of a gene cluster and calculate the probability of observing
such a cluster in a genome with uniform random gene order (a random genome). Let genome, G D
.1; : : : ; n/, be an ordered set of n genes and let M be a preselected set of m genes of interest. These m

genes may be of interest because they are contiguous in some other genome (the reference genome) or
because they share a functional property. In any case, the spatial organization of the genes on the reference
genome does not enter into the analysis at this point.

Consider the case where the genes in M are found in any order in a window of exactly r slots in G. In
this case, the � rst and last of the r slots contain two of the m genes and the remaining r ¡ 2 slots contain
the remaining m ¡ 2 genes plus r ¡ m intruders. The probability1 of this event is

.n ¡ r C 1/

³
r ¡ 2
m ¡ 2

´

³
n

m

´ : (1)

In the event these m genes span at most r slots in G, it suf� ces that one of the end points of the window
be occupied by one of the m genes. In this case, the probability is

q.n; m; r/ D

µ
.n ¡ r/

³
r ¡ 1
m ¡ 1

´¶
C

³
r

m

´

³
n

m

´ ; (2)

where the second term in the numerator addresses edge effects. If we require that the genes in M appear
in a given order, then the probability of observing the cluster is q.n; m; r/=m!.

Intuitively, we expect the probability of � nding a cluster by chance will depend on the size of the window
relative to the genome size and the fraction of slots in the window that are occupied by intruders. For

1Equations 1–3 correct the formulations given in a preliminary version of this paper (Durand and Sankoff, 2002).
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large n and m < r , we can make this intuition explicit by applying Stirling’s approximation to Equation 2
to obtain

q.n; m; r/ ¼
³

wµ

e

´m

µ¡.r¡ 1
2 /; (3)

where w D r
n and µ D 1 ¡ m

r are two parameters introduced to represent window proportion and window
sparsity, respectively.

We have introduced a very simple gene cluster model. Using it to address concrete questions of sig-
ni� cance in comparative genomics depends on the biological question at hand, speci� c properties of the
genomic data, whether the clusters in question are paralogous or orthologous, and how those clusters were
found. In the next two sections, we build on this model to construct signi� cance tests that take these issues
into account.

3. SIGNIFICANCE OF INDIVIDUAL GENE CLUSTERS

A conserved cluster is a set of two or more distinct (nonoverlapping) chromosomal regions that have m

genes in common; that is, there are m genes in one region for which a homolog may be found in the other.
The cluster is paralogous if both regions are in the same genome and orthologous if the regions are in
different genomes. Many conserved gene clusters, both paralogous and orthologous, have been reported in
eukaryotes (see Table 2 in Section 6 for a survey of this literature), usually in the context of evolutionary
studies. There is also a rich literature describing gene clusters in prokaryotes (Bork et al., 2000; Overbeek
et al., 1999; Snel et al., 2000; Suyama and Bork, 2001; Tamames, 2001; Tamames et al., 1997), mostly
concerned with the functional constraints that account for similarities in gene order.

Gene families: Identi� cation of homology relationships between genes is a prerequisite to � nding and
testing gene clusters. Virtually all genomes contain gene families, sets of genes with similar sequence and
function, that arose through duplication of genetic material. The problem of identifying true homologs
has been much debated, and a variety of solutions, typically using sequence analysis, have been proposed
(e.g., Adams et al., 2000; Venter et al., 2001; Huynen and Bork, 1998; Overbeek et al., 1999; Tatusov
et al., 1997). In this paper, we assume that homology relationships have already been established in a
preprocessing step and that the set of genes in G can be partitioned into nonintersecting gene families.
Let gene family fij be a set of genes in genome Gi , such that each gene in fij is homologous to all other
genes in fij and only those genes. (If a single genome, G, is under consideration, then j th gene family
may simply be denoted fj .) There are Áij D jfij j genes in family, fij . Let F D ffj g be the set of all gene
families in all of the genomes under consideration. By convention, we require that the number of gene
families, nf D jF j, be the same in all genomes, but allow gene families to have zero members in some
genomes.

The existence of gene families implies that, in general, a given gene g 2 M will be homologous to more
than one gene in G. When it is possible to identify which gene in the homologous gene family is most
closely related to g, then g has a unique match in G. This may be possible after a recent speciation or
polyploidization event. However, because of convergent evolution, nonhomologous gene displacement, and
multidomain proteins generated by exon shuf� ing, it is usually not possible to identify a unique match.
Thus, a general model of cluster signi� cance must allow for the possibility that more one gene in G matches
each gene in M . As the size of gene families increases, so do chance occurrences of gene clusters. For
example, if just one of the genes in M has two homologs, then there are two different sets of m genes
that qualify as clusters and the probability of � nding the cluster by chance almost doubles. Since the
probability of observing a cluster depends on the number of genes in G that match each of the prespeci� ed
genes, we derive test statistics that take gene family size as a parameter. Our test statistics model the
most general case in which there are no constraints on the distribution of gene family sizes. However, a
complete catalog of all gene families and their sizes for the genome in question is required to compute
these statistics. This is currently possible for a few fully sequenced species, but requires consideration of
all possible sets of m gene families, an onerous task. Distributions of gene family sizes, under various
assumptions, have been published for a number of species (e.g., Friedman and Hughes, 2001; Huynen and
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van Nimwegen, 1998; Li et al., 2001; Nadeau and Sankoff, 1997; Rubin et al., 2000; Tiuryn et al., 2000;
Yanai et al., 2000). In future work, we plan to derive approximations that are more easily calculated based
on parameterized models of such distributions. A � rst approach is to assume that each gene family has the
same number of paralogs, Á. This assumption is only true under a limited set of circumstances, such as
after recent speciation or polyploidization, when immediate identi� cation of a unique homolog for each
gene is possible. Nevertheless, it allows us to derive test statistics that are easy to calculate, providing a
useful tool for exploring how cluster signi� cance varies with gene family size. In the following analysis, in
addition to general test statistics for any distribution of gene family sizes, we give tests based on simpli� ed
expressions assuming uniform gene family sizes.

The signi� cance of a putative cluster depends on how it was found. The observation of a cluster
may be a serendipitous � nding. Alternatively, the authors may have been interested in a particular region
and have searched one or more genomes for similar regions. Or, gene clusters may be found in “� shing
expeditions” for clusters in whole genome comparisons. The signi� cance of the cluster will depend on the
number of possibilities considered during the search, yet the circumstances of the discovery are frequently
not reported, resulting in presentations that are misleading as to the signi� cance of the clusters. In order
to address this issue, we model three common approaches to cluster analysis:

² Reference region: In some cases, an investigator is interested in a particular genomic region and searches
for additional regions containing the same genes. In this case, we rede� ne the set of prespeci� ed genes,
M, to be the set of genes found in the � rst region (the reference region). In a genome with no gene
families, (Áj D 1, for all j ), the simple cluster model developed in Section 2 can be used to test
signi� cance. In Section 3.1, we extend the model to derive tests for genomes with gene families (Áj ¸ 1),
as well as the case where the second region contains only a subset of the genes in the reference region.
We also discuss the signi� cance of clusters that appear in more than two genomes.

² Window sampling: Alternatively, a cluster may be found by selecting a pair of windows and comparing
their gene content for shared homologs. This situation arises, for example, when an investigator searches
in the vicinity of a pair of previously known homologous genes for additional evidence of conservation.
We derive signi� cance tests for clusters found by window sampling in Section 3.2. These tests also
serve as the foundation for tests of the signi� cance of aggregate clustering properties developed in
Section 4.

² Whole genome comparison: Finally, individual gene clusters are often found through whole genome
scans, although the description of the cluster may read as if the genes involved were the original focus
of interest, i.e., were prespeci� ed as in Section 2. In this case, tests based on whole genome comparison
models must be used to avoid underestimation of cluster signi� cance due to a much larger search space.
There are several natural whole genome comparison models. In Section 3.3, we present an approach in
which one genome is searched for localized occurrences of every set of m genes that are contiguous in
a second, “reference” genome. Tests based on other models of whole genome comparison are presented
in Section 4.

In the following sections, we derive a variety of statistical tests for determining the signi� cance of gene
clusters by rejecting the hypothesis that such a cluster could have occurred by chance in a genome with
uniform random gene order, the most basic null hypothesis we can consider. If we cannot reject that null
hypothesis, no more complex, biologically motivated null hypothesis need be considered.

Test statistics: The probability of observing a single cluster of prespeci� ed genes (Equation 2) is a
measure of its statistical signi� cance. However, for the more complex biological scenarios described above,
there will typically be more than one cluster of genes that meet the criterion under consideration. In this
case, the probability of observing at least one such cluster may be used to test signi� cance. Unfortunately,
in many instances, this probability is dif� cult to calculate because some sets of genes that meet the criterion
intersect, so that the events under consideration are not independent.

It is generally easier to calculate the expected number of clusters of a given type. Such a result can
be used as a benchmark or informal test; if the number of observed clusters, º, is much greater than the
expected number, S, we can assume that about º ¡S of them represent evolutionary or functionally derived
clusters. Markov’s inequality provides a formal, albeit weak, test: if º > S=®, then the number of observed
clusters exceeds the null hypothesis at a signi� cance level of ®.
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The above approach assumes that it is possible to calculate the number of observed clusters, º, from
experimental data. In some cases, enumerating all observed clusters may be dif� cult, and it is more
convenient to use an approach based on sampling windows from the genome. In this case, signi� cance
tests focus on the expected number of windows in the sample that contain a cluster of interest and on the
probability that the sample contains at least one such window.

We derive test statistics for both orthologous and paralogous clusters. The derivation is similar in both
cases, but statistics for paralogous clusters are complicated by the requirement that paralogous clusters
not overlap, nor share the same genes. In each section, the analysis for orthologous clusters is introduced
� rst, followed by a discussion of how the test statistics may be adapted to the paralogous case. Tables
summarizing all of these test statistics appear in the appendix.

Notation: For any given biological scenario, the probability of observing a cluster in a random genome
is denoted by q. /, the expected number of clusters in a random genome by S. /, and the probability of
observing at least one cluster in a random genome by P . /. The situation in which the statistic is applicable
is indicated by sub- and superscripting. Test statistics based on window sampling are subscripted with a
W . The superscripts o and p indicate orthologous and paralogous clusters, respectively. The superscripts
8 and F refer to gene families, H to incomplete clusters, N to multiple genomes, C to clusters found by
whole genome comparison, and R to clusters found by comparisons to a reference genome.

3.1. Reference regions

Suppose a chromosomal region in one genome is of particular interest (the reference region) and a
second region is found by scanning a different genome, G, for genes found in the � rst region. De� ne M to
be the genes found in the reference region. We can then use the probability that m prespeci� ed genes are
found in a window of size r to test the signi� cance of a cluster found in this way. If G does not contain
gene families and all m genes in M are found in the window in G, then Equations 2 and 3 can be used
to test whether a speci� c set of m genes is more highly clustered than by chance.

Clusters in genomes with gene families: We now extend this model to orthologous clusters in genomes
with gene families, de� ning M to be a set of m prespeci� ed gene families, M D ff1 : : : fmg. (We assume
that no two genes in the reference region are members of the same gene family.) At the end of this section,
we give test statistics for paralogous clusters, where the reference region and the matching region are found
in the same genome. Let M be the set of distinct sets of genes that are homologous to M in Gi . There are

8i.M/ D
Y

fj 2M

Áij (4)

sets in M.2 For each of these, the probability that it spans at most r slots is q.n; m; r/. Thus, the expected
number of homologous clusters is

SÁ.n; m; r/ D 8.M/q.n; m; r/: (5)

Notice that Equation 5 gives the expected number of sets found in windows of size r but does not require
that these windows be nonoverlapping. Thus, Equation 5 does not capture the expected number of distinct
clusters. For this reason, signi� cance tests based on the probability of observing at least one homologous
cluster are easier to interpret. This probability is

P8.n; m; r/ D Prob.[8.M/
iD1 Ei/; (6)

where Ei is the event that the ith set in M is found in a window of size r . The approximation P8.n; m; r/ ¼
1 ¡ [1 ¡ q.n; m; r/]8.M/ can be used for rough tests, but it is based on an unwarranted assumption of
independence of occurrence among the 8.M/ possible clusters.

2When the identity of the genome under consideration is unambiguous, we refer simply to Áj and 8.M/.



TESTS FOR GENE CLUSTERING 459

A better approximation of P8.n; m; r/ can be estimated using the inclusion–exclusion rule to correct
for overlapping clusters. Let Ei1;:::;ig be the event that each of the sets il 2 M, l 2 .1; : : : ; g/, appears in
a window of size at most r in G. Then, by the inclusion–exclusion rule,

P8.n; m; r/ D
8.M/X

iD1

Prob.Ei/ ¡
8.M/X

i1 6Di2

Prob.Ei1;i2/ C
8.M/X

i1 6Di2 6Di3

Prob.Ei1;i2;i3/ ¡ ¢ ¢ ¢ : (7)

The � rst term of this equation is S8.n; m; r/, and the remaining terms correct for intersecting sets. In the
genomic context where n is large, the dominant term of this correction will be due to pairs of clusters that
share identical genes in all but one of the m families. The windows containing such a pair must overlap
by at least m ¡ 1 positions. Thus, we can estimate the second term of Equation 7 by calculating

S 0
8.n; m; r/ D q.n; m C 1; 2r ¡ m C 1/

X

j2M

8.M/

Áj

³
Áj

2

´
; (8)

the expected number of windows of size 2r ¡ m C 1 containing a cluster plus an extra member of one of
the m families. (This is only an estimate of the second term because not every such window will be the
union of two windows of size at most r each containing a complete cluster.) Then

P8.n; m; r/ ¼ S8.n; m; r/ ¡ S 0
8.n; m; r/ (9)

represents a � rst order approximation to the probability that at least one cluster appears.
A simpli� ed model can be obtained under the assumption that the gene family size is uniform over all

gene families. In this case, the quantity 8.M/ in Equations 5 and 8 can be replaced by Ám, where Á is
the � xed gene family size, yielding

P8.n; m; r; Á/ ¼ Ám

µ
q.n; m; r/ ¡

m.Á ¡ 1/

2
q.n; m C 1; 2r ¡ m C 1/

¶
: (10)

The conditions under which Equation 10 yields a good approximation have not yet been investigated.
Incomplete clusters: Frequently, only a subset of the m genes of interest is found in close proximity

in the genome. When is this event signi� cant? To model this scenario, let H be the set of all subsets of
M of size h < m. In the absence of gene families, the probability that a speci� c subset in H appears in a
window spanning at most r slots is q.n; h; r/, and the expected number of such subsets is

SH .n; h; m; r/ D
³

m

h

´
q.n; h; r/: (11)

As above, the subsets in H may intersect. For example, if all m genes are found in a single window of
length r, then G contains all the incomplete clusters in H but only one biologically interesting cluster.

The probability of observing at least one incomplete cluster can again be estimated by using the
inclusion–exclusion rule (Equation 7) to correct for overlapping clusters. In this case, the � rst term of
that equation is SH .n; h; m; r/, and the remaining terms correct for intersecting subsets. For large n, the
dominant term of this correction will be due to pairs of subsets whose intersections are as large as possible,
namely of size h ¡ 1. The windows containing such a pair must overlap by at least h ¡ 1 positions. Thus,
we can estimate the dominant term of Equation 7 by calculating

S 0
H .n; h; m; r/ D

³
m

h C 1

´
q.n; h C 1; 2r ¡ h C 1/;

the expected number of windows of size 2r ¡ h C 1 containing h C 1 of the m genes. (As above, this is not
exact because not every such window will be the union of two windows of size at most r , each containing
h members of M .) Then

PH .n; h; m; r/ ¼ SH .n; h; m; r/ ¡ S0
H .n; h; m; r/ (12)
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represents a � rst order approximation to the probability that at least one incomplete cluster of size h

appears in G.
An upper bound on the probability of � nding at least one incomplete cluster can be derived by observing

that, given a particular window of size r ¸ h of G, the probability that exactly h of the m genes fall into
that window is given by the hypergeometric distribution. The probability that at least h of the m genes
fall into that window can be calculated by summing over that hypergeometric probability so that

qHW .n; h; m; r/ D
min.r;m/X

iDh

³
m

i

´ ³
n ¡ m

r ¡ i

´

³
n

r

´ : (13)

The probability of � nding at least one incomplete cluster from H anywhere in the genome can now be
bounded above by sampling all windows of size r in G that have a gene from M in the � rst position:

PH .n; h; m; r/ · mqHW .n; h ¡ 1; m ¡ 1; r ¡ 1/: (14)

In the usual case where n is very large and either r or m is small, the combinatorial terms involving n

may be approximated, and qHW rapidly calculated. In the case of larger m and r, we may use the binomial
approximation to the hypergeometric:

PH .n; h; m; r/ / m

min.r;m/X

iDh

³
r

i

´ ±m

n

²i ±
1 ¡

m

n

²r¡i
: (15)

Alternatively, one may numerically integrate a normal approximation with mean rm
n and variance

³
n ¡ r

n ¡ 1

´ ± rm

n

² ±
1 ¡

m

n

²
: (16)

These approximations improve as m increases with respect to r.
The expected number of incomplete clusters in a genome of gene families can be derived by combining

Equations 11 and 5, yielding

S8H .n; h; m; r/ D

Á
X

H2H
8.H /

!

q.n; h; r/: (17)

For uniform gene families of size Á, this expression simpli� es to

S8H .n; h; m; r; Á/ D
³

m

h

´
Áhq.n; h; r/: (18)

Clusters in multiple genomes: The probability that a gene cluster is a chance occurrence decreases,
and its statistical signi� cance increases, if this cluster is found in more than one genome. For N genomes
of same gene content with no gene families, the probability that a speci� c set of m genes appear in all
these genomes in windows spanning at most r slots is qN D q.n; m; r/N , which becomes very small as
N increases, even if q itself is only moderately small.

The announcement of a cluster validated by occurrences in multiple genomes should, however, be
accompanied by a report of

1. how many genomes were searched for the cluster, not just the number of genomes in which it was
found;

2. how complete the cluster is in each of the genomes in which it is found;
3. the values of r and n for each genome considered.

These considerationsall have an impact on the statistical signi� cance of a cluster, in many cases weakening it.
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For example, suppose N genomes were examined and a cluster was found in only N 0 < N of them.
The probability that the cluster appears in at least N 0 genomes, spanning at most r slots in each case, is

PN D
NX

jDN 0

³
N

j

´
qj .1 ¡ q/N¡j ; (19)

which should be used for testing purposes instead of qN 0
. The greater the difference between N and N 0,

the lower the signi� cance of the cluster.
Furthermore, the typical case reported in the literature is one where different subsets of M are found

in different genomes. Consider N random genomes of size n1; : : : ; nN containing subsets of M of sizes
m1; : : : ; mN , respectively. The probability that, for each genome Gi , at least one subset of M of size hi

appears in Gi in a window spanning at most ri slots is 5N
iD1PH .ni ; hi ; mi ; ri/, where each hi · min[mi ; ri ].

An ad hoc test based on all the hi and ri is not rigorous, however, since in general these criteria are not
rigidly � xed before the search, but are the result of it. For fairness, then, the test should be based on � xed
parameters that are the least favorable to rejecting the null hypothesis, namely, h D min[h1; : : : ; hN ] and
r D max[r1; : : : ; rN ], and the test distribution becomes

PN D
NY

iD1

PH .ni ; h; mi; r/; (20)

where PH is de� ned in Equations 12 and 14.
In the general case of incomplete clusters in some genomes and missing clusters from others, to get

an expression analogous to Equation 19, we need to substitute some uniform value of PH .n; h; m; r/

for q. The appropriate values of n and m, those least favorable to rejecting the null hypothesis, are
n D min[n1; : : : ; nN ] and m D max[m1; : : : ; mN ]. Then the probability that subsets of M of size h

appear in at least N 0 of the N genomes, spanning at most r slots in each case, is obtained by substituting
PH .n; h; m; r/ for q in Equation 19, yielding

PN D
NX

jDN 0

³
N

j

´
P

j
H .1 ¡ PH /N¡j : (21)

In a multigenome analysis, the researcher must trade off the reduced statistical signi� cance of incomplete
instances of a cluster against the increased signi� cance of its widespread occurrence. As Equation 12
shows, the signi� cance of an incomplete cluster decreases as the window size r increases and h decreases.
Decreasing the minimum ratio of h to r required for inclusion in the analysis diminishes the signi� cance
of the clusters included by increasing PH . /. If, on the other hand, only compact clusters (with a higher
h to r ratio) are considered, the number of genomes in which the cluster is found will be reduced, also
leading to diminished signi� cance.

In this section, we derived tests for orthologous gene clusters; that is, clusters observed in G that are
orthologous to a reference region in a different genome, G1. When G contains gene families, signi� cance
tests for such clusters can be performed using either the expected number of clusters (Equation 5) or the
probability of observing at least one cluster (approximated by Equation 9). The signi� cance of incomplete,
orthologous clusters in genomes with no gene families can be tested using Equation 11, when SH . / ¿ 1.
Alternatively, the approximations in Equations 12 and 14 can be used to show that the probability of
observing at least one such cluster is small. Equations 17 and 18 give test statistics for incomplete clusters
in genomes with gene families. The signi� cance of clusters found in multiple genomes may be tested using
Equations 19–21.

Tests for paralogous clusters, where both regions appear in the same genome, G, are also needed. The
tests derived here may be adapted to the paralogous case by adjusting for the fact that genes that appear
in the reference region cannot also appear in the matching region. In the paralogous case, there are only
Áj ¡ 1 possible matches for each family, fj 2 M . Furthermore, since the reference region is excluded
from the search for the cluster, we must replace n with n ¡ m. Test statistics that take these factors into
account are given in Table 4 in the appendix.
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3.2. Clusters found through window sampling

A cluster may also be discovered by searching the genomic neighborhoods surrounding a pair of known
homologous genes. In this case, signi� cance tests can be developed based on a window sampling approach.
We � rst consider pairs of windows sampled from two different genomes and subsequently discuss how
our model must be modi� ed for the case where both windows are sampled from a single genome.

Two genomes, no gene families: Consider two genomes, G1 and G2, with no gene families and a pair
of windows, W1 and W2, of length r selected from G1 and G2 , respectively. The probability that they have
at least m genes in common is

qo
W .n; r; m/ D

rX

iDm

³
r

i

´ ³
n ¡ r

r ¡ i

´

³
n

r

´ ; (22)

where the expression inside the sum is simply the probability that exactly i of the r genes in W1 also
appear in W2.

Two genomes with gene families: Now,3 suppose genomes G1 and G2 of length n1 and n2 each contain
the same set of gene families F D ff g, including singletons (families consisting of only one copy of a
gene). Let F k D fF g be the set of all subsets of F containing k gene families, written F D ffi1 ; : : : ; fik g.
Note that the restriction that all genomes have the same gene families is in no way essential to the discussion
in this section. It may be completely abandoned without changing notation, under the interpretation that
pi.F / D 0 if genome Gi is missing any gene family f 2 F , where pi. / refers to p1. / and p2. / de� ned
below.

The probability that two arbitrarily chosen windows W1 and W2 share at least m gene families is

qo
WF .m/ D

rX

kDm

2

664
X

F 2Fk

0

BB@p1.F /

kX

lDm

X

F 02Fl

F 0µF

po
2.F 0/

1

CCA

3

775 ; (23)

where p1.F / is the probability that the gene families in W1 are just the k families in F and po
2.F 0/ is the

probability that a subset F 0 µ F containing l of those k families appears in W2. To determine p1.F /, we
must consider all ways that genes from the k distinct gene families in F can � ll a window of size r. Let
x1j be the number of genes in W1 from the j th family in F , out of a total of Á1j genes in this family in
G1. Then

p1.F / D

X

S.F /

³
Á11

x11

´ ³
Á12

x12

´
¢ ¢ ¢

³
Á1k

x1k

´

³
n1
r

´ ; (24)

where S.F / is the set of all k-tuples .x11; : : : ; x1k/ such that

kX

hD1

x1h D r;

0 < x1h · Á1h:

To determine po
2.F 0/, we must consider all ways that genes from the l distinct gene families in F 0 can

partially or completely � ll a window of size r , without any of the k ¡ l families in F nF 0 being represented.

3The following material corrects the derivation of p2. / given in a preliminary version of this paper (Durand and
Sankoff, 2002).



TESTS FOR GENE CLUSTERING 463

Let x2j be the number of genes in W2 from the j th family in F 0, out of a total of Á2j genes in this family
in G2. Then

po
2.F 0/ D

X

S.F 0/

³
Á21

x21

´ ³
Á22

x22

´
¢ ¢ ¢

³
Á2l

x2l

´ Á
n2 ¡

Pk
hD1 Á2h

r ¡
Pl

hD1 x2h

!

³
n2
r

´ ; (25)

where S.F 0/ is the set of all l-tuples .x21; : : : ; x2l/ such that

lX

hD1

x2h · r;

0 < x2h · Á2h:

Note that the summation of the fÁ2hg in the last factor of the numerator in Equation 25, representing the
reduction in the pool of genes from which W2 must be � lled after using the

Pl
hD1 x2h genes from the

families in F 0, excludes all k families in F , not only the l families in F 0.
More than two genomes with gene families: Can we generalize these considerations to the case of

windows W1; : : : ; WN in the N genomes G1; : : : ; GN? When N D 2, the notion that two windows share
m gene families is well de� ned. However, for N > 2, there is more than one natural interpretation of
this concept, each corresponding to a different biological situation and requiring a different mathematical
realization. We consider just one of these here. Suppose we are given F , some set of k gene families of
interest, where k · nf . The probability that each window Wi contains elements of at least m · k of these
families is

qW1¢¢¢WN
.m/ D

NY

iD1

0

BB@
kX

lDm

X

F 02Fl

F 0µF

pi.F
0/

1

CCA ; (26)

where each pi. / is an expression of the form of Equation 25, substituting family sizes Áij and genome
length ni for genome, Gi . Note that this expression differs from Equation 23 in that the set of shared gene
families, F , is prespeci� ed. In contrast, when N D 2, F is the set of distinct gene families found in one
of the two windows. Either W1 or W2 may be treated as a reference window, without loss of generality.
However, for N > 2, selecting one of the N windows as a reference introduces an undesirable asymmetry.

Two genomes with gene families of equal size: Calculating test statistics based on window sampling is
simpler under the assumption that all gene families are of equal size. In the comparison of two genomes, the
probability that a given pair of windows, W1 and W2, of length r, selected from G1 and G2, respectively,
share at least m gene families simpli� es to

qo
WF.m/ D

rX

kDm

"³
nf

k

´
p1.k/

kX

lDm

³
k

l

´
po

2.l/

#

: (27)

The � rst term, the probability that k given gene families appear in W1, is given by

p1.k/ D

X

S

³
Á

x11

´ ³
Á

x12

´
¢ ¢ ¢

³
Á

x1k

´

³
n1

r

´ ; (28)
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where S is the set of all k-tuples .x11; : : : ; x1k/ such that

kX

hD1

x1h D r;

0 < x1h · Á:

Table 1 shows an example of S when r D 5, k D 3 and Á D 4. For the purposes of this calculation, it
is not necessary to distinguish between individual members of a gene family. Nor does the order of the
genes in the window matter. Thus, it is suf� cient to give the elements from each family in lexicographic
order. In this case, S contains six elements. For example, the � rst row corresponds to the case where the
window is � lled with one gene each from families a and b and three genes from family c.

In order to calculate the probability in Equation 28, it is necessary to enumerate all k-tuples in S. This can
be simpli� ed by observing that S can be partitioned into sets of k-tuples that are closed under permutation
and such that the summand in the numerator in Equation 28 has the same value for all k-tuples in the
same partition. Thus, in order to calculate p1. /, it is suf� cient to enumerate only one k-tuple from each
partition; for example, the set of k-tuples that are nondecreasing. We de� ne the k-tuple .x11; : : : ; x1k/,
such that x11 · x12 · ¢ ¢ ¢ · x1k , to be the canonical k-tuple for the partition that contains it. In the
example in Table 1, S has six elements in two partitions represented by the canonical k-tuples .1; 1; 3/

and .1; 2; 2/, shown in italics. The recursive algorithm in Fig. 1 will generate all such canonical k-tuples
for a given window size r and � xed family size Á. It returns a list of lists of length k, each representing
one nondecreasing k-tuple.

The calculation of Equation 28 can be simpli� ed further by observing that, for � xed family sizes, the
gene families are indistinguishable. Let z1i be the number of families that contribute i members to W1;
that is, z1i D jfx1j 3 x1j D igj. Note that all k-tuples in the same partition contribute z11 families with one
member to W1, z12 families with two members to W1, and so on. Then each partition in S can also be
represented by a vector, .z11; : : : ; z1Á/, where

z1Á C z1Á¡1 C ¢ ¢ ¢ C z11 D k (29)

and

Á ¢ z1Á C .Á ¡ 1/ ¢ z1Á¡1 C ¢ ¢ ¢ C 1 ¢ z11 D r: (30)

There are

k!
z11! ¢ ¢ ¢ z1Á !

(31)

k-tuples in that partition. In the example in Table 1, the � rst and second partitions are represented by
the vectors .2; 0; 1; 0/ and .1; 2; 0; 0/, respectively. There are 3!=.2!1!/ D 3 elements in each partition.

Table 1. All Possible Ways of Selecting r D 5 Genes from
k D 3 Gene Families (a, b and c) of Size Á D 4

x1; x2; x3 z1; z2; z3; z4

.a; b; c; c; c/ 1; 1; 3 2; 0; 1; 0

.a; b; b; b; c/ 1; 3; 1 2; 0; 1; 0

.a; a; a; b; c/ 3; 1; 1 2; 0; 1; 0

.a; b; b; c; c/ 1; 2; 2 1; 2; 0; 0

.a; a; b; c; c/ 2; 1; 2 1; 2; 0; 0

.a; a; b; b; c/ 2; 2; 1 1; 2; 0; 0
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FIG. 1. Algorithm to enumerate all ways of � lling a window of size r with genes from exactly k families of size Á.
Returns a list of lists of length k.

Observing that all of the k-tuples in the same partition make the same contribution to the sum in the
numerator, Equation 28 can be rewritten as

p1.k/ D
³

n

r

´¡1 X

Z

µ
k!

z11! ¢ ¢ ¢ z1Á !

³
Á

1

´z11
³

Á

2

´z12

¢ ¢ ¢
³

Á

Á

´z1Á
¶

; (32)

where Z is the set of all vectors .z11; : : : ; z1Á/ satisfying Equations 29 and 30. The set Z can be calculated
from the canonical k-tuples in S using the algorithm in Fig. 1 or by � nding all solutions to Equations 29
and 30 over the nonnegative integers.

The probability that exactly l of those k gene families appear in W2 simpli� es to

po
2.l/ D

r¡lX

³ D0

X

T .³ /

³
Á

x21

´ ³
Á

x22

´
¢ ¢ ¢

³
Á

x2l

´ ³
n2 ¡ kÁ

r ¡ ³

´

³
n2

r

´ ; (33)

where

³ D
lX

hD1

x2h

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270360688129&iName=master.img-000.png&w=372&h=355
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and T .³ / is the set of all l-tuples .x21; : : : ; x2l/ such that

lX

hD1

x2h D r ¡ ³;

0 < x2h · Á:

As above, each set T .³ / can be partitioned into subsets that are closed under permutation, and the (non-
decreasing) canonical l-tuples for each partition may be calculated using the algorithm in Fig. 1, where r

is replaced by r ¡ ³ .
Similarly, each partition in T .³ / may be represented by a vector, .z21; : : : ; z2Á/, where

z2i D jfx2j 3 x2j D igj; (34)

z2Á C z2.Á¡1/ C ¢ ¢ ¢ C z21 D l; (35)

and

Á ¢ z2Á C .Á ¡ 1/ ¢ z2Á¡1 C ¢ ¢ ¢ C 1 ¢ z21 D r ¡ ³: (36)

Since there are

l!
z21! ¢ ¢ ¢ z2Á !

(37)

l-tuples in that partition, all making the same contribution to the sum in the numerator, Equation 33 can
be rewritten as

po
2.l/ D

r¡lX

³ D0

X

Z .³ /

µ
l!

z21! ¢ ¢ ¢ z2Á !

³
Á

1

´z21
³

Á

2

´z22

¢ ¢ ¢
³

Á

Á

´z2Á
³

n2 ¡ kÁ

³

´¶

³
n

r

´ (38)

where Z.³ /, the set of all vectors .z21; : : : ; z2Á/, is equivalent to the set of all solutions to Equations 35
and 36 over the positive integers.

Two windows sampled from the same genome: In the paralogous case, the above analysis must be
modi� ed to take into account the fact that W1 and W2 are two nonoverlapping windows sampled from the
same genome G. The probability, p1.F /, that W1 is � lled by elements from the k distinct gene families
in F is again given by Equation 24. However, the calculation of the probability that at least m of those
families appear in W2 must take into account the fact that gene family members that appear in W1 cannot
also appear in W2. In this case, a general expression for p

p
2 . / may be obtained by renumbering the families

in F 0 to correspond to their order in F :

p
p
2 .F 0/ D

X

S.F 0/

³
Á21 ¡ x11

y21

´ ³
Á22 ¡ x12

y22

´
¢ ¢ ¢

³
Á2l ¡ x1l

y2l

´ Á
n ¡

Pk
hD1 Á2h

r ¡
Pl

hD1 y2h

!

³
n ¡ r

r

´ ; (39)

where S.F 0/ is the set of all l-tuples .y21; : : : ; y2l/ such that

lX

hD1

y2h · r;

0 < y2h · Á2h ¡ x1h:
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For gene families of uniform size, the expression for p
p
2 . / reduces to

p
p
2 .l/ D

X

T

³
Á ¡ x11

y21

´ ³
Á ¡ x12

y22

´
¢ ¢ ¢

³
Á ¡ x1l
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´ Á
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´ ; (40)

yielding

q
p
WF.m/ D

rX

kDm

"³
nf

k

´
p1.k/

kX

lDm

³
k

l

´
p

p
2 .l/

#
: (41)

Unlike the orthologous case, since the terms in the numerator depend on x2j as well as Á and y2j , it is
not true that all families that contribute the same number of genes to the window also make the same
contribution to the sum in the numerator. Therefore, we cannot pursue the same simpli� cation used in the
orthologous case.

3.3. Individual clusters found through whole genome comparison

Orthologous gene clusters can also be found through comparison of whole genomes by designating one
genome as the reference genome (without loss of generality, G1) and considering the set of n ¡ m C 1
contiguous runs of m genes in that genome. We de� ne M to be each of these sets of m gene families in
turn and search for a cluster in the second genome, G2. Since this involves O.n/ whole genome searches,
the signi� cance of a paired cluster found in this fashion is much lower. Here we derive a test based on the
probability of observing at least one cluster in such a search, assuming no gene families. Tests for whole
genome comparison with gene families are presented in Section 4.

The expected number of those runs that will appear in a window of length r in G2 is

SR.n; r; m/ D .n ¡ m C 1/q.n; m; r/: (42)

In a genome with uniform gene families of size Á,

SRF .n; r; m/ D .n ¡ m C 1/Ámq.n; m; r/: (43)

What is the probability that at least one of those runs will be clustered in the second genome? Let
Ei.m; n; r/ be the event that the m consecutive genes starting at gene i in G1 appear in a window of size
at most r in the second genome. (Note that Prob.Ei/ D 0 if i > n ¡ m C 1, since there are only n genes in
the genome.) Let Ei1;:::;ig .m; n; r/ be the event that all of the g runs of m consecutive genes in G1 starting
at genes i1; : : : ; ig, respectively, appear in windows of size at most r in G2. Note that some of the runs
may overlap.

The probability that at least one run of m (or more) consecutive genes in G1 appears in a window of size
at most r in G2 is PR.m; n; r/ D Prob.[n

iD1Ei/ and can be calculated using the inclusion–exclusion rule
(Equation 7). The dominant term is due to pairs of overlapping windows that share m ¡ 1 genes. For large
n, we may neglect third- and higher-order terms and even those second-order terms where i2 > i1 C 1,
yielding the approximation

PR ¼ .n ¡ m C 1/q.m; n; r/ ¡ Prob.E1;2/;

where

Prob.E1;2/ D
n¡mX

iD0

Ei;iC1:

We can calculate Prob.E1;2/ exactly by considering all the ways in which genes 1 : : : m C 1 can appear in
two windows that overlap at m ¡ 1 positions. Stated formally, we compute the probability of the event that
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genes 1; : : : ; m appear in a window of size exactly r1 ¸ m and that genes 2; : : : ; mC1 appear in a window
of size exactly r2 ¸ m, where the leftmost positions of the two windows are a1 and a2, respectively. Figure 2
lists all possible con� gurations for two overlapping windows W1 and W2 with endpoints a1 C 1; a1 C r1

and a2 C 1; a2 C r2, respectively, that can satisfy these conditions. Note that the requirement that W1

and W2 overlap by m ¡ 1 positions rules out the two cases where the endpoints of W1 are completely
contained within W2 and vice versa. Furthermore, an endpoint of W1 is excluded from W2 if and only if it
is occupied by gene 1. Similarly, an endpoint of W2 is excluded from W1 if and only if it is occupied by
gene m C 1.

We will assume n is large enough so that we can neglect partial windows at the ends of the genome.
Then we can use the approximation

q.n; m; r/ ¼ m

³
r ¡ 1
m ¡ 1

´

³
n ¡ 1
m ¡ 1

´ :

FIG. 2. All possible con� gurations for two overlapping windows W1 and W2 such that genes 1; : : : ; m appear in
W1 and genes 2; : : : ; m C 1 appear in W2. Genes 1 and m C 1 must be present where indicated at the endpoints of
windows. Genes i and j may be any of the genes within the braces, except gene 1 or gene m C 1. Except for these
constraints, genes within the braces may occur in any order within the overlap between the windows, and may be
intermingled with other genes.
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Let Pa; Pb; : : : ; Pg be the probabilities that the seven con� gurations in Fig. 2 occur. Then

Prob.E1;2/ D
rX

r1;r2Dm

"
X

a1;a2

Pa C Pb C Pc C Pd C Pe C Pf C Pg

#

: (44)

What is the probability Pa that the con� guration in Fig. 2(a) occurs? Without loss of generality, we
denote the position of gene 1 by a1 C 1, again neglecting end effects. Then the probability that gene m C 1
appears in position a2 C r2 is 1

n¡1 . The probability that the remaining genes f2; : : : ; mg are contained
within the a1 C r1 ¡ a2 positions between a2 C 1 and a1 C r1 is

³
a1 C r1 ¡ a2

m ¡ 1

´

³
n ¡ 2
m ¡ 1

´ ;

so that

Pa D 1
n ¡ 1

³
a1 C r1 ¡ a2

m ¡ 1

´

³
n ¡ 2
m ¡ 1

´ :

For � xed a1; a2, and r2, the sum of terms of form Pa is

X

r1

Pa D 1

.n ¡ 1/

³
n ¡ 2
m ¡ 1

´
a1Cr¡a2X

sDm¡1

³
s

m ¡ 1

´

D 1
n ¡ 1

³
a1 C r ¡ a2 C 1

m

´

³
n ¡ 2
m ¡ 1

´ ; (45)

using the upper summation identity for binomial coef� cients. The values of r2 for which this is valid range
from m ¡ 1 to r , so setting ± D a2 ¡ a1,

X

r1;r2;±

Pa D
r ¡ m C 2

n ¡ 1

Pr¡mC1
±D1

³
r ¡ ± C 1

m

´

³
n ¡ 2
m ¡ 1

´

D
r ¡ m C 2

n ¡ 1

³
r C 1
m C 1

´

³
n ¡ 2
m ¡ 1

´ ; (46)

and

X

r1;r2;a1;a2

Pa D
.r ¡ m C 2/r.r C 1/

m2.m C 1/
q.n; m; r/; (47)

assuming about n ¡ m possible positions for a1.
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By symmetry, the expression in Equation 47 also holds for
P

r1;r2;a1;a2
Pb.

In Fig. 2 (c), given that gene 1 is in position a1 C 1, the probability that position a1 C r1 be occupied
by some element j in f2; : : : ; mg is m¡1

n¡1 , and the probability that m ¡ 1 of the a1 C r1 ¡ a2 ¡ 1 positions
between a2 C 1 and a1 C r1 ¡ 1 be occupied by the remaining genes in f2; : : : ; m C 1g ¡ fj g is

³
a1 C r1 ¡ a2 ¡ 1

m ¡ 1

´

³
n ¡ 2
m ¡ 1

´ :

Thus

Pc D
m ¡ 1
n ¡ 1

³
r2 ¡ 1
m ¡ 1

´

³
n ¡ 2
m ¡ 1

´ : (48)

The range of r2 is from m to r1 ¡ 1, so that for � xed r1

X

r2

Pc D
m ¡ 1
n ¡ 1

³
r1

m

´

³
n ¡ 2
m ¡ 1

´ : (49)

The range of r1 is from m C 1 to r, so that

X

r1;r2;a1

Pc D .m ¡ 1/

µ³
r C 1
m C 1

´
¡ 1

¶

³
n ¡ 1
m ¡ 1

´

D
.m ¡ 1/

m

2

664
r.r C 1/

m.m C 1/
¡ 1³

r ¡ 1
m ¡ 1

´

3

775 q.n; m; r/; (50)

which also holds for the total contributions of Pd ; Pe , and Pf .
To calculate Pg , consider the .m¡1/.m¡2/ ordered pairs .j; i/ in f2; : : : ; mg. Without loss of generality,

denote the position of gene j by a1 C 1. The probability that gene i will appear in position a1 C r1 is
1=.n ¡ 1/. The probability that all m ¡ 1 genes in the set f1; : : : ; m C 1g ¡ fi; jg will appear in the r1 ¡ 2
positions between a1 C 2 and a1 C r1 ¡ 1 is

³
r1 ¡ 2
m ¡ 1

´

³
n ¡ 2
m ¡ 1

´ ;

so that

Pg D
.m ¡ 1/.m ¡ 2/

n ¡ 1

³
r1 ¡ 2
m ¡ 1

´

³
n ¡ 2
m ¡ 1

´ : (51)
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Summing over the range of r1 from m C 1 to r , and all positions of a1, we have

X

r1;a1

Pg D
.n ¡ m/.m ¡ 1/.m ¡ 2/

.n ¡ 1/

³
r ¡ 1

m

´

³
n ¡ 2
m ¡ 1

´

D
.r ¡ m/.m ¡ 1/.m ¡ 2/

m2
q.n; m; r/: (52)

Collecting terms, Equation 44 becomes

Prob.E1;2/ D 2
X

r1;r2;a1;a2

Pa C 4
X

r1;r2;a1

Pc C
X

r1;a1

Pg;

which may be calculated rapidly with the help of the approximation in Equation 3.

4. WHOLE GENOME COMPARISON

The advent of comparative maps also introduces the question of the signi� cance of multiple shared
clusters in the context of whole genome comparison. When comparing entire genomes, how many pairs of
homologous clusters should we expect to � nd by chance alone? Aggregate clustering properties have been
used to study the functional and evolutionary implications of large-scale genomic organization, including
rates of rearrangement (Ehrlich et al., 1997; McLysaght et al., 2000; Seoighe et al., 2000; Seoighe and
Wolfe, 1998), the distribution of breakpoints (Coghlan and Wolfe, 2002; Nadeau and Taylor, 1984; Nadeau
and Sankoff, 1998b), conservation of gene order (Tamames, 2001), and the duplication processes (e.g.,
tandem duplication, whole genome duplication, duplication of subchromosomal segments) that dominate in
a given lineage (Arabidopsis Genome Initiative, 2000; Bowers et al., 2003; Chervitz et al., 1998; Friedman
and Hughes, 2001; Gu et al., 2002; McLysaght et al., 2002; Semple and Wolfe, 1999; Vision et al., 2000).
In order to interpret such data correctly, the signi� cance of observing a certain number of shared clusters
must be determined. The quantities derived here can also be used to test the signi� cance of individual
clusters found through whole genome comparison.

4.1. Comparing two different genomes

Consider two genomes, G1 and G2, from different species that share a certain number of gene clusters.
We de� ne a paired cluster to be a set of m genes observed in two windows of length at most r , one in
G1 and one in G2. In a genome with no gene families (Áj D 1; 8j ), the expected number of such paired
clusters is

So
C.n; m; r/ D

³
n

m

´
q.n; m; r/2; (53)

where q. / is de� ned in Equation 2.
In the case of general gene families where Áj ¸ 1; 8j , the expected number of paired clusters found

when comparing G1 and G2 is

So
F .n; m; r/ D

"
X

M2Fm

81.M/82.M/

#
q.n; m; r/2; (54)

where Fm is the set of all sets of m distinct gene families. For gene families of uniform size, Á, this
expression simpli� es to

So
F .n; m; r; Á/ D

³
nf

m

´
[Ámq.n; m; r/]2; (55)

where nf is the number of gene families in both G1 and G2.
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Window sampling: While this expression provides a measure of the degree of shared clustering between
G1 and G2, it is not a convenient basis for data analysis because it requires enumerating all paired clusters.
An alternate approach, based on sampling windows from the genome at random, may be preferable. In
genomes with no gene families, given a random sample of nw pairs of windows, such that no window in
the sample overlaps with any other window in the sample, the expected number of pairs that share at least
m genes is

So
W D nwqo

W .n; m; r/; (56)

where qo
W .n; m; r/ is the probability, given in Equation 22, that a pair of windows of length r, one from

each genome, share at least m homologous gene pairs. Given a random sample of non-identical, but possibly
overlapping, windows, the above expressions can be used to estimate the expected number of pairs that
share m homologous pairs, since the fraction of overlapping pairs is O.n¡1/, when r ¿ n. The probability
of � nding at least one pair of windows in the sample that share at least m genes can be approximated by
the equation

P o
W .nw ; n; m; r/ ¼ 1 ¡ [1 ¡ qo

W .n; m; r/]nw ; (57)

but since it is based on an unwarranted assumption that the events of � nding clusters in the various pairs
of windows are independent, it provides only a rough estimate. If G1 and G2 have gene families, the
expected number of window pairs that have m gene families in common can be obtained by substituting
qo

FW .n; m; r/, given in Equations 23 and 27, for qo
W .n; m; r/ in Equation 56. Similarly, the probability of

observing at least one such window pair in two random genomes with gene families can be estimated by
substituting qo

FW .n; m; r/ for qo
W .n; m; r/ in Equation 57.

4.2. Genome self-comparison

Clusters of paralogs in the same genome are often presented as evidence of whole genome duplication
or duplication of large subchromosomal segments. The goal in genome self-comparison is to determine
the degree of clustering among duplicated genes. As above, we designate by Fm the set of all distinct sets
of m gene families in G. Let M 2 Fm be a particular set of m different gene families. The total number
of pairs of nonintersecting sets of m genes, one from each family in M , is

9.M/ D
Y

fj 2M

³
Áj

2

´
:

In the paralogous case, we de� ne a paired cluster to be two nonintersecting sets in M found in two,
possibly overlapping, windows of length at least r in the same genome. The expected number of paired
clusters is then

S
p
F .n; m; r/ D

"
X

M2M
9.M/

#

q.n; m; r/2: (58)

If all gene families have exactly Á members, then

S
p
F .n; m; r; Á/ D

³
nf

m

´ ³
Á

2

´m

q.n; m; r/2: (59)

Window sampling: The degree of clustering of duplicated genes in a genome can also be estimated
by counting the number of pairs of windows that share a given number of gene families. Given a random
sample of nw pairs of nonoverlapping windows taken from G, the expected number of pairs that have m

gene families in common is

S
p
FW .nw; n; m; r/ D nwq

p
FW .n; m; r/; (60)
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where qo
FW .n; m; r/ is de� ned in Equation 23.

P
p
FW .nw; n; m; r/ ¼ 1 ¡ [1 ¡ q

p
FW .n; m; r/]nw (61)

yields a rough approximation for the probability of � nding at least one such pair.

5. PREVIOUS WORK

In their analysis of the signi� cance of conserved synteny, Trachtulec and Forejt (2001) estimate the
probability of � nding m genes in a window of exactly r slots by chance to be .r=n/m¡1, where n is the
number of genes in the genome. If r ¿ n, for a range of values of m, this formula approximates our exact
expression in Equation 1.

As part of their analysis of gene duplication in the human genome, Venter et al. (2001) suggest that the
probability of a � xed set of m genes occurring in a given order within an interval of r successive gene
positions in a random genome of length n is

u1.n; m; r/ D

r¡2X

iDm¡2

³
i

m ¡ 2

´

nm¡1 : (62)

For a large genome, where nm¡1 ¼ .n ¡ 1/!=.n ¡ m/!, and neglecting end effects (or assuming a cir-
cular genome), Equation 62 is essentially correct. An exact expression for this quantity is u.n; m; r/ D
q.n; m; r/=m!, where q.n; m; r/ is de� ned in Equation 2.

They further consider the case of two sets of m genes that are pairwise paralogous and state a probability
“allowing for” the two sets “to be spread across r positions” in two separate locations:

u2.n; m; r/ D

2

4
r¡2X

iDm¡2

³
i

m ¡ 2

´3

5
2

nm¡1
: (63)

However, it is not clear what event has this probability, even approximately. Indeed, for m D 3 and r D n
2 ,

for example, Equation 63 is O.n2/ and thus cannot be a probability.

6. APPLICATION TO BIOLOGICAL DATA

There is a broad literature in which gene cluster analysis has been used to interpret the evolutionary or
functional implications of gene order in species ranging from viruses and bacteria to mammals, based on
data derived from both whole genome sequencing and linkage mapping. To show the utility of the models
developed in the previous sections, we apply our results to a few examples from this literature. Our intent
here is not to reanalyze the data or question the conclusions of the studies cited below, but rather to provide
concrete examples of how our models can be put to practical use in real biological studies.

Individual clusters: Since Ohno (1970) � rst hypothesized two whole genome duplications in early
vertebrates, the role of large scale duplication in vertebrate evolution has been much debated (Durand,
2003; Hughes et al., 2001; Hughes, 1999; McLysaght et al., 2002; Sankoff, 2001; Skrabanek and Wolfe,
1998; Wolfe, 2001). One type of evidence that is offered in these debates is the presence of linkage groups
that appear to be duplicated and also to be conserved across several species. At least a dozen papers
analyzing such regions, summarized in Table 2, have appeared in the last decade. These clusters typically
contain � ve to � fteen genes spread over a window of 15 to 100 slots. Are conserved clusters of this sparsity
truly signi� cant? Figure 3 shows the expected number of clusters found in the self-comparison of a random
genome of size n D 3,000, calculated using Equation 59. The parameter n refers to the number of genes in
the data set, not the number of genes in the organism. Since these studies were performed on linkage data,
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Table 2. Paralogous Gene Clusters in Vertebrate Genomes Recently Reported in the Literaturea

Region Gene families found in region References

MHC Abc, C3/4/5, Col, Hsp, Notch, Pbx, Psmb, Rxr, Ten Endo et al., 1997; Hughes, 1998; Kasahara,
1997; Katsanis et al., 1996; Smith et al.,
1999; Spring, 2002; Trachtulec and Forejt,
2001

HOX Achr, Ccnd, Cdc, Cdk, Dlx, En, Evx, Gli, Hh, Hox,
If, Inhb, Nhr, Npy/Ppy, Wnt

Amores et al., 1998; Hughes, 1998; Spring,
2002

FGR Adr, Ank, Egr, Fgfr, Lpl, Pa, Slc4A, Vmat Coulier et al., 1997; Lipovich et al., 2001;
Lundin, 1993; Pebusque et al., 1998;
Spring, 2002

TBOX Cryb, Lhx, Nos, Tbx, Tcf, Prkar Ruvinsky and Silver, 1997

MATN Eya, Hck, Matn, Myb, Myc, Sdc, Src Gibson and Spring, 2000

aMany of these clusters appear in several vertebrate species and have also been found in invertebrate genomes.

n is chosen to re� ect the number of mapped, sequenced genes in the organism in the Jackson Laboratories
Mouse Genome Database (MGD, www.informatics.jax.org) at the end of the twentieth century. The curves
in Fig. 3(a) suggest that when gene family sizes are small (Á D 2), a cluster larger than ten is signi� cant
even if spread over a large window. However, as Á increases, clusters found in larger windows are no
longer signi� cant (Fig. 3(b)).

Let us consider one of these examples, the TBOX cluster, in detail. Ruvinsky and Silver (1997) observed
paralogous gene clusters on mouse chromosomes 5 and 11, shown in Fig. 4, and explored the hypothesis
that these genes were duplicated in a single event. The central cluster is quite compelling but it is more
dif� cult to decide whether the more distant Prkar paralogs should be included in this candidate duplicated
region. A statistical test using the reference region approach can help resolve this question. In a data set
of 2,888 mapped genes extracted from MGD, genes from the Cryb, Lhx, Nos, Tbx, and Tcf families were
found in a window of 15 slots on chromosome 5 and a window of 48 slots on chromosome 11. The
inclusion of the Prkar genes yields a cluster of seven genes in windows of 47 and 65 slots, respectively.
Using the expression for S8H . / given in Table 4 in the appendix, we estimate the expected number of
clusters with these values in a random genome with uniform gene family size, Á D 3. If we take the six-
gene cluster on chromosome 5 as the reference, assuming Á D 3, the expected number of such clusters in a
random genome is SFH .2888; 6; 15; 48; 3/ D 2:0£ 10¡3, suggesting that the six-gene cluster is signi� cant.

FIG. 3. Expected number of paralogous clusters in a random genome with n D 3,000 genes as a function of the
window size, r . The threshold, S

p
F . / D 1, is shown as a dashed line. (a) Á D 2. Cluster size ranges from m D 5 to

m D 15. (b) m D 10. Gene family size ranges from Á D 2 to Á D 8.

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270360688129&iName=master.img-002.png&w=428&h=165
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FIG. 4. Clusters of paralogous mouse genes on chromosomes 5 and 11. Adapted from Ruvinsky and Silver (1997).

Adding Prkar1b to the reference cluster yields h D 7, m D 47, and r D 65, and the expected number of
clusters becomes 5:7. In this case, it is no longer possible to reject chance as a possible explanation for
the seven-gene cluster with con� dence. Moreover, if we select chromosome 11 as the reference, then the
expected numbers of comparable six- and seven-gene clusters in a random genome are 6:1 £ 10¡3 and
8:3, respectively, leading to the same conclusions.

Whole genome analysis: In large scale studies of conserved regions, the intent is to characterize
processes of duplication, rearrangement, and conservation on a genome-wide scale rather than detailed
study of a particular region. In one example of such an analysis, Tamames (2001) compared pairs of
bacterial genomes in a study of gene order conservation in prokaryotes. His approach uses a parameterized
method for identifying pairs of runs of orthologs (one in each species), in which the user must specify
two parameters: m0, the minimum number of pairs of orthologs in the run and g, the maximum number
of intruders found between any pair of orthologs in the run. Thus, a run with m orthologs can be at most
.g C 1/.m ¡ 1/ C 1 slots long. For the purposes of the study (Tamames, 2001), m0 and g were both set to
three. Our model provides a rational basis for selecting parameters of clustering algorithms such as this. In
this example, we seek the minimum m0 and maximum g such that the clusters obtained are still signi� cant.
Figures 5 and 6 show the expected number of clusters with m gene families in common, calculated using
Equation 55. Since bacterial genomes range from roughly 500 to 7,000 genes, an intermediate size of n D
3,000 was used. Figure 5(a) shows that with a gap of three, clusters of three genes are signi� cant for small

FIG. 5. Expected number of orthologous clusters of m genes in a window of size r, where r ranges from m to
.g C 1/.m ¡ 1/ C 1, n D 3,000, g D 3 and gene family size ranges from Á D 1 to Á D 8. The threshold, So

F . / D 1,
is shown as a dashed line. (a) m D 3. (b) m D 9.

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270360688129&iName=master.img-003.png&w=302&h=188
http://online.liebertpub.com/action/showImage?doi=10.1089/10665270360688129&iName=master.img-004.png&w=405&h=151
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FIG. 6. Expected number of orthologous clusters of m genes in a window of size r D .g C 1/.m ¡ 1/ C 1, where
Á D 4 and n D 3,000. Gap sizes range from g D 1 to g D 3. The threshold, So

F . / D 1, is shown as a dashed line.

gene family sizes but cease to be for Á ¸ 2. When m D 9, however, most clusters are signi� cant except
when Á ¸ 2 and r approaches its maximum range (Fig. 5(b)). The dependence of cluster signi� cance on
gap size is demonstrated in Fig. 6. When Á D 4, clusters in windows of maximum size with g D 3 are
not signi� cant for any value of m, no matter how large. However, if g D 2 clusters are signi� cant for
m ¸ 6, when g D 1, most clusters are signi� cant. In the absence of additional biological information that
can be used to determine cluster signi� cance, such as gene orientation, these results suggest that a slightly
higher value of m0 and a gap size of g · 2 would guarantee the signi� cance of clusters found with this
algorithm. This example demonstrates that statistical models of gene clusters are useful not only in data
analysis but also in algorithm design.

7. DISCUSSION AND FUTURE WORK

Gene clusters, local similarities in genome organization, are the basis of many studies of genome
evolution and function in organisms ranging from bacteria to vertebrates. We have presented probabilistic
models for determining the signi� cance of gene clusters in both paralogous and orthologous settings. Under
a model of uniform random gene order, we consider the probability of � nding a cluster of a particular
set of genes, as well as the expected number of clusters observed in whole genome comparison. Many
factors have an impact on cluster signi� cance. Clusters with conserved gene order are more signi� cant
than those with random gene order. Signi� cance decreases in genomes with gene families or if some of
the genes in the cluster are missing. A cluster may be more signi� cant if observed in multiple genomes,
but the calculation of signi� cance must take the number of genomes considered into account. Finally,
cluster signi� cance is in� uenced by the number of instances considered when searching for clusters. The
interplay of these forces is subtle and cannot be easily intuited, underscoring the importance of formal
statistical models such as those presented here. Our models take into account multiple genomes, gene
families, incomplete clusters, and the approach that was used to � nd the clusters. Despite a fairly simple
and abstract model, we have demonstrated that our results are practical by applying our models to a range
of examples from the biology literature.

In future work, we plan to develop more detailed, biologically motivated models. The current model
treats the genome as an ordered set of genes. An extended analysis would model the chromosomal posi-
tions of genes and would take tandem duplications and gene-rich and gene-poor regions into account. A
parameterized model of gene family sizes that yields realistic, computationally tractable approximations is
also needed. Finally, other types of biological information besides gene order can be brought to bear on
the assessment of signi� cance, including gene orientation (e.g., Tamames, 2001; Wolfe and Shields, 1997)
and divergence times (e.g., Chen et al., 2000; Friedman and Hughes, 2001; Ruvinsky and Silver, 1997.)

http://online.liebertpub.com/action/showImage?doi=10.1089/10665270360688129&iName=master.img-005.png&w=235&h=172
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APPENDIX: TEST STATISTICS

Test statistics derived in this paper are summarized in Tables 3–7. These include statistics for general
models of gene families (Áj ¸ 1; 8j ), genomes with uniform-size gene families (Áj D Á; 8j ), and genomes
with no gene families (Áj D 1; 8j ). Table 3 gives statistics for individual clusters for the case where the
clusters are found through comparison with a reference region and the reference and matching regions are
located in different genomes. Statistics for the case where both regions are in the same genome are given

Table 3. Test Statistics for Clusters Orthologous to a Reference Region

Test statistic Eqn. Gene families

q. /

µ
.n ¡ r/

³
r ¡ 1
m ¡ 1

´¶
C

³
r

m

´

Á
n

m

! 2 Áj D 1

Probability of � nding m prespeci�ed genes in a window of size r

SÁ. / 8.M/q.n; m; r/ 5 Áj ¸ 1

Expected number of clusters with gene families

SH . /

³
m

h

´
q.n; h; r/ 11 Áj D 1

S8H . /

0

@
X

H 2H
8.H/

1

A q.n; h; r/ 17 Áj ¸ 1

S8H . /

³
m

h

´
Áhq.n; h; r/ 18 Áj D Á

Expected number of incomplete clusters

PH . / mqHW .n; h ¡ 1; m ¡ 1; r ¡ 1/ 14 Áj D 1

Upper bound on the probability of at least one incomplete cluster

Table 4. Test Statistics for Clusters Paralogous to a
Reference Regiona

Test statistic Gene families

SÁ. / 8.M/q.n ¡ m; m; r/ Áj D 2

Expected number of clusters

S8H . /
X

0

@
X

H 2H
8.H/

1

A q.n ¡ m; h; r/ Áj ¸ 2

S8H . /

³
m

h

´
.Á ¡ 1/hq.n ¡ m; m; r/ Áj D Á

Expected number of incomplete clusters

a In the paralogous case, 8.M/ is de� ned to be 5j2M .Áj ¡ 1/. These statistics
are modi� ed versions of the orthologous statistics and do not refer to equations in
the text.
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Table 5. Expected Number of Clusters in Whole Genome Comparisons

Test statistic Eqn. Gene families

SR . / .n ¡ m C 1/q.n; m; r/ 42 Áj D 1

SRF . / .n ¡ m C 1/Ámq.n; m; r/ 43 Áj D Á

Reference genome
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C . /

³
n

m

´
q.n; m; r/2 53 Áj D 1
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F . /

³
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´
[Ámq.n; m; r/]2 55 Áj D Á

Orthologous whole genome comparison

S
p
F . /

³
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m

´ ³
Á

2

´m

q.n; m; r/2 59 Áj D Á

Genome self-comparison

Table 6. Test Statistics for Window Sampling, Orthologous Case

Test statistic Eqn. Gene families
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Expected number of window pairs that share at least m genes
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W . / » 1 ¡ [1 ¡ qo

W .n; m; r/]nw 57 Áj D 1
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WF . / » 1 ¡ [1 ¡ qo

WF .n; m; r/]nw 57 Áj D Á

Probability that at least one pair shares at least m genes
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Table 7. Test Statistics for Window Sampling, Paralogous Case

Test statistic Eqn. Gene families
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Á
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Probability that exactly l of those k gene families appear in W2

S
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p
FW .n; m; r/ 60 Áj D Á

Expected number of window pairs that share at least m genes

P
p
FW . / » 1 ¡ [1 ¡ q

p
FW .np; m; r/]nw 61 Áj D Á

Probability that at least one pair shares at least m genes

in Table 4. Table 5 gives statistics based on the expected number of clusters seen during whole genome
comparison, including comparison with a reference genome, comparison of two different genomes and
paralogous genome self-comparison. Test statistics based on window sampling, for both individual clusters
and genome-wide clustering, are given in Tables 6 and 7. Table 6 gives statistics for comparison of two
different genomes, while Table 7 addresses comparison of a genome with itself.
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