Algorithms for Genome Rearrangement Summer 2017

Exercises

Exercise 02, 28.04.2017

- 1. Given permutation $\pi = (2 \ 1 \ 3 \ 5 \ 4),$
 - (a) calculate the reversal distance $srd(\pi)$
 - (b) find a sorting scenario, i.e. a sequence of reversals ρ_1, \dots, ρ_d such that $\pi \circ \rho_1 \circ \dots \circ \rho_d = \mathbf{id}$ and $srd(\pi) = d$.
- 2. Any two components of a permutation are either *disjoint*, *nested*, or *chained*, the (4 P) latter meaning that they appear consecutively and share extremities of the same symbol/gene. A component tree of a permutation is defined as follows:

Definition Given a permutation π and its components, the component tree T_{π} is constructed as follows:

- (a) Each component is represented by a round node. It is colored black if unoriented and white, otherwise.
- (b) Each maximal chain is represented by a square node, containing its children.
- (c) A square node is the child of the smallest component that contains the chain.

In calculating $srd(\pi)$, the offset for additional reversals needed to orient unoriented components can be computed by determining a *cover* of the component tree T_{π} that has *minimum* cost.

Definition A cover C of a component tree T_{π} is a collection of paths joining all the unoriented components of π , such that each terminal node of a path belongs to a unique path. A path is short if it contains only one component, otherwise it is long.

The cost t(C) of a cover C is the sum of costs of all paths, whereby a short path has cost 1 and a long path has cost 2.

Consider permutation

 $\pi = (13 - 87 - 645911 - 1310 - 1214 - 2151722182019212328242625272916),$

- (a) use the Java program InversionVisualization provided on the course website to draw $BG(\pi)$. You can download the file containing π here. Using $BG(\pi)$, construct the component tree T_{π} ;
- (b) find an optimal tree cover (i.e. a cover with minimum cost) for T_{π} .

Hand in solutions before tutorial on 05.05.2017

(4 P)