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Abstract

Background: The evolution of a cancer genome has traditionally been described as a sequential accumulation of
mutations - including chromosomal rearrangements - over a period of time. Recent research suggests, however,
that numerous rearrangements may be acquired simultaneously during a single cataclysmic event, leading to the
proposal of new mechanisms of rearrangement such as chromothripsis and chromoplexy.

Results: We introduce two measures, open adjacency rate (OAR) and copy-number asymmetry enrichment (CAE), that
assess the prevalence of simultaneously formed breakpoints, or k-breaks with k >2, compared to the sequential
accumulation of standard rearrangements, or 2-breaks. We apply the OAR and the CAE to genome sequencing
data from 121 cancer genomes from two different studies.

Conclusions: We find that the OAR and CAE correlate well with previous analyses of chromothripsis/chromoplexy
but make differing predictions on a small subset of genomes. These results lend support to the existence of
simultaneous rearrangements, but also demonstrate the difficulty of characterizing such rearrangements using
different criterion.

Introduction
Cancer is driven by somatic mutations in a population
of cells [1]. These somatic mutations range in scale
from single nucleotide mutations to large-scale chromo-
somal rearrangements. Traditionally, the evolution of a
cancer genome has been described as a sequential accu-
mulation of such mutations over many cell divisions. In
2011, however, Stephens et al. [2] suggested that cancer
genomes may also acquire tens to hundreds of genomic
rearrangements simultaneously as part of a one-time
catastrophic event termed chromothripsis. This hypoth-
esis was formed as a means of describing observations
in data that seemingly could not be described using the
standard sequential model of genome rerragements. A
related phenomenon reported by Berger et al. [3] was

later named chromoplexy by Baca et al. [4]. Both chro-
mothripsis and chromoplexy involve simultaneous
breakage and repair at multiple genomic locations,
although with slight differences: e.g. chromoplexy is pro-
posed to favor inter-chromosomal over intra-chromoso-
mal rearrangements.
Simultaneous breakage and repair at multiple genomic

locations has not yet been measured in vivo. Thus, to infer
that such an event has occurred one must argue that
simultaneous rearrangement is a more plausible explana-
tion for the observed sequencing data than sequential
accumulation of rearrangements. Several different signa-
tures have been proposed as the defining characteristics of
chromothripsis [5,6] including clustering of rearrangement
breakpoints and a small number of oscillating copy num-
ber states. While these signatures are suggestive of a
simultaneous, or one-off, rearrangement event, they do not
conclusively establish the occurrence of such an event. In
addition, there is variability in how these criteria are
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implemented [2,7,8] making it unclear how to interpret or
compare results across different studies.
The lack of formal models and definitions for detecting

chromothripsis and chromoplexy has led to a growing
debate about whether these are true phenomena [9,10].
For instance, Sorzano et al. [9] suggest that the observed
clustered rearrangement breakpoints do not exist in every
cell, but rather reflect heterogeneity in the tumor popula-
tion as a result of an event such as breakage-fusion-bridge
(B/F/B) cycle. The fundamental question underlying this
debate is how to identify simultaneous acquisition of
rearrangements - the defining feature of chromothripsis/
chromoplexy - in a cancer genome, given sequence data
from a tumor sample and matched normal.
The original chromothripsis publication [2] used Monte

Carlo simulations to demonstrate that it was unlikely to
observe only a few copy number states under a sequential
model. While variations on this approach have been
adopted in several other studies [7,8], recent reports have
questioned the conclusions drawn from this approach. For
example, [10] demonstrate that a small but significant pro-
portion (3.9%) of simulated datasets with sequential accu-
mulation of 50 − 55 breakpoints exhibit three or fewer
copy states, thus showing a high false positive rate with
this approach. Recently, other methods for identifying
simultaneously formed rearrangement clusters have been
proposed. ShatterProof [11] provides a framework for
combining the various proposed criteria of chromothripsis
[5] to generate a composite likelihood score. ChainFinder
[4] detects chromoplexy using a graph based model which
identifies closed chains of rearrangements that are unlikely
to have arisen independently.
Here we introduce two measures of chromothripsis/

chromoplexy based on the properties of the adjacencies
and copy number changes that are measured by high-
throughput sequencing. Since the defining characteristic
of chromothripsis/chromoplexy is the simultaneity of
breakpoint formation, we define the open adjacency rate
(OAR) and copy-number asymmetry enrichment (CAE) in
order to assess the prevalence of simultaneously formed
breakpoints. In terms of the models introduced in the gen-
ome rearrangement community, genome rearrangements
can be modeled as double cut and join (DCJ) operations,
where two double-stranded breaks (DSBs) are introduced
and repaired in an aberrant configuration [12]. Simulta-
neous breakage and repair at multiple sites is an operation
with more than two cuts, and can be modeled as a k-break
[13]. We note that in general, a k-break may be equivalent
to a sequence of DCJ operations. However, under certain
conditions described below an observed k-break with k >2
cannot be equivalently described by a sequence of DCJ
operations. Thus, chromothripsis/chromoplexy is the
occurrence of one or more k-breaks with k >2. The OAR
and the CAE use different data as input, but both aim to

provide an estimate in answer to the following question:
given a genome, what proportion of the observed break-
points were formed in k-breaks with k >2?
We compute the OAR and CAE on 121 cancer genomes

from two datasets that were previously screened for chro-
mothripsis/chromoplexy [7,4]. We find that both measures
correlate well with the predicted classifications of chromo-
thripsis/chromoplexy versus sequential (p <10−3 on data
from [7] and r = 0.73 on data from [4]), but differ on a
small subset of genomes. Visual inspection of the genomes
for which OAR makes differing predictions suggest that
they have been mis-classified in the published analyses.

Methods
Definitions and preliminaries
We consider a derivative genome to be a genome that is
formed from the normal, or reference genome through a
series of k-breaks. A k-break is an operation that cuts the
genome at k locations and joins the resulting free ends
together [13]. k-breaks are a general purpose model for
structural variation in cancer, since they formally describe
a diverse set of rearrangement types including balanced
rearrangements such as translocations, inversions and
transpositions as well as deletions.
Formally, we define a breakend to be an oriented posi-

tion on the genome, representing one side of a break (e.g.
x = (chr17:105227, +)). Thus, each k-break produces 2k
breakends, which are then joined together in an aberrant
configuration in the derivative genome. Note that
2-breaks are equivalent to double cut and join (DCJ)
operations [12]. Depending on how the resulting break-
ends are joined, a 2-break models either a translocation,
an inversion, or creates a new circular chromosome
(Figure 1A). In the last case, if the breakends are on the
same chromosome and this circular chromosome is lost,
the result is a deletion of the intervening segment. Pairs
of breakends that were separate before the breakage but
connected after the repair (i.e. in the derivative genome)
are called adjacent. An unordered pair A = {x, y} of adja-
cent breakends is called an adjacency. Adjacencies are
the signal left by k-breaks in the derivative genome. Pairs
of breakends connected before the breakage (i.e. in the
reference genome) are called counterparts. We denote
counterpart breakends using a prime, so that if x is a
breakend, x′ is its counterpart. For example, a break
occurring between nucleotides n and n + 1 will generate
counterpart breakends x = (n, +) and x′ = (n + 1, −).

Modeling cancer genomes with k-breaks
We model the process of genome rearrangements in can-
cer as follows. Each tumor begins as a non-mutated foun-
der cell containing the reference genome. Over time, a
sequence of k-breaks occur in the founder cell’s lineage,
eventually forming the derivative genome which is revealed
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at the time of sequencing. k-breaks occur according to two
assumptions:
1 There is no breakpoint reuse; i.e. breaks never occur

in the same location twice.
2 All breakends are fused; i.e. no new telomeres are

formed. Note, the formation of new closed loops of
DNA is allowed
The “no breakpoint reuse” assumption is a subtle issue

in evolutionary comparisons [14,15] where the break-
ends of genome rearrangements are determined as
boundaries of synteny blocks from sequence alignments.
These boundaries may be ambiguous due to subsequent
mutations and/or repetitive sequences at the boundaries,
leading to the identification of breakpoint regions rather
than precise breakends. This lack of resolution is less of
an issue in cancer data from high-throughput sequen-
cing where we expect that any breakpoint that is
detected is also localized precisely (within a few hundred
nucleotides), as there has been little time for subsequent
mutations to obscure this breakpoint.

Open and closed adjacencies
Let A be the set of all adjacencies produced by a sequence
of k-breaks that transform the reference genome into a
derivative genome. A should be thought of as a complete
‘record’ of all the somatic rearrangements that occurred,
and not only those that can be measured in the derivative
genome; i.e. A contains adjacencies that may be removed
by subsequent deletions in the creation of the derivative
genome. Chromothripsis and chromoplexy are putative
rearrangement mechanisms in which many breaks occur
simultaneously followed by aberrant repair of the resulting
breakends, and thus is modeled as the occurrence of one
or more k-breaks with large k. Under the “no breakpoint
reuse” and “all breakends fused” assumptions listed above,
the occurrence of a k-break with k >2 will leave a specific
signature in the set A.

Let A ∈ A be an adjacency with breakends x and y.
From x, we infer that at some time a DNA break occurred
at x’s location. This break would have produced an addi-
tional breakend x′, the counterpart of x. Similarly the
break at y would have generated a counterpart breakend y
′. Since adjacencies (hence breakends) are never removed
from A, both x′ and y′ can be found in adjacencies B, C ∈
A. We now ask, when does B = C? The answer depends
on k. If A was produced by a 2-break, then no other break-
ends would have been present at the time, forcing x′ and y′
to form an adjacency (Figure 1A). On the other hand, if k
>2, then additional breakends would have been available
for fusion with x′ and y′ (Figure 1B). To distinguish
between these scenarios we make the following definition.
Definition 1 Given the set Aof adjacencies produced

by a sequence of k-breaks, A = {x, y} ∈ Ais closed if {x′,
y′} ∈ A; otherwise A is open.
Every k-break generates k adjacencies. When k = 2, these

adjacencies must be closed. Conversely, every open adja-
cency must have come from a k-break with k >2. For a
given adjacency set A, let A2 the subset of adjacencies
produced by 2-breaks and let Ak be the subset produced
by (k >2)-breaks, so that A = A2 ∪ Ak. Let O(A) be the set
of open adjacencies inA. We have the following.
Observation 1 For every adjacency set A, O(A) ⊂ Ak.

Two signatures of open adjacencies
Our goal is to detect chromothripsis/chromoplexy by
inferring the history of k-breaks that gave rise to an
observed set of adjacencies and copy number aberrations.
In particular, we are interested deriving a lower bound for
the number of adjacencies produced in k-breaks with k >2.
As described above, this can be accomplished by counting
open adjacencies. However, “open” and “closed” are theo-
retical categories, describing the etiology of an adjacency,
rather than its structure in the derivative genome. In parti-
cular, subsequent rearrangements or experimental error

Figure 1 Examples showing a 2-break and 3-break. (A) In a 2-break, two breaks produce four breakends, organized into counterpart pairs x, x
′ and y, y′, Aberrant repair leads to an inversion/translocation (left) with adjacencies {x, y} and {x′, y′} or a closed loop that is then lost resulting in
a deletion (red X, right). In both cases, all adjacencies are closed. This can be detected as counterpart-symmetry for the inversion adjacencies ({x,
y}, {x′, y′}, left) and copy-number symmetry for the deletion adjacency ({x, y′}, right), since due to copy number loss Δ(x) = Δ(y′) = −1. (B) In a (k
>2)-break, k breaks produce 2k breakends which are aberrantly repaired. Closed loops formed in this process can result in deletions (red X). The
resulting adjacencies are open, since for each adjacency A the counterparts of the two breakends in A are not themselves adjacent. For example,
x and y are adjacent but x′ and y′ are not. This can be detected using counterpart-asymmetry (e.g. {x, y}, since x′ is adjacent to w′ but w′ ≠ y′) or
copy-number asymmetry (e.g. {x′, w′}, since Δ(x′) = 0 while Δ(w′) = −1).

Weinreb et al. BMC Genomics 2014, 15(Suppl 6):S4
http://www.biomedcentral.com/1471-2164/15/S6/S4

Page 3 of 11



may obscure whether adjacencies are open or closed. Thus
we need to define signatures of open adjacencies that can
be robustly applied to real data. We define two such signa-
tures below: (1) counterpart-asymmetry ; and (2) copy-
number asymmetry.
Let A be the complete set of adjacencies produced by a

sequence of k-breaks and Ã⊆ A be the subset observed in
genome sequencing data from the derivative genome. Con-
sider an adjacency A = {x, y} ∈ Ã. If A is open then the
counterpart breakends x′ and y′ must belong to separate
adjacencies in A, say {x′, w} and {y′, z} where w ≠ y′ and z
≠ x′. Based on the assumption of no breakpoint reuse,
observing either {x′, w} or {y′, z} in the derivative genome
precludes the existence of {x′, y′}, and demonstrates that A
is open. We call this signature counterpart-asymmetry
(Figure 1B).
Definition 2 Given a set Ãof experimentally detected

adjacencies, A = {x, y} ∈Ãhas counterpart-asymmetry if
there exists a breakend w such that w ≠ y′ and {x′, w} ∈
Ãor there exists a breakend z such that z ≠ x′ and {y′, z}
∈ Ã.
The second signature of open adjacencies relies on copy

number. We represent copy number as an integer-valued
function N on genomic coordinates. Assuming the
k-break model of rearrangement, each discontinuity in N
occurs at a site of breakage and results in a distinct copy
number state over each breakend in a counterpart pair.
Thus, if a break between nucleotides n and n + 1 produces
a pair of counterpart breakends: x = (n, +) and x′ = (n + 1,
−), N(x) represents the absolutely copy number state
immediately upstream of the break and N(x′) the copy
number downstream. In addition to the absolute copy
number at a breakend, we wish to characterize the change
in copy number change across a breakend. Thus, we define
Δ(x) := N(x′) − N(x) where x′ is the counterpart of x.
In this formulation, breakends flanking deleted regions

have negative Δ values. For example, suppose the adja-
cency A = {x, y} resulted from a heterozygous (single copy)
deletion. Then x′, the counterpart of x, must lie within the
deleted region, meaning N(x′) = N(x) − 1 =⇒ Δ(x) = −1. A
similar argument implies that Δ(y) = −1. In this case, the
changes in copy number are symmetric at the two break-
ends of the adjacency. Alternatively, an adjacency A = {x,
y} may exhibit different copy number changes across both
its breakends. Such an occurrence is our second signature
of open adjacencies called copy-number asymmetry, which
we define as follows.
Definition 3 Given a set Ãof experimentally detected

adjacencies, A = {x, y} ∈ Ãhas copy-number asymmetry
provided Δ(x) ≠ Δ(y).
It is not immediately clear that an adjacency with

copy-number asymmetry is necessarily an open adja-
cency, so we prove the following.

Proposition 1 If an adjacency A has copy-number
asymmetry, then it is open.
Proof Suppose that A = {x, y} is a closed adjacency

formed by a k-break at some time t0. This means that
the pairs of breakends {x, x′} and {y, y′} were connected
before time t0, and the pairs {x, y}, {x′, y′} are connected
after time t0. Since we assume there is no breakpoint
reuse, x and y must have been ‘untouched’ before time
t0. Thus, N(x) = N(x′) and N(y) = N(y′) before t0. After
t0, these counterpart breakend pairs are no longer fused,
meaning their copy numbers can change independently.
However, the newly adjacent breakend pairs are now
‘locked’ to each other and their copy numbers must rise
and fall together. For example, once x and y are adjacent,
a copy number decrease over x implies a copy number
decrease over y. Indeed their copy numbers could only
change differentially if they were re-broken, violating the
assumption that breakpoints are not reused. This implies
that in the derivative genome, N(x′) − N(x) = N(y′) − N
(y) ⇒ Δ(x) = Δ(y), which means closed adjacencies cannot
be copy-asymmetric. Conversely, adjacencies with copy-
number asymmetry must be open. □
We emphasize here the importance of analyzing the dif-

ferences Δ(x) and Δ(y) in copy number across breakends
to define copy-number asymmetry rather than absolute
copy numbers N(x) and N(y) at breakends. N(x) and N(y)
can be unequal even when the adjacency {x, y} is closed, as
a change in copy number for either breakend may have
occurred prior to the formation of the adjacency {x, y}.
After the formation of the adjacency {x, y}, however, copy
number changes that affect x must also apply to y since
the two breakends are fused. Thus assuming {x, y} is
closed, we expect to find Δ(x) = Δ(y) even when N(x) ≠ N
(y). Critically, this argument rests on our assumption that
there is no breakpoint reuse, since a second break at x or y
(on the originally rearranged chromosome or its homolo-
gue) would allow Δ(x) and Δ(y) to vary independently.

Counterpart- and copy-number asymmetry cooperate to
detect a range of open adjacencies
Since counterpart-asymmetry relies on the presence of
counterpart breakends and copy-number asymmetry
implicitly relies on their absence, the two signatures in
combination can identify a broader set of open adjacencies
than each can on its own. This is illustrated in the follow-
ing two examples.
First, let A = {x, y} be a closed adjacency. This implies

that x′ and y′ were fused in the k-break that created A.
Clearly, observing the adjacency {x′, y′} in the derivative
genome would demonstrate that A is closed, but what if {x
′, y′} is not observed? There are two possible explanations:
either {x′, y′} exists in the derivative genome but was not
detected, or the genomic segment containing {x′, y′} is
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deleted. In the latter case, the deletion would have a
occurred at the same time as the creation of A (i.e. A was
created by a deletion) or subsequent to the creation of A.
Since the deletion of an adjacency entails a copy number
drop at its constituent breakends and our no breakpoint
reuse assumption implies that any subsequent copy num-
ber changes would produce coordinated copy number
changes across x and y, we have that Δ(x) = Δ(y). Thus, A
would show counterpart symmetry if {x′, y′} were retained
and copy-number symmetry if it were deleted. In either
case, A will be considered a closed adjacency according to
our definitions (Figure 1A).
Next, suppose A = {x, y} is an open adjacency. This

means that the counterpart x′ was fused to a breakend
w ≠ y′, producing an adjacency {x′, w}. Observing the
adjacency {x′, w} in the derivative genome would
demonstrate that A is open through counterpart-asym-
metry. On the other hand, if the DNA supporting {x′, w}
were deleted, then there would be a copy number
change at x (Δ(x) ≠ 0). Since y′ is not adjacent to x′ or
w, it is unlikely that y′ is also deleted at the same time.
If we also assume that y′ does not experience an inde-
pendent change in copy number at another time, then
we have Δ(y) = 0. Under these conditions Δ(x) ≠ Δ(y),
giving A copy-number asymmetry. Therefore, A would
look open to our signatures if either {x′, w} were
retained and measured or if {x′, w} were deleted and y′
were retained (Figure 1B).

Open adjacency rate
Given a collection of measured adjacencies Ã and a copy
number profile N, we identify the adjacencies that exhibit
counterpart-asymmetry or copy-number asymmetry and
form a putative set of open adjacencies O ⊂ Ã. Note that

Ã may represent all measured adjacencies, or a subset of
adjacencies that suspected to reflect a chromothripsis-like
or chromoplexy-like event. To estimate the proportion of
adjacencies in Ã formed by (k >2)-breaks, we define the
open adjacency rate (OAR)

OAR (˜A,N) =:
|O|
|˜A| . (1)

In real data, not all open adjacencies will display copy-
number asymmetry or counterpart-asymmetry. For
example, if only a sparse set of adjacencies is detected,
then counterparts will be rare. However, those adjacen-
cies which do show either signature can be called open
with high-confidence. Hence the total number of adja-
cencies exhibiting counterpart/copy-number asymmetry
bounds the true number of open adjacencies from
below. Thus, if there is no experimental error generating
false-positive open adjacencies then it follows from
Observation 1 that OAR(Ã, N) <|Ãk|/|Ã|.

Copy-number asymmetry enrichment
For two breakends to be considered counterparts, they
must satisfy several criteria, including that they lie close
together on the genome. Therefore, in regions that exhibit
a dense clustering of breakends it can become difficult to
disambiguate breakends that are close because they are
counterparts from those that are close due to other factors.
Thus, adjacencies which are densely clustered may occa-
sionally appear open due to false positive counterpart
breakend calls, artificially enhancing the open adjacency
rate. Since adjacency sets representing putative chromo-
thripsis/chromoplexy events are often formed on the basis
of breakend clustering [5], it is desirable to develop a mea-
sure which ignores the relative positions of breakends and
allows one to separate the contribution of breakend clus-
tering from other factors when assessing whether the given
adjacencies were formed during a one-off event. We intro-
duce a second measure, copy-number asymmetry enrich-
ment (CAE), that imputes the open adjacency rate using
only relative copy number changes at adjacent breakends.
Consider an adjacency set Ã produced by k-breaks with

k ≥ 2. Let Ã2 be the set of adjacencies from 2-breaks and

Ãk be the set from (k >2)-breaks, so that Ã = Ã2 ∪ Ãk.
Further, let C ⊆ Ã denote the subset of copy-number
asymmetric adjacencies. We wish to estimate the fraction
of adjacencies in Ã that came from (k >2)-breaks using
copy-number asymmetry alone; i.e. to estimate |Ãk |/|Ã|
from |C|. Proposition 1 tells us that |C| ≤ |Ãk|. Turning
this lower bound into a direct estimate requires quantify-
ing the degree to which |Ãk| exceeds |C|. This depends
critically on the fraction of breakends in Ã that co-locate
with changes in copy number.
Let pΔ be the fraction of breakends x in Ã such that Δ(x)

≠ 0 (i.e. the fraction of breakends co-locating with a
change in copy number). To derive an expected relation-
ship between |C|, pΔ and |Ãk|, we treat the copy number
changes Δ(x) as random variables and make the following
assumptions: (1) For each breakend x, Δ(x) is always -1 or
0 (deletion or non-deletion); (2) For each adjacency {x, y}
∈ Ã2, Δ(x) and Δ(y) are equal (dependent) and Bernoulli
distributed with P (Δ(x) = Δ(y) ≠ 0) = pΔ; (3) For each
adjacency {x, y} ∈ Ãk , Δ(x) and Δ(y) are independent and
Bernoulli distributed with P (Δ(x) ≠ 0) = P (Δ(y) ≠ 0) = pΔ.
It follows from these assumptions that Ã2 ∩ C = ∅ and
that for an adjacency {x, y} ∈ Ãk chosen uniformly at ran-
dom, P ({x, y} ∈ C) = P (Δ(x) ≠ Δ(y)) = P (Δ(x) = 0, Δ(y) =
−1) + P (Δ(x) = −1, Δ(y) = 0) = 2pΔ(1 − pΔ). It follows that
E(|C|) = 2pΔ(1 − pΔ)|Ãk|, allowing us to approximate |Ãk|
≈ |C|/(2pΔ(1 − pΔ)). Thus, we can estimate (|Ãk|/|Ã|), the
fraction of (k >2)-breaks, by the copy-number asymmetry
enrichment (CAE) ratio, defined as

CAE(˜A) :=
|C|

2p�(1 − p�)|˜A| . (2)
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Detecting open adjacencies in real data
Detecting open adjacencies in real sequencing data
requires: (1) a set Ã of measured adjacencies along with
an annotation of the corresponding breakends for mem-
bership in counterpart pairs; (2) a copy number profile
N across the genome that maps copy number changes
to breakends. The procedures we use to collect this data
are described below.
We assume that a collection of rearrangements, or

structural aberrations, has been identified in the deriva-
tive genome by analyzing paired-read or split read data
using one of the many algorithms for this purpose
[16-18]. The output of these algorithms is a collection V
of pairs of breakends {x, y} representing novel adjacencies
in the derivative genome, where x and y are oriented
genomic coordinates in the reference genome. We form
the the adjacency set Ã from V by identifying counterpart
breakend pairs {x, x′} such that x, x′ ∈ V, x ≤ x′, and the
following criteria are satisfied: (1) x′ − × ≤ D for a small
integer D; (2) x has positive orientation and x′ has nega-
tive orientation; i.e. the pair (x, x′) has convergent (+, −)
orientation; (3){x, x′} ∉ V; (4) no other breakends in V lie
between x and x′. In principle, counterpart breakends
occupy adjacent nucleotides, so that we expect x′ − × =
1, indicating a distance threshold of D = 1 in criterion (1)
above. However, higher values of D may be used in prac-
tice since many structural aberration algorithms do not
identify breakends to single nucleotide resolution. In
addition, counterpart breakends may be separated by a
small distance due to microdeletions or “deletion
bridges” [4] that occur at rearrangement breakpoints.
One may compute the OAR on the full set of novel adja-

cencies; i.e. build Ã from V. Alternatively, one may evalu-
ate a subset of detected adjacencies, for example a spatially
clustered set of adjacencies or a collection previously
implicated as representing a chromothripsis-like event, by
building Ã from a subset of V. We use the later approach
in our analyses below.
To create a copy profile N which maps changes in copy

to breakends, we analyze a whole-genome segmentation
as follows. First, we match the ends of copy number seg-
ments (indicating a change in copy number) to nearby
breakends. This is done by creating a breakpoint interval
I with length L around the boundary of each copy num-
ber segment For each breakend x and breakpoint interval
I, we declare a match if: (1) x lies within I; (2) x is the
only breakend occupying this interval. Since determina-
tion of absolute copy number in tumors is challenging
due to heterogeneity [19], we assign change in copy
values Δ to breakends using a step function: Δ(x) = 1 for
breakends matched to intervals indicating positive copy
change; Δ(x) = −1 for breakends matched to intervals
indicating negative copy change; Δ(x) = 0 for breakends
without a matched copy change.

Results
We compute the OAR and CAE on two cancer sequen-
cing datasets: (1) 64 genomes representing seven tumor
types from the The Cancer Genome Atlas (TCGA) that
were analyzed for chromothripsis by Malhotra, et al. [7];
(2) 57 prostate cancer genomes that were analyzed for
chromoplexy by Baca, et al. [4]. Both studies mapped
somatic structural variants and copy number variants, and
annotated these variants as representing chromothripsis/
chromoplexy or stepwise events. For each dataset, we use
the procedures described above to compute the set of
observed adjacencies Ã and copy number profile N from
the novel adjacencies V and segmented copy number data
reported in the supplemental material of each publication.

Data processing: adjacency sets and copy number
changes
For each dataset we generated a collection of adjacency
sets {Ã} to evaluate with our measures, and derived an
estimate ̂k(˜A) of the proportion of adjacencies that were
reported to occur by (k >2)-breaks. For each TCGA
genome, Malhotra et al. [7] report a list of observed
adjacencies and identify clusters of co-localizing adja-
cencies which they classify as either “stepwise” or “one-
off”. The classification was based primarily on number
of distinct copy number states observed. We form one
adjacency set from each reported cluster, assigning
̂k(˜A) = 1 for one-off clusters and ̂k(˜A) = 0 for stepwise
clusters. We group the adjacencies from each genome
not assigned to a cluster by [7] into a “background”
adjacency set with ̂k(˜A) = 0. We removed all sets con-
taining fewer than 15 adjacencies, leaving 74 adjacency
sets. Of these, 8 adjacency sets were classified as one-off
and 66 as stepwise. In addition to providing a list of
observed adjacencies for each prostate cancer genome,
Baca, et al. [4] developed and used the ChainFinder
algorithm to analyze the prostate cancer adjacencies for
chromoplexy and report each chromplexy event as as a
“chain” of simultaneously formed adjacencies. Because
chromoplexy often spans many chromosomes, we
formed adjacency sets containing all measured adjacen-
cies for a genome, and set ̂k(˜A) to be the proportion of
adjacencies with at least one breakend belonging to a
chromoplexy chain as reported by [4]. We removed
adjacency sets with fewer than 15 adjacencies. The
resulting 50 adjacency sets had mean ̂k(˜A) of 0.501 with
standard-deviation 0.24. Further details are included in
Additional file 1.
For each adjacency set, we matched breakends into

counterpart pairs. To be called counterparts, two break-
ends must satisfy several criteria including falling within
a certain fixed distance D (see Methods for further
details). We set D = 2kb and identified 1,022 counter-
part breakend pairs from a total of 11,775 adjacencies
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reported by both studies. These closely localized pairs
are unlikely to have arisen by chance, since the propor-
tion of breakend pairs within distance D that display the
convergent orientation (+, −) is higher than the expected
value of 0.25 if orientation pairs were selected uniformly
from the four orientations (Figure 2A). This difference
is statistically significant (e.g. p <10−207 for D = 2kb,
binomial test) and peaks when D = 32bp, which is less
than the insert size of Illumina sequencing, and a rea-
sonable breakpoint localization with multiple supporting
read pairs [16]. Surprisingly, the divergent orientation
(−, +) is also over-represented for small values of D.
However, this may reflect a high prevalence of tem-
plated insertions at translocation junctions (see Figure 2B
and Additional file 1).
Next, we created a copy number profie which associ-

ates copy number changes to breakends. Supplementary
data from both studies reported a total of 41,814 copy
number changes across the full set of genomes. We cre-
ated the copy number profile using the approach
described in Methods where the length of breakpoint
intervals L was set to 10kb. Our approach mapped 6,733
breakends to changes in copy number. It is unlikely that
these matches occurred by chance since the matched
breakends tended to lie at the centers of their assigned
breakpoint intervals (Figure S1B in Additional file 1).

Open Adjacency Rate (OAR) for cancer genomes
We computed the OAR on both sets of cancer genomes.
On TCGA genomes, we found that the OAR values for
adjacency sets classified as “stepwise” in [7] had signifi-
cantly lower OAR values (mean OAR = 0.21) than adja-
cency sets classified as “one-off” (mean OAR = 0.51), p <10
−4, Mann-Whitney test (Figure 3A). Both counterpart-
asymmetry and copy-number asymmetry contributed to
the high OAR values for one-off genomes (Figure S2A in

Additional file 1). While our results using the OAR tend to
agree with the analysis performed by [7], there are several
instances where we obtain differing results. For example,
there are four adjacency sets classified as stepwise by [7],
but whose OAR scores are within 0.1 of the mean OAR
score for other one-off adjacency sets. This indicates that
these sets may have been one-off events which were origin-
ally mis-classified as stepwise by [7]. To explore this possi-
bility, we visualized these adjacency sets and compared
them to stepwise sets with low OAR and one-off sets with
high OAR (Figure 4), observing a high similarity with the
high OAR one-off sets and supporting our hypothesis that
these are actually one-off events.
Next, we computed the OAR for the prostate cancer

genomes from [4]. Because the estimates ̂k(˜A) for these
sets were distributed between 0 and 1, we computed the
correlation between OAR(Ã, N) and ̂k(˜A) across the
adjacency sets. We find that the OAR correlates well
with the estimates for ̂k(˜A) having r = 0.73, p <10−8,
Pearson test (Figure 3B). For each dataset, both copy-
number asymmetry and counterpart asymmetry contrib-
uted to the high OAR in adjacency sets with large ̂k(˜A)
(Figure S1 in Additional file 1).

Copy-number asymmetry enrichment (CAE) on cancer
genomes
Since the adjacency sets with ̂k(˜A) = 1 among TCGA gen-
omes were identified using clustering of breakends and
the estimates ̂k(˜A) for prostate cancer genomes were
assigned based on chains from [4] - which rely on break-
end clustering - we expected to find some amount of
counterpart asymmetry in these datasets. To remove the
contribution of counterpart asymmetry, we computed the
CAE on both datasets. On TCGA genomes, we found a
clear difference in CAE between adjacency sets classified
as “one-off” vs. those classified as “stepwise” (p <10−4), as

Figure 2 Summary of counterpart breakend calls. Breakends are called counterparts when they have a convergent (+, −) orientation and are
close together on the genome. (A) (Left) Proportion of all breakends pairs in (+, −) orientation (y-axis) at varying distance thresholds D (x-axis),
showing excess of convergent pairs at small distances. (Right) Proportion of breakend pairs with each of four possible orientations, at different
distance thresholds D. The convergent (+, −) orientation is enriched at small distances (p <10−60 for D = 32bp, binomial test), suggesting that
the breakend pairs are indeed counterparts, and unlikely to result from chance or frequent breakage at closely located sites. (B) A mild
enrichment of divergent breakend pairs at intermediate distances (e.g. D = 2kb) suggests the occurrence of focal duplications resulting from
copy-and-paste insertions at breakpoint junctions.
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Figure 3 OAR and CAE of adjacency sets from cancer genomes. (A) Distribution of OAR on 74 adjacency sets from TCGA genomes that
were classified as stepwise (all (k >2)-breaks) or one-off (all (k = 2)-breaks) in [7]. (B) Correlation between OAR(Ã) and ̂k(˜A), the estimated
proportion of adjacencies originating in (k >2)-breaks, for 50 prostate cancer adjacency sets from [4]. Red dots represent one-off sets and green
stepwise are stepwise sets. Dot size indicates number of adjacencies in the set. (C, D) The CAE for the corresponding datasets.
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shown in Figure 3C. On the prostate cancer genomes, we
found that the CAE values correlated with ̂k (r = 0.47,
p <10−3, Figure 3D). In addition, the CAE showed signifi-
cant agreement with the OAR across the collection of all
adjacency sets (r = 0.67, p <10−17). Overall the CAE pre-
dicted (k >2)-break prevalence relatively accurately, corre-
lating with previous prediction of chromothripsis/
chromoplexy in a manner similar to the full OAR. These
results show that copy-number asymmetry can be used to
predict open adjacencies (and hence putative (k >2)-
breaks), providing a measure for detection of simultaneous
rearrangements that is independent of measures based on
the location of breakends from a set of adjacencies.

Discussion
The definition of rigorous criteria to distinguish chro-
mothripsis/chromoplexy from stepwise accumulation of
rearrangements using DNA sequencing data from a sin-
gle time point is challenging task [2,4,5,7,11,10,20]. We
introduced two measures, the open adjacency rate
(OAR) and copy-number asymmetry enrichment (CAE),
to quantify the occurrence of simultaneous rearrange-
ments, or k-breaks [13] with k >2, in the formation of a
derivative genome. We showed that the OAR and CAE
measures correlate well with previously published ana-
lyses [7,4] of chromothripsis/chromoplexy, but that our
measures also reveal some potential misclassifications in
these studies.

While our results demonstrate that the OAR and CAE
are useful measures, they both have limitations. The
OAR and CAE are local measures that estimate the pro-
portion of (k >2)-break adjacencies by considering each
adjacency in turn, rather than examining their global
configuration. While some information is lost in this
approach, robustness to experimental error is gained.
Indeed, measures of chromothripsis/chromoplexy that
rely solely on the global configuration, such as Chain-
Finder [4] may be affected by a single missing adjacency.
Combining information from global configurations with
local measures such as the OAR is therefore an impor-
tant area for future investigation. In addition, recent stu-
dies suggest that chromothripsis/chromoplexy events do
not occur in isolation [20]. Thus, flexible measures, such
as the OAR and CAE, may be better able to distinguish
the available signal of a one-time event from the noise
of sequential rearrangements in the same region.
The ability to detect chromothripsis/chromoplexy using

OAR, CAE, or related measures is impacted by the extent
of intra-tumor heterogeneity within a sample. If a chromo-
thripsis/chromoplexy event exists in only a fraction of cells
in the sample, then the power to detect the adjacencies
and copy number changes that characterize this event is
diminished. Recently developed methods to characterize
intra-tumor heterogeneity within a single sample
[19,21,22] or new single cell sequencing approaches [23],
may provide better data for measures such as OAR.

Figure 4 Examples of agreement/disagreement between OAR and published classifications. While OAR correlates well with previous
classifications of chromothripsis/chromoplexy (Fig. 3), there are several exceptions. (Top right and bottom left) Two examples of differences
between OAR and published classifications. (Top left, Bottom right) Two examples of agreement between OAR and published classifications.
There are few apparent differences between the examples in each column, supporting the classification of these genomes by the OAR.
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Conclusions
We introduce two measures for chromothripsis/chromo-
plexy, the open adjacency rate (OAR) and copy-number
asymmetry enrichment (CAE). We find that these mea-
sures correlate well with previously predicted classifica-
tions of chromothripsis/chromoplexy on 121 cancer
genomes from two different studies, with a few notable
exceptions. Visual inspection of the genomes for which
OAR makes differing predictions suggest that they have
been original mis-classified. Ultimately, in vivo or in vitro
studies of chromothripsis/chromoplexy are necessary to
further quantify the causes and prevalence of these events.
In the interim, analytical methods to predict k-breaks
from high-throughput sequencing data will remain useful
tools, with the caveat that for some samples such post hoc
analysis may insufficient to determine reliability whether a
chromothripsis/chromplexy event occurred.

Additional material

Additional file 1: A PDF containing additional details and results
not included in the main text.
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