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THE INVERSION DISTANCE PROBLEM

Anne Bergeron, Julia Mixtacki, and Jens Stoye

Among the many genome rearrangement operations, signed inversions
stand out for many biological and computational reasons. Inversions, also
known as reversals, are widely identified as one of the common rearrange-
ment operations on chromosomes, they are basic to the understanding of
more complex operations such as translocations, and they offer many com-
putational challenges. From the first formulation of the inversion distance
problem, ca. 1992, to its first polynomial solution in 1995, to the several
simplifications of the solution in recent years, there is not yet a simple,
complete, and elementary treatment of the subject. This is the goal of this
chapter.

10.1 Introduction and biological background

In the last 10 years, beginning with Sankoff [20], many papers have been devoted
to the subject of computing the inversion distance between two permutations.
An inversion of an interval from p; to p; transforms a permutation P into P’

P=(p1 - pi Dit1 - DPj - DPn)

P'=(p1 - pj - Dpis1Di - DPn)

The inversion distance between two permutations is the minimum number of
inversions that transform one into the other.

From a problem of unknown complexity, it eventually graduated to an
NP-hard problem [9], but an interesting variant was proven to be polynomial
[12]. In the signed version of the problem, each element of the permutation has
a plus or minus sign, and an inversion of an interval from p; to p; transforms P
to P’

P=(p1 - pi Dpit1- pj - DPn)

Pl=(p1 - —=pj = —Pit1—pi -+ Pn)

Permutations, and their inversions, are useful tools in the comparative study
of genomes. The genome of a species can be thought of as a set of ordered
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sequences of genes—the chromosomes—each gene having an orientation given by
its location on the DNA double strand. Different species often share similar genes
that were inherited from common ancestors. However, these genes have been
shuffled by evolutionary events that modified the content of chromosomes, the
order of genes within a particular chromosome, and/or the orientation of a gene.
Assigning the same index to similar genes appearing along a chromosome in two
different species, and using negative signs to model changes in orientation, yields
two signed permutations. The inversion distance between these permutations can
thus be used to compare species.

Computing the inversion distance of signed permutations is a delicate task
since some inversions unexpectedly affect deep structures in permutations.
In 1995, Hannenhalli and Pevzner proposed the first polynomial algorithm to
solve it [12], developing along the way a theory of how and why some permuta-
tions were particularly resistant to sorting by inversions. It is of no surprise that
the label fortress was assigned to specially acute cases.

Hannenhalli and Pevzner relied on several intermediate constructions that
have been subsequently simplified [7, 13], but grasping all the details remained a
challenge. Before Bergeron [3], all the criteria given for choosing a safe inversion
involved the construction of an associated permutation on 2n points, and the
analysis of cycles and/or connected component of the graph associated with this
permutation.

Moreover, most papers tended to mix two different problems, as pointed
out in references [1, 13]: the computation of the number of necessary inversions,
and the reconstruction of one possible sequence of inversions that realizes this
number. The first problem was finally proved to be of linear time complexity
[1], but this approach still used many of the Hannenhalli-Pevzner constructions.
However, the existence of a linear-time solution was a strong incentive to try to
present the computation in an elementary way, which led to the recognition of
the central role played by subpermutations in the theory [4, 6, 11].

In this chapter, we present an elementary treatment of the sorting by inver-
sions problem. We give a complete proof of the Hannenhalli-Pevzner duality
theorem in terms of the elements of a given signed permutation, efficient, and
simple algorithms to compute the inversion distance, and simple procedures for
the construction of optimal inversion sequences.

In the next section, we introduce the basic definitions and describe the
sorting by inversions problem. In Section 10.3 we introduce several con-
cepts, such as cycles and components, which are central to the solution of
this problem. The relations between components are used to construct a
tree associated to a signed permutation. This tree is the basis of a simple
proof of the Hannenhalli-Pevzner duality theorem presented in Section 10.4.
Finally, in Section 10.5 we present algorithms to identify the components, to
count the number of cycles, and to construct the tree associated to a signed
permutation.

The last section contains a glossary of the terminology used in this
chapter.
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10.2 Definitions and examples

A signed permutation is a permutation on the set of integers {0,1,2,...,n} in
which each element has a sign, positive or negative. For convenience,! we will
assume that all permutations begin with 0 and end with n. For example:

Pp=0 -2 -1 4 3 5 -8 6 7 9.

Since integers represent genes and signs represent the orientation of a gene on
a particular chromosome, we will refer to the underlying gene as an unsigned
element of the permutation.

A point p - q is defined by a pair of consecutive elements in the permutation.
For example, 0- —2 and —2-—1 are the first two points of P;. When a point is
of the form i -7+ 1, or —(¢ + 1) - —i, it is called an adjacency, otherwise it is
called a breakpoint. For example, P; has two adjacencies, —2 - —1 and 6 - 7. All
other points of P; are breakpoints.

We will make an extensive use of intervals of consecutive elements in a per-
mutation. An interval is easily defined by giving its endpoints. The elements of
the interval are the elements between the two endpoints. When the two end-
points are equal, the interval contains no elements. A non-empty interval can
also be specified by giving its first and last element, such as (i...j), called the
bounding elements of the interval.

An inversion of an interval of a signed permutation is the operation that
consists of inverting the order of the elements of the interval, while changing
their signs. For example, the inversion of the interval of P; whose endpoints are
—2-—1 and 5 - —8 yields the permutation P;:

P=0O© -2 -14 3 5 -86 7 9),

Pl=©0 -2 -5 -3 -4 1 -8 6 7 9.

The inversion of an interval modifies the points of a signed permutation in
various ways. Points p - ¢ that are inside the interval are transformed to —q - —p,
the endpoints of the interval exchange their flanking elements, and points that
are outside the interval are unaffected.

The inversion distance d(P) of a permutation P is the minimum number
of inversions needed to transform P into the identity permutation. Finding one
sequence of inversions that realizes this distance is called the sorting by inversions
problem. For example, d(P;) = 5, and Fig. 10.1 shows a sequence of inversions
that realizes this distance.

A sequence of inversions, applied to a permutation P, is called an optimal
sorting sequence if it transforms P into the identity permutation, and if its length

IThis assumption simplifies the theory and is coherent with biological applications in which
whole chromosomes do not have a global orientation: only local changes of orientation are
relevant.
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O -2 -1 4 3 5 -8 6 7 9

© -4 1 2 3 5 -8 6 7 9

O -3 -2 -1 4 5 -8 6 7 9

(0 1 2 3 4 5 -8 6 7 9

(0 1 2 3 4 5 -7 —6 8 9
r— 0

(0 1 2 3 4 5 6 7 8 9

P=0-2-1 4 3 5-8 6 7 9 QloP=(01-3-7-62-8 4509)
0-2-1 4 3 5-7-6 8 9) 01 -3 -7 -6 2 —5 —4 8 9)
(0-2 -1 -5-3-4-7-6 8 9) 01 -3 -2 6 7 —5—-4289)
0-2-1-5 6 7 4 3 8 9) (01 -3 -2 45 -7-6289)
0O-2 5 1 6 7 4 3 8 9) (01 2 3 45 -7-689)

Q=0-2 5 1 6 7-3 -4 8 9 Ql'o@Q=0O1 2 3 45 6 789

F1G. 10.2. Transforming permutation P, = (0 =2 —1 4 3 5 -8 6 7 9)
into permutation = (0 -2 5 1 6 7 -3 —4 8 9) is simu-
lated by transforming permutation Q~'o P into Q'oQ, where Q! =
(03-1-6-724589).

is d(P). An inversion that belongs to an optimal sorting sequence is called a
sorting 1nversion.

In general, the inversion distance between two arbitrary permutations P and
@ is the minimum number of inversions that transform one into the other. One
can always reduce this problem to a problem of inversion distance to the iden-
tity permutation by composing? the permutations P and @ with the inverse
permutation of one of them, say Q~'. Any sequence of inversions that trans-
forms Q' o P into Q! o Q can be applied to the original problem. An example
is given in Fig. 10.2.

Historical notes. Surprisingly, inversions of segments of chromosomes have been
identified in close species by Sturtevant [23] early in the last century. It then took
decades of biological experiments to accumulate sufficient data to compare gene
order of a vast array of species. For simple chromosomes, such as mitochondria,
the sequence of genes is now known for several hundred species. See Chapter 9,
this volume, for more details.

2Here, composition is understood as the standard composition of functions. Dealing with
signed permutations requires the additional axiom that P(—a) = —P(a).
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In 1982, Watterson et al. [26] first formulated the problem of finding the
minimum number of inversions required to bring one configuration of genes into
another. It took more than 10 years until Kececioglu and Sankoff [14] developed
the first approximation algorithm for the problem of sorting an unsigned per-
mutation by inversions. They also conjectured that this problem is NP-hard.
Indeed, this was shown in 1997 by Caprara [9]. Bafna and Pevzner [2] ini-
tiated the study of signed permutations in order to model the orientation of
genes. In 1995, Hannenhalli and Pevzner [12] gave the first polynomial-time
algorithm for the problem of sorting a signed permutation by inversions using
the concepts developed by Bafna and Pevzner. A clear distinction between the
problem of computing the inversion distance and finding an optimal sorting
sequence was worked out by Kaplan et al. [13] and Bader et al. [1]. Cur-
rently, the most efficient algorithms to solve the inversion distance problem are
linear, while the most efficient algorithms to find optimal sorting sequences are
not [19, 24].

Since many optimal sorting sequences exist, recently Siepel [22] studied the
problem of finding all optimal sequences and gave a polynomial-time algorithm
to find all sorting inversions of a permutation.

10.3 Anatomy of a signed permutation

In the following, we define several concepts central to the analysis of signed
permutations, and study the effect of inversions on these structures. First, we
consider the elementary intervals and cycles in Sections 10.3.1 and 10.3.2, and
then we treat the components of a permutation in Sections 10.3.3 and 10.3.4.

10.3.1  Elementary intervals and cycles

Let P be a signed permutation on the set {0,1,2,...,n} that begins with 0 and
ends with n. Any element i of P, 0 < i < n, has a right and a left point.

Definition 10.1 For each pair of unsigned elements (k,k+ 1), 0 < k < n,
define the elementary interval I associated to the pair to be the interval whose
endpoints are:

1. The right point of k, if k is positive, otherwise its left point.
2. The left point of k + 1, if k + 1 is positive, otherwise its right point.

Elements k and k + 1 are called the extremities of the elementary interval.

An elementary interval can contain zero, one, or both of its extremities. For
example, in Fig. 10.3, interval Iy contains one of its extremities, interval I3
contains both, and interval I5 contains none. Empty elementary intervals, such
as I; and Ig, correspond to adjacencies in the permutation.

When the extremities of an elementary interval have different signs, the inter-
val is said to be oriented, otherwise it is unoriented. Oriented intervals are exactly
those intervals that contain one of their extremities.
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© -2 -1 4 3 5 -8 6 7 9
lor—f— e
2 135—145—9 Igl

Fia. 10.3. Elementary intervals and cycles of a permutation. Oriented intervals
are represented by thick lines, and unoriented intervals by thin lines. Vertical
dashed lines join intervals that meet at breakpoints, tracing the cycles.

Oriented intervals play a crucial role in the problem of sorting by inversions
since they can be used to create adjacencies. Namely, we have:

Proposition 10.2 Inverting an oriented interval Iy creates, in the resulting
permutation, either the adjacency k -k + 1 or the adjacency —(k +1) - —k.

Proof Suppose that k is positive, then k 4+ 1 must be negative for the interval
I to be oriented. If £ + 1 succeeds k, then the interval will contain k + 1 but
not k, and inverting it will create the adjacency k - k + 1. If k + 1 precedes k,
then the interval will contain k& but not k£ + 1, and inverting it will create the
adjacency —(k + 1) - —k. The case when k is negative is treated similarly. O

For example, inverting the oriented elementary interval Ig in permutation P;
of Fig. 10.3 creates the adjacency 8 - 9.

When a point is the endpoint of two elementary intervals, these are said to
meet at that point.

Proposition 10.3 Ezactly two elementary intervals meet at each breakpoint of
a permutation.

Proof From Definition 10.1, the right and left point of each element of the
permutation is used once as an endpoint of an elementary interval, thus each
breakpoint is used twice. L]

Therefore, by Proposition 10.3, starting from an arbitrary breakpoint, one
can follow elementary intervals on a unique path that eventually comes back to
the original breakpoint. More formally:

Definition 10.4 A cycle is a sequence by,bs, ..., b, of points such that two
successive points are the endpoints of an elementary interval, including by and
b1. Adjacencies define trivial cycles consisting of a single point.

For example, as shown in Fig. 10.3, permutation P; has four cycles, two of
them are trivial, and the other two contain, respectively, 4 and 3 breakpoints.

Cycles are conveniently defined with breakpoints, but one can always focus
on the elementary intervals that are defined by the breakpoints of a cycle. The
following property, on the number of oriented intervals of a cycle, will be useful
to prove results on the number of cycles of a permutation.
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Lemma 10.5 A cycle always contains an even number of oriented intervals.

Proof Let J; be the interval that connects b; to the next breakpoint in a cycle
b1,bs,...,br. Define e; to be the number of extremities of J; contained in it,
either 0, 1, or 2, and consider the sum: F = Zle e;. We will show that F is an
even number, implying that the number of oriented intervals is even.

The idea is to construct the sum F by considering the contribution of each
breakpoint of the cycle. Follow the breakpoints in the order by, bo, ..., bx. A given
breakpoint can either join two disjoint intervals, or two stacked intervals. In this
last case, the breakpoint is a turning point of the cycle. Each turning point p - ¢
contributes 1 to the number E, since either p or ¢ is inside both intervals, and
the other is outside both intervals. Each breakpoint p - ¢ that joins two disjoint
intervals contributes 0 or 2 to the number FE, since p is inside its interval if and
only if ¢ is. However, the number of turning points of a cycle must be even,
therefore F is even. O

A last fundamental relation between elementary intervals is the owverlap
relation.

Definition 10.6 Two elementary intervals I and J overlap if each contains
exactly one of the extremities of the other.

The overlap relation is often easily detectable, like the overlap of the intervals
I5 and I; in Fig. 10.4. Intervals that meet at a breakpoint can overlap or not.
For example, intervals Iy and I overlap since Iy contains element —3, and Is
contains element 1; on the other hand intervals Iy and I3 do not overlap, despite
the fact that they meet at breakpoint O - 4.

A common way to represent the overlap relation between elementary intervals
is the overlap graph O with black and white vertices standing, respectively,
for oriented and unoriented elementary intervals. Two vertices are connected

O 4 -3 1 -5 -2 6) I Iy L

N\

I I I5

FiG. 10.4. A permutation and its overlap graph O. Only two elementary inter-
vals are unoriented, Iy and I5, corresponding to white vertices of the graph
O. Intervals Iy and I, overlap since I contains element —3, and > contains
element 1; on the other hand intervals Iy and I3 do not overlap, despite the
fact that they meet at breakpoint 0O - 4.
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in O if and only if the corresponding intervals overlap. The right hand side of
Fig. 10.4 gives an example of such a graph.

10.3.2  Effects of an inversion on elementary intervals and cycles

One of the cornerstones of the sorting by inversions problem is to study the
effects of an inversion on elementary intervals and cycles. The first result, due
to reference [15], is the effect of an inversion on the number of cycles. It is based
on the fact that, for all points except the endpoints of an inversion, the element-
ary intervals that meet at those points will still meet at that point after the
inversion.

Proposition 10.7 An inversion can only modify the number of cycles
by +1, 0, or —1.

Proof An inversion exchanges the elements of two points of a permutation.
If these two points belong to the same cycle, then either the cycle is split in
two, or is conserved but with different breakpoints. If the two points belong to
different cycles, then these cycles are merged. Figure 10.5 gives an illustration
of the three cases. O]

) 0 -2 -1 4 3 5 -8 6 7 9

) 0 -3 -4 1 2 5 -8 6 7 9

los ! L Iy e
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Fi1c. 10.5. Effects of inversions on cycles. The original permutation, again P,
is shown in (a). In (b), the inversion of interval (—2, —1, 4, 3) splits the cycle
of length 4 of the original permutation. In (c), the inversion of element 5
merges the two long cycles of the original permutation. Finally, in (d), the
inversion of element 8 leaves the number of cycles unchanged.
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By Propositions 10.2 and 10.7, inverting an oriented interval always splits
a cycle, since an adjacency is a trivial cycle. The identity permutation on the set
{0,1,2,...,n} is the only one with n cycles, all adjacencies. Since at most one
cycle can be added by an inversion, Proposition 10.7 implies a first lower bound
to the inversion distance of a permutation:

Lemma 10.8 Let ¢ be the number of cycles of a signed permutation P on the
set {0,1,2,...,n}. Then d(P) >n —c.

The next important observation is an easy consequence of the overlap rela-
tion. If I and J overlap, then inverting the interval I will change the orientation
of J, since only one extremity of J will change sign.

When two intervals J and K overlap an interval I, the effect of inverting
I complements the overlap relation between J and K: if J and K overlapped
before the inversion, they do not overlap after it; if J and K did not overlap
before the inversion, they overlap after it.

Formally, we have:

Proposition 10.9 Let G; be the subgraph of the overlap graph formed
by wvertex I and its adjacent vertices. Consider the inversion of elementary
interval I.

1. If I is unoriented, the effect on the overlap graph is to change the colour
of all vertices in Gr — {I}, and complement the edges of Gy — {I}.

2. If I is oriented, the effect on the overlap graph is to change the colour of
all vertices in Gy, and complement the edges of G.

Proof 1. If the elementary interval I is unoriented, either both or none of
the extremities of I are contained in the interval I, thus inverting the interval I
does not change the orientation of the vertex I. Let vertex J be adjacent to I,
then I contains exactly one of the extremities of J, and inverting the interval
changes the sign of one extremity of J. Thus, J changes orientation. If vertices
J and K are adjacent to I, then one extremity of J and one of K are contained
in I. If J and K are overlapping, then inverting the elementary interval I will
invert the order of the extremities of J and K that are contained in I. The
elementary intervals J and K will either be disjoint, or one will be contained in
the other. Thus, they are not overlapping in the resulting permutation. A similar
argument shows that if J and K are not overlapping, then they will overlap after
the inversion.

2. Inverting the oriented elementary interval I creates the isolated vertex I,
since it creates an adjacency by Proposition 10.2. Thus each edge incident to [
is erased. The complementation of the edges and the orientation of Gy — {[} is
similar to the unoriented case. U

10.3.3  Components

Elementary intervals and cycles are organized in higher structures called com-
ponents. These were first identified in reference [11] as subpermutations since
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P,b=(0-31246257-15-13 —-14 —12 —10 —11 —9 8 16).

0 [6][5] [7] [-x5] [i8][1a] [-12] [10] 1]

——o
i i

i
—e
1

Fic. 10.6. A permutation and the boxed representation of its components.
Endpoints of elementary intervals, and thus cycles, belong to exactly one
component.

they are intervals that contain a permutation of a set of consecutive integers,
and later studied in more detail in reference [4] as framed common intervals.

Definition 10.10 Let P be a signed permutation on the set {0,1,2,... ,n}.
A component of P is an interval from i to (i + j) or from —(i + j) to —i, for
some j > 0, whose set of unsigned elements is {i,...,i + j}, and that is not
the union of two such intervals. Components with positive, respectively negative,
bounding elements are referred to as direct, respectively reversed, components.

For example, consider the permutation P, of Fig. 10.6. It has six components:
four of them are direct, (0...4), (4...7),(7...16), and (1...2); and two of them
are reversed, (—15... —12) and (—12... —9). Note that a component, such as
the adjacency 1 - 2, can contain only two elements.

Components of a permutation can be represented by a boxed diagram, such
as in Fig. 10.6, in which bounding elements of each component have been boxed,
and elements between them are enclosed in a rectangle. Elements which are not
bounding elements of any component are also boxed.

Components organize hierarchically the points, elementary intervals, and
cycles of a permutation.

Definition 10.11 A point p-q belongs to the smallest component that contains
both p and q.

Note that this does not prevent the elements p and ¢ to belong, separately,
to other components, such as point 7 - —15 in the permutation of Fig. 10.6.

Proposition 10.12 The endpoints of an elementary interval belong to the
same component, thus all the points of a cycle belong to the same component.

Proof Consider an elementary interval I and any component C' of the form
(i...i+7) or (=(i+7j)...—1),

such that ¢ < k < i+ j. We will show that both endpoints of I} are contained
in C. This is obvious if k is different from ¢ and k + 1 is different from i + 7,
since both k£ and k + 1 will be in the interior of the component. If k = i, then k
and ¢ have the same sign, and the first endpoint of I, belongs to the component.
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Ifk+1=1i+7, then k+1 and ¢+ j have the same sign, and the second endpoint
of I belongs to the component.

Thus endpoints of Iy are either both contained, or not, in any given
component, and the result follows. (

A component can have more than one cycle. For example, the permuta-
tion of Fig. 10.4 has one component (0...6) consisting of two cycles. Finally,
components can be classified according to the nature of the points they
contain:

Definition 10.13 The sign of a point p - q is positive if both p and q are
positive, it is negative if both p and q are negative. A component is unoriented
iof 1t has one or more breakpoints, and all of them have the same sign, otherwise
the component s oriented.

For example, the unoriented components of the permutation of Fig. 10.6
are (4...7), (—=15... —=12), and (—12... —9). All the elementary intervals
whose endpoints belong to the same unoriented component are unoriented
intervals. Therefore, it is impossible to create an adjacency in an unoriented
component with only one inversion. On the other hand, an oriented component
contains at least one oriented interval, thus at least two, by Lemma 10.5 and
Proposition 10.12.

In order to optimally solve the sorting problem, it is necessary to under-
stand the relationship between the components of a permutation. The following
definitions and propositions establish these relationships.

Proposition 10.14 ([6]) Two different components of a permutation are
either disjoint, nested with different endpoints, or overlapping on one element.

Proof First note that two components that share an endpoint must be both
direct or both reversed.
Consider two direct components C' and C’ of the form

C=(i...i+j) and C' =("...i"+7).

Suppose the components C' and C’ are nested with ¢ = 7’ and j’ < j. Since C’ is
a component, it contains all unsigned elements between its bounding elements 7’
and i’ + 7', and hence the interval (i’ +j'...i+ j) contains all unsigned elements
between i’ + 7' and i + j. This contradicts the fact that the component C' is not
the union of two shorter components. The case where the components C' and C’
are reversed can be treated similarly.

Suppose that the components C = (i...i + j) and ¢’ = (i'...i" + j') are
direct and overlap with more than one element. We can assume that

i<i <it+j<i+7j.

Since all unsigned elements between 7' and ¢’ + ;' are greater than ¢, the interval
(¢...47") must contain all unsigned elements between i and ¢’. Thus, C is the
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union of two shorter components, which leads to a contradiction. Again, the
reverse case follows by a similar argument. O

When two components overlap on one element, we say that they are linked.
Successive linked components form a chain. A chain that cannot be extended to
the left or right is called maximal. Note that a maximal chain may consist of a
single component. If one component of a chain is nested in a component A, then
all other components of the chain are also nested in A.

The nesting and linking relations between components turn out to play a
major role in the sorting by inversions problem. Another way of representing
these relations is by using the following tree:

Definition 10.15 Given a permutation P on the set {0,1,...,n} and its
components, define the tree Tp by the following construction:

1. Each component is represented by a round node.

2. Each mazximal chain is represented by a square node whose (ordered)
children are the round nodes that represent the components of this chain.

3. A square node is the child of the smallest component that contains this
chain.

For example, Fig. 10.7 represents the tree T'p, associated to permutation Ps
of Fig. 10.6.

It is easy to see that, if the permutation begins with 0 and ends with n,
the resulting graph is a single tree with a square node as root. The tree is
similar to the PQ-tree used in different context such as the consecutive ones
test [8]. The following properties of paths in Tp are elementary consequences of
the definition of T’p.

[o] [o1 (5] ] [=oo] [=re] [=ea] [=r2] [Ero] [ [=9] (5] o]

(04). (47) (716)

(12 o (-15- —12) o o (~12:+: = 9)

Fic. 10.7. The tree Tp, associated to permutation P of Fig. 10.6. White
round nodes correspond to unoriented components, and black round nodes
correspond to oriented components.
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Proposition 10.16 Let C' be a component on the (unique) path joining
components A and B in Tp, then C contains either A or B, or both.

1. If C contains both A and B, it is unique.
2. No component of the path contains both A and B if and only if A and B
are included in two components that are in the same chain.

Proof Consider the smallest component D that contains components A and
B. If it is on the path that joins A and B, then any other component that
contains A and B is an ancestor of D, therefore not on the path. If D is not
on the path that joins A and B, then the least common ancestor of components
A and B is a square node ¢ that is a child of the round node representing D,
thus A and B are included in two components that are in the chain represented

by q. (l

10.3.4  Effects of an inversion on components

We saw, in Proposition 10.7, that an inversion can modify the number of cycles of
a permutation by at most 1. On the other hand, an inversion can create or destroy
any number of components. For example, inverting the interval (—1,...,8) in
the following permutation

0 2 sl a |l =12l 7| -9l -2 || -13]||3]||s6]]11]]-10]]3s 14
creates the adjacency —9 - —8 and yields a permutation with four new
components:

0 2 5014 || -12 7 -9l -8 10 || —11 —6 || -3 13 (] 1 14

As we will see in the next section, creating oriented components, or adja-
cencies, is generally considered a good move towards optimally sorting a
permutation. However, the creation of unoriented components should be avoided.
Luckily, few inversions have that effect.

The next three propositions describe the effects of inversions whose endpoints
are in unoriented components. These are classical results from the Hannenhalli—
Pevzner theory.

Proposition 10.17 If a component C' is unoriented, no inversion with its two
endpoints in C can split one of its cycles, nor create a new component.

Proof First note that Lemma 10.5 implies that the number of positive—or
negative—extremities of intervals of a cycle must be even, since each oriented
interval has a positive and a negative extremity.
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If a component C' is unoriented, then all the breakpoints of its cycles have
the same sign. An inversion with its two endpoints in one of the cycles of C' will
introduce exactly two new breakpoints which are neither positive nor negative.
If a cycle of C' is split, those two breakpoints must belong to different cycles ¢q
and co. In each of these cycles, the remaining breakpoints are either positive or
negative. Thus, the number of positive extremities of the intervals of ¢; and of
co would be odd numbers.

Suppose an inversion creates a new component D, then one bounding element
of D has to be inside the inverted interval, and the other one outside the inverted
interval, otherwise the component D would have existed before the inversion.
Therefore, the bounding elements of the component D have different sign, which
contradicts the definition of a component. O

Proposition 10.18 If a component C' is unoriented, the inversion of an ele-
mentary interval whose endpoints belong to C' orients C, and leaves the number
of cycles of the permutation unchanged.

Proof Inverting an elementary interval changes the sign of the elements of the
inverted interval. Therefore, component C' will be oriented. Since the endpoints
of an elementary interval belong to the same cycle, the inversion cannot merge
cycles. By Proposition 10.17, the inversion of I cannot split a cycle. Therefore,
the number of cycles remains unchanged. 0

Orienting a component as in Proposition 10.18 is called cutting the
component. Such an inversion is seldom a sorting inversion since it is possible,
with a single inversion, to get rid of more than one unoriented component.
The following proposition describes how to merge several components, and the
relation of this operation to paths in Tp.

Proposition 10.19 An inversion that has its two endpoints in different com-
ponents A and B destroys, or orients, all components on the path from A to B
in Tp, without creating new unoriented components.

Proof Note first that an inversion with endpoints in different components
A and B must merge two cycles, one from each component, into a new cycle c.
If A and B are unoriented, cycle ¢ contains at least one oriented interval.
Suppose that a new component D is created by such an inversion, then the
bounding elements of D must be both outside the inverted interval. Indeed, if
both bounding elements of D are inside the inverted interval, D existed in the
original permutation. If one bounding element of D is outside the interval, then
component D must contain at least one endpoint of the inverted interval in order
to be affected by the inversion. Since the two endpoints of the inverted interval
belong to the same cycle ¢, the second endpoint of the interval must also be in
component D, thus the second bounding element of D is also outside the interval.
Thus, the only component eventually created by an inversion with endpoints
in different components is the union of two or more linked components. Since
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linked components have bounding elements with the same sign, the sign of the
former links will be different from the sign of the bounding elements of the new
component, thus it will be oriented.

By Proposition 10.16, if there is a component C on the path from A to B
and that contains both, then A and B are not included in linked components,
thus no new component can be created by the inversion. Since C' is the smallest
component that contains the new cycle ¢, C' will be oriented.

Finally, suppose that a component C'is on the path from A to B and contains
either A or B, but not both. Then the inversion changes the sign of one of the
bounding elements of C, and C will be destroyed. 0

Proposition 10.19 thus states that one can get rid of many unoriented com-
ponents with only one inversion. This idea is exploited in the next section to
compute the inversion distance of a permutation.

Historical notes. In 1984, Nadeau and Taylor [18] introduced the notion of
breakpoints of a permutation. One decade later, Kececioglu and Sankoff [14]
brought in the breakpoint graph in their analysis of the sorting by inversions
problem. Later, Bafna and Pevzner [2] extended the breakpoint graph to signed
permutations.

The most common version of the breakpoint graph? is based on an unsigned
permutation of 2n elements defined as follows: replace any positive element x of
a signed permutation by 2x — 1,2z and any negative element —x by 2x,2x — 1.
The breakpoint graph is an edge-coloured graph whose set of vertices are the
elements (po, ..., pan—1) of this unsigned permutation.

For each 0 < ¢ < n, vertices py; and po;4+1 are joined by a black edge, and
elements 2¢ and 2i + 1 of the permutation are joined by a grey edge. Thus,
each vertex of the breakpoint graph has exactly two incident edges. This allows
the unique decomposition of the breakpoint graph into cycles. The support of a
grey edge is the interval of elements between and including the endpoints. Two
grey edges overlap if their supports intersect without proper containment. The
overlap graph is the graph whose vertices are the grey edges of the breakpoint
graph and whose edges join overlapping grey edges.

In the traditional analysis of the sorting by inversions problem, the cycles of
the breakpoint graph, and the connected components of the overlap graph, play
an important role. The elementary intervals, cycles and overlap graph of this
section are equivalent to the traditional concepts, but directly defined on the
elements of the permutation. The components of Definition 10.10 correspond to
the connected components of the overlap graph.

It is also worth mentioning that Setubal and Meidanis [21] obtained many
combinatorial results on the effects of inversions on a permutation, generalizing
results such as Proposition 10.17.

3For a more detailed presentation of the breakpoint graph, see Chapter 11, this volume.
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10.4 The Hannenhalli-Pevzner duality theorem

In this section, we develop a formula for computing the inversion distance of a
signed permutation. There are two basically different problems: the contribution
of oriented components to the total distance is treated in Section 10.4.1, and the
general formula is given in Section 10.4.2.

10.4.1  Sorting oriented components
We will show that sorting oriented components can be done by choosing ori-
ented inversions that do not create new unoriented components. For example,
the inversion of the oriented interval I3 in the following permutation creates a
new unoriented component (0 2 1 3). In the resulting positive permutation, no
inversion can create an adjacency, or split a cycle.

0 2 -3 -1 4,

0

0 2 1 3 4.

However, one can invert the oriented interval Iy, and the resulting compon-
ent(s) remain oriented, thus allowing the sorting process to continue.

0 2 =3 —1 4),

0 1 3 -2 4).

Choosing oriented inversions that do not create new unoriented components,
called safe inversions, can be done by trial and error: choose an oriented inversion,
perform it, then test for the presence of new unoriented components. However,
it is possible to do much better. Several different criteria exist in the literature,
and we give here the simplest one, which also provides a proof of existence of
safe inversions in any oriented component.

Definition 10.20 The score of an inversion is the number of oriented
elementary intervals in the resulting permutation.

Theorem 10.21 ([3]) The inversion of an oriented elementary interval of
maximal score does not create new unoriented components.

Proof Consider a permutation P and its overlap graph. Suppose that vertex [
has maximal score, and that the inversion induced by I creates a new unoriented
component C' containing more than one vertex. At least one of the vertices in C
must have been adjacent to I, since the only edges affected by the inversion are
those connecting vertices adjacent to I.

Let J be a vertex formerly adjacent to I and contained in C, thus J is oriented
in P.

By Proposition 10.9, the scores of I and J can be written as:

score(I)=T+U — O —1,
score(J)=T+U — 0" —1,
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where T is the total number of oriented vertices in the overlap graph, U and O
are the numbers of unoriented, respectively oriented, vertices adjacent to I, and
U’ and O’ are the numbers of unoriented, respectively oriented, vertices adjacent
to J.

All unoriented vertices formerly adjacent to I must have been adjacent to .J.
Indeed, an unoriented vertex adjacent to I and not to J will become oriented,
and connected to J, contrary to the assumption that C' is unoriented. Thus,
U >U.

All oriented vertices formerly adjacent to J must have been adjacent to I.
If this was not the case, an oriented vertex adjacent to J but not to I would
remain oriented, again contradicting the fact that C' is unoriented. Thus, O’ < O.

Now, if both O’ = O and U’ = U, vertices I and J have the same set of
vertices, and complementing the subgraph of I and its adjacent vertices will
isolate both I and J. Therefore, we must have score(J) > score(I), which is a
contradiction. 0

Corollary 10.22 If a permutation P on the set {0,...,n} has only oriented
components and c cycles, then d(P) =n — c.

Proof By Lemma 10.8, we have d(P) > n — ¢ since any inversion adds at most
one cycle, and the identity permutation has n cycles. Any oriented inversion
adds one cycle, thus Theorem 10.21 guarantees that there will be always enough
oriented inversions to sort the permutation. L]

Corollary 10.22 implies that it is possible to compute the inversion distance of
some permutations without actually sorting them: counting cycles is the import-
ant step, and is easily done, as we will show in Section 10.5. It is in this respect
that the problem of computing the inversion distance differs from the problem of
finding an optimal sorting sequence. There is no need to identify safe inversions
in order to compute the distance.

10.4.2  Computing the inversion distance

In the preceding section, we have determined the number of inversions needed to
sort a permutation which contains only oriented components. If a permutation
has unoriented components, we first have to orient or destroy them. It is desirable
to use as few inversions as possible for this task. Consider, for example, the
following permutation which has three unoriented components. It is possible to
get rid of all three of them by inverting the interval (1...7) that merges the two
components (0...3) and (5...8).

In the following, we will use the tree Tp defined in Section 10.3.3 in order
to compute the minimum number of inversions required to orient unoriented
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components of a given permutation. The basic idea is to cover the unoriented
components of Tp with paths that indicate which pairs of components should be
merged together.

Definition 10.23 A cover C of Tp is a collection of paths joining all the unori-
ented components of P, and such that each terminal node of a path belongs to a
unique path.

By Propositions 10.18 and 10.19, each cover of Tp describes a sequence of
inversions that orients all the components of P. A path that contains two or
more unoriented components, called a long path, corresponds to merging the
two components at its terminal nodes. In Fig. 10.7, for example, a path joining
components (4...7) and (—12... —9) would destroy these components, along
with component (7...16). A path that contains only one component, a short
path, corresponds to cutting the component.

The cost of a cover is defined to be the sum of the costs of its paths,
given that:

(1) the cost of a short path is 1;
(2) the cost of a long path is 2.

An optimal cover is a cover of minimal cost. Define ¢ as the cost of any optimal
cover of Tp.

The following theorem shows that the cost of an optimal cover is precisely
the number of extra inversions needed to optimally sort a signed permutation
containing unoriented components.

Theorem 10.24 ([5]) If a permutation P on the set {0,...,n} has c cycles,
and the associated tree Tp has minimal cost t, then we have

d(P)=n—c+t.

Proof We first show d(P) < n — ¢+ t. Let C be an optimal cover of Tp.
Apply to P the sequence of m merges and ¢ cuts induced by the cover C. Note
that ¢ = 2m + ¢. By Proposition 10.12, the resulting permutation P’ has ¢ —m
cycles, since merging two components always merges two cycles, and cutting
components does not change the number of cycles. Thus, by Corollary 10.22,
d(P") = n — ¢+ m. Since m + ¢ inversions were applied to P, we have:

d(P)<d(P)+(m+q =n—c+2m+qg=n—c+t.

In order to show that d(P) > n — ¢ + t, consider any sequence of length d
that optimally sorts the permutation. By Proposition 10.7, d can be written as

d=s+m+q,

where s is the number of inversions that split cycles, m is the number of inversions
that merge cycles, and ¢ is the number of inversions that do not change the num-
ber of cycles. Since the m inversions remove m cycles, and the s inversions add
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(=15--- —12) & o(=12---—9)

Fic. 10.8. The tree T" associated to the tree Tp, of Fig. 10.7.

s cycles, we must have:
c—m+s=mn, implyingd=n—c+2m+q.

The sequence of d inversions induces a cover of Tp. Indeed, any inversion that
merges a group of components traces a path in Tp, of which we keep the shortest
segment that includes all unoriented components of the group. Of these paths,
suppose that m, are long paths, and msy are short paths. Clearly we have
m1 + mso < m. The ¢’ < g remaining unoriented components are all cut. Thus

2mq +mo +q < 2mq +2ms + ¢ < 2m +q.

Since we have t < 2mq +mo + ¢', we get d > n — c +t. O

The last task is to give an explicit formula for t. Let 7’ be the smallest
unrooted subtree of Tp that contains all unoriented components of P. Formally,
T’ is obtained by recursively removing from Tp all dangling oriented compon-
ents and square nodes. All leaves of T’ will thus be unoriented components,
while internal round nodes may still represent oriented components. For example,
the tree 7" of Fig. 10.8 is obtained from the tree Tp, of Fig. 10.7. It contains
three unoriented components and one oriented one.

Define a branch of a tree as the set of nodes from a leaf up to, but exclud-
ing, the next node of degree >3. A short branch of T’ contains one unoriented
component, and a long branch contains two or more unoriented components. For

example, the tree of Fig. 10.8 has three branches, and all of them are short.
We have:

Theorem 10.25 Let T’ be the unrooted subtree of Tp that contains all the
unoriented components as defined above.

1. If T' has 2k leaves, then t = 2k.
2. If T" has 2k + 1 leaves, one of them on a short branch, then t = 2k + 1.
3. If T' has 2k + 1 leaves, none of them on a short branch, then t = 2k + 2.
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Proof Let C be an optimal cover of T”, with m long paths and ¢ shorts ones.
By joining any pair of short paths into a long one, C can be transformed into an
optimal cover with ¢ = 0 or 1.

Any optimal cover has only one path on a given branch, since if there were
two, one could merge the two paths and lower the cost. Thus if a tree has only
long branches, there always exists an optimal cover with ¢ = 0.

Since a long path covers at most two leaves, we have t = 2m + ¢ > [, where
[ is the number of leaves of T”. Thus cases (1) and (2) are lower bounds. But if
q = 0, then ¢ must be even, and case (3) is also a lower bound.

To complete the proof, it is thus sufficient to exhibit a cover achieving these
lower bounds. Suppose that | = 2k. If k£ = 1, the result is obvious. For k> 1,
suppose T has at least two nodes of degree >3. Consider any path in 7" that
contains two of these nodes, and that connects two leaves A and B. The branches
connecting A and B to the tree T are incident to different nodes of T". Thus cut-
ting these two branches yields a tree with 2k — 2 leaves. If the tree T” has only
one node of degree >3, the degree of this node must be at least 4, since the tree
has at least four leaves. In this case, cutting any two branches yields a tree with
2k — 2 leaves.

If | = 2k + 1 and one of the leaves is on a short branch, select this branch as
a short path, and apply the above argument to the rest of the tree. If there is
no short branch, select a long branch as a first (long) path. O

For example, the permutation
P,=(0-3124657-15-13-14-12-10-11 -9 8 16)

has 6 cycles, as shown in Fig. 10.6. Its associated tree T”, see Fig. 10.8, can be
covered by one long path and one short path, since it has three leaves, all of
them on short branches. Thus:

d(Py)=n—c+t=16—6+3=13.

Historical notes. There exist different criteria to choose a safe inversion.
Hannenhalli and Pevzner [12] proved the existence of a safe inversion in any
oriented component. Their algorithm suggests an exhaustive search for a safe
inversion by trial and error, and runs in O(n?) time. Berman and Hannenhalli [7]
halved the number of candidates for every successive trial and bounded the
number of trials by O(log(n)) yielding an algorithm to find a safe inversion in
O(na(n)) time, where a(n) is the inverse Ackermann function. Kaplan et al. [13]
introduced the concept of a happy clique and developed an algorithm that finds
a safe inversion in O(n) time. Bergeron [3] worked with an adjacency matrix to
represent the overlap graph, with an additional score vector. The search for a
safe inversion is simply the vertex with maximal score, and the update of the
overlap graph is done with bit-vector operations.

The inversion distance formula given in Theorem 10.24 was first developed
by Hannenhalli and Pevzner [12] in 1995. They introduced the notions of hurdles
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and fortresses in order to express the inversion distance in terms of breakpoints,
cycles, and hurdles.

In the literature the notion of hurdle is handled in various ways: Hannenhalli
and Pevzner [12] define minimal hurdles as unoriented components which are
minimal with respect to the order induced by span inclusion. In addition, the
greatest element is a hurdle, called greatest hurdle, if it does not separate any
two minimal hurdles. Kaplan et al. [13] do not distinguish between minimal
and greatest hurdles since they order the elements of unoriented components
on a circle. They define a hurdle as an unoriented connected component whose
elements occur consecutively on the circle. Regardless of the precise definition
of a hurdle, hurdles can be classified as follows: A simple hurdle is defined as a
hurdle whose elimination decreases the number of hurdles, otherwise the hurdle
is called a super-hurdle. A fortress is a permutation that has an odd number of
hurdles, all of which are super-hurdles.

Let P be a permutation on the set {0,...,n}, Hannenhalli and Pevzner
proved the following:

_Jn—c+h+1, if Pis a fortress,
d(P) = {n —c+ h, otherwise.

where c is the number of cycles and h is the number of hurdles of permutation P.

10.5 Algorithms

In this section, we present algorithms to compute the inversion distance of a
permutation P based on Theorems 10.24 and 10.25. The overall procedure con-
sists of three parts. First, the number of cycles ¢ is computed by a left-to-right
scan of P, then the components of P are computed by an algorithm originally
presented in reference [4], and finally the tree Tp is created by a simple pass over
the components of P, followed by a trimming procedure yielding 7".

The number of cycles is computed in linear time by Algorithm 1. The idea
is to mark each point of P as follows. The points of P are processed in left-
to-right order, and each time an unmarked point is detected, all points on its
cycle are marked, and the number of cycles is incremented by one. Adjacencies
are treated as a limiting case. In order to do this efficiently, we need to know
the endpoints of each elementary interval, and the pair of intervals that meet
at each point. Figure 10.9 gives an example, along with tables containing the
necessary information.

The second part of the overall procedure is the computation of the compon-
ents, shown in Algorithm 2. The input of this algorithm is a signed permutation
P, separated into an array of unsigned elements m = (mg,71,...,7,) and an
array of signs o = (00,01,...,04,).

Direct and reversed components are identified independently. Here we trace
the algorithm only for direct components. In order to find these components,
an array M is used, defined as follows: M]Ji| is the nearest unsigned element
of m that precedes 7;, and is greater than 7;, and n if no such element exists.
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Algorithm 1

(Compute the number of cycles)

1: a point mp—1 - T, is represented by the index p of its right element

N

10:
11:
12:
13:
14:

marked[1,...,n] is an array of n boolean values, initially set to FALSE

¢ < 0 (* counter for the number of cycles *)

forp—1,...,ndo
if not marked[p]

then

1 «— one of the two intervals meeting at point p

while not marked[p] do

marked[p| —

TRUE

i «— the interval meeting 7 at point p
p «+ the other endpoint of ¢

end while
c—c+1
end if
end for

[0] [-3)[aT2] [4] [s][5]

1>

log — i l1e 17

55

6 *

[-15] [-13][-14] f-12] [-10][-11]

6—6[14 — J11

Tio——
N ) —

I3

AT

Elementary interval

Ip I I Is 14 Is

Is I; Is Iy Lo i1 T2 Lz ©Iia Iis

First endpoint

1 3

4

1 5 7

6 8 16 14 12 13 11 9 10 8

Second endpoint

2 3

2

4 6 5

71515 13 14 12 10 11 9 16

Point | 1

2 3

4

5 6 7

8§ 9 10 11 12 13 14 15 16

First interval | I

Io Ih

I

Iy 1y Is

I7 113 Il2 112 IlO IQ IQ I7 IS

Second interval | I3

I, I

I3

Is Is Ig

Lis Iia Iha s Ini I Lo Is Iis

Fi1G. 10.9. Detecting cycles in permutation P, using Algorithm 1. Starting at
the first point of P,, we identify the cycle consisting of the elementary inter-
vals Iy, Is, and I3. The next iteration is skipped because the second point
was marked during the traversal of the first cycle. Eventually, all six cycles

are recovered.

For example, the array M of permutation P is:

P=0 -3 12 4 6
M=(16 16 3 3 16 16 6 16 16
M is computed using a stack M; as shown in lines 5-10 of Algorithm 2.

To find the direct components (lines 11-14 of Algorithm 2), a second stack S;
stores potential left boundary elements s, which are then tested by the following
criterion: (7s...m;) is a direct component if and only if:

5

7 —15 —13 —14 —12 —-10 —11 -9 8 16),

15 15 14 12 12 11 9 16).
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Algorithm 2 (Find the components of signed permutation P = (7, 0))

1: My and Ms are stacks of integers; initially M; contains n and My contains 0
2: S1 and Sq are stacks of integers; initially S; contains 0 and S2 contains 0
3: MI[0] < n, m[0] < O
4: fori—1,...,n do
(* Compute the M[i] *)
if w[i — 1] > «[i] then
push 7[i — 1] on M,
else
pop from M; all entries that are smaller than i
end if
10:  MTi] < the top element of M;

(* Find direct components *)
11:  pop the top element s from Si as long as w[s] > «[i] or M[s] < 7[i]
12: if o[i| = 4+ and M[i| = M|s| and i — s = 7[i] — 7[s] then
13: report the component (75 ...7;)
14:  end if

(* Compute the m[i] *)
15:  if 7[i — 1] < 7[i] then

16: push 7[i — 1] on M,

17:  else

18: pop from M; all entries that are larger than 7[i]
19:  end if

20:  m[i] < the top element of M,

(* Find reversed components *)

21:  pop the top element s from Sy as long as (7[s] < «[i] or m[s] > x[i]) and s > 0
22:  if o[i] = — and m[i] = m[s] and i — s = 7w[s] — 7[i] then

23: report the component (—7s...—m;)

24:  end if

(* Update stacks *)
25:  if o[i] = + then

26: push ¢ on Sy
27:  else

28: push ¢ on S5
29: end if

30: end for

(1) both os and o; are positive,

(2) all elements between 7, and 7; in 7 are greater than 75 and smaller than
m;, the latter being equivalent to the simple test M[i] = M[s], and

(3) no element “between” m, and 7; is missing, that is, i — s = m; — 7.

For example, the component (4...7) will be found in iteration ¢ = 7 because:

(1) both 4 and 7 are positive,
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(2) all elements between 4 and 7 are greater than 4 (since element 4 is still
stacked on S7 when ¢ = 7) and smaller than 7 (since M[4] = 16 = M|7]),
and

B3)i—s=T7T—4=m — 7.

Similarly, for the detection of reversed components, we use a stack Ms to
compute m[i], the nearest unsigned element of 7 that precedes 7; and is smaller
than 7;, and a stack Sy that stores potential left boundary elements of reversed
components.

The classification of components as oriented or unoriented can be done by a
slight modification of Algorithm 2, without affecting the running time. We need
an extra array o to store the signs of the points of the permutation P (for ease
of notation shifted down by one position). For 0 < i < n, the entries of the array
o are initially defined as follows:

-+, if o; =+ and Oi+1 = +,
0[2] = —, if g; = — and Oi+1 = —»
0, otherwise.

For example, the initial array o of permutation P is:
o=0 0 + 4+ + + + 0 —-— — — — — — 0 +4).
Now we define a function f: {—,0,+}? — {—,0,+} as:

X1, if xryp = T2,
UCE {O, otherwise.
Then, in the modified algorithm, whenever an index s is removed from the
stack such that index r becomes the top of the stack, o[r] will be replaced
by f(o[r],o[s]). We also replace the entry of the left bounding element of an
identified direct component by +, and the entry of the left bounding element
of an identified reversed component by —. This way, when a direct component
(s ...m;) is reported in line 13 of Algorithm 2, the signs of all its points are folded
by repeated application of function f to the leftmost point s of the component.
Its orientation can easily then be derived: (7 ... ;) is unoriented if and only if

(1) s+ 1 # i (the component contains one or more breakpoints); and
(2) o[s] equals + or — (all its points have the same sign).

The correctness of this algorithm follows from the fact that all the indices of
elements of an unoriented component are stacked on the same stack, and that
all its points have the same sign. If a component C' contains other components,
these will be identified before C, and are treated as single positive or negative
elements. Since the bounding elements of oriented components have the same
sign, each oriented component has at least two points for which o(i) = 0, and at
least one index on each stack for which o(i) = 0.

In order to understand the third part of the overall procedure, note that
Algorithm 2 reports the components in left-to-right order with respect to their
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Algorithm 3 (Construct Tp from the components C,...,Cy of P)

1: create a square node g, the root of Tp, and a round node p as the child of ¢
2: fori—1,...,n—1do
3: if there is a component C starting at position ¢ then

if there is no component ending at position ¢ then

create a new square node g as a child of p

end if

create a new round node p (representing C') as a child of ¢
else if there is a component ending at position ¢ then

p < parent of ¢
10: q < parent of p
11:  end if
12: end for

right bounding element. For each index 7, 0 < ¢ < n, at most one component
can start at position 7, and at most one component can end at position . Hence,
it is possible to create a data structure that tells, in constant time, if there is a
component beginning or ending at position ¢ and, if so, reports such components.
Given this data structure, it is a simple procedure to construct the tree Tpr in
one left-to-right scan along the permutation. Initially one square root node and
one round node representing the component with left bounding element 0 are
created. Then, for each additional component, a new round node p is created
as the child of a new or an existing square node ¢, depending if p is the first
component in a chain or not. For details, see Algorithm 3.

To generate tree T from tree Tp, a bottom-up traversal of Tp recursively
removes all dangling round leaves, that represent oriented components, and
square nodes, including the root if it has degree 1. Given the tree T”, it is
easy to compute the inversion distance: perform a depth-first traversal of 7" and
count the number of leaves and the number of long and short branches, including
the root if it has degree 1. Then use the formula from Theorem 10.25 to obtain
t, and the formula from Theorem 10.24 to obtain d.

Altogether we have:

Theorem 10.26 Using Algorithms 1, 2, and 3, the inversion distance d(P) of
a permutation P on the set {0,...,n} can be computed in linear time O(n).

Historical notes. Traditionally, the inversion distance is computed by using the
formula of Hannenhalli and Pevzner. As the hurdles and fortresses are detect-
able from connected component analysis, the most delicate part is to compute
the connected components. The existing algorithms solve this problem in
different ways. The initial algorithm of Hannenhalli and Pevzner [12], restricted
to the computation of the inversion distance, runs in quadratic time by con-
structing the overlap graph. In 1996, Berman and Hannenhalli [7] developed a
faster algorithm for computing the connected components, yielding an algorithm
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to compute d(P) in O(n - a(n)) time. They used a Union/Find structure to
maintain the connected components of the overlap graph, without constructing
the graph itself. In 2001, Bader et al. [1] gave the first linear time algorithm
for computing the inversion distance. By scanning the permutation twice, their
algorithm constructs another graph, called the overlap forest, which has exactly
one tree per connected component of the overlap graph.

10.6 Conclusion

This chapter gave an elementary presentation of the results of the classical
Hannenhalli-Pevzner theory on the inversion distance problem. Most of the res-
ults are obtained by working directly on the elements of the permutation, instead
of relying on intermediate constructions. This effort yielded a simpler equation
for the distance, an increased understanding of the effects of inversions on a
permutation, and the development of very elementary algorithms.

Looking at the problem from this point of view led to some interesting vari-
ants of genome comparison tools. The concept of conserved intervals [4, 6], for
example, can be used to measure the similarity of a set of permutations. It is a
direct offspring of the crucial role played by components in the inversion problem.

This work is also a first step in the simplification of the problem of com-
paring multi-chromosomal genomes. Rearrangement operations between these
genomes include, among others, inversions, translocations, fusions, and fissions
of chromosomes. The algorithmic treatment of this problem relies on the prop-
erties of the sorting by inversions problem, and currently involves half a dozen
parameters [12]. The initial solution contained gaps that took years to be closed
[19, 25]. A linear algorithm for the translocation distance problem [11] is given
in reference [16].

Another crucial extension is the ability to handle insertions, deletions, and
duplications of genes. This extension is much harder, but much more important
for biological applications. Indeed, one of the main driving forces of genome
evolution are segment duplications. Recent work on this problem can be found
in [10, 17], and is surveyed in the Chapters 11 and 12, this volume.

Glossary

adjacency pair of consecutive integers, Section 10.2

bounding elements  first and last elements of an interval, Section 10.2

branch set of nodes from a leaf to the next node of degree >3,
Section 10.4

breakpoint a point that is not an adjacency, Section 10.2

chain a sequence of components overlapping on one element,

Section 10.3.3
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component

cover

cycle

direct component
elementary interval
endpoints
extremities

long branch

oriented component
oriented interval
overlapping inter-
vals

point

reversed component
safe inversion

score
sign of a point
short branch
sorting 1nversion

sorting sequence

tree Tp

unoriented
component
unoriented interval
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