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Here we relate the recent theory of genome rearrangements to the theory of 
permutation groups in a new way and hope to set the ground for further 
advances in the area. This work was motivated by the fact that many ar-
guments in genome rearrangements are of the form "look at the figure", and 
lack more formal algebraic derivation. We intend to give the area a strong 
algebraic formalism, much as analytic geometry provided an alternative geo-
metric arguments based on pictures. 

1. Introduction 

In this paper we are concerned with the genome rearrangement problem viewed as 
a combinatorial problem. In the general formulation of this problem we are given 
two genomes (or parts of genomes), viewed as ordered lists of genes (or others 
markers), and a set of allowed mutation events (reversals, transpositions, etc). To 
solve the problem we must find the minimum number of events that lead from one 
genome to another. In general the solution is symmetric, that is, the same series 
of events, taken backward, will transform the second genome into the first. We 
will also restrict ourselves to the case of conservative events, that is, events that do 
not change the available gene pool. Thus events such as duplications or deletions 
will not be considered in this study. 

Recent developments in this field include the polynomial solution to the signed 
reversal case (Hannenhalli and Pevzner, 1995), the NP-hardness of unsigned rever-
sal distance (Caprara, 1996), and partial results for transposition distance (Bafna 
and Pevzner, 1995; Meidanis et al., 1997b), to name just a few. Many doctoral 
dissertations were devoted to this theme (see, for instance, Vergara, 1997; Christie, 
1999; Walter, 1999). 'fransposition distance seems to be a harder problem, that 
has eluded researchers for many years now. Its computational complexity is still 
unknown. We feel that new, more powerful formal tools are needed to successfully 
attack this problem. 
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The mathematical formalization of genome rearrangements usually begins by 
representing genomes as permutations. Thus, a genome 71" consisting of genes 71"1, 

71"2, 71"3, ••• , 71" n in this order is written as: 

meaning that 71" is the function (permutations are functions): 

[1 :::} 71"1, 2 :::} 71"2, 3 :::} 71"3, ••• ,n :::} 71" nl 
that is, 71" maps 1 into 71"1, 2 into 71"2, and so on. 

(1) 

In this paper we will propose a different view of a genome as a permutation, 
namely, that Equation (1) denotes the function: 

(2) 

that is, 71" maps 71"1 into 71"2, 71"2 into 71"3, and so on. Note that the last gene 71" n 

is mapped into the first gene 71"1. This is necessary, because permutations are 
functions that map each element into some other, and they cannot repeat images. 
However, this implies a circular character to our genome. But circular genomes 
do exist, and, as we will see in subsequent sections, the study of rearrangements 
of linear genomes is really not much different from circular ones. 

Our goal in this note is to convince the reader that interpretation (2) is much 
more sensible, for a number of reasons. First, it allows us to directly apply many 
long known results from permutation group theory. Important tools such as break-
points, the breakpoint graph, cycles, good cycles, bad cycles, gray edges, black 
edges, which served as basic building blocks for most of the advances in the field 
can be algebraically defined instead of graphically defined as they have been until 
now. Therefore, arguments that relied on pictures can now be expressed com-
pletely in algebraic terms. We consider this a powerful step towards a massive 
attack on such problems, much like analytic geometry is a powerful way of looking 
into geometric problems. 

In Section 2 we briefly review the basics on permutation groups. Section 3 
contains the first steps in redefining genome rearrangements under the new for-
malism that we propose. In the Section 4 we use theory just developed to show 
some results that have been proved based on pictures. Finally, we conclude in 
Section 5. 

2. Permutation groups 

Permutations groups have been studied at least since the eighteenth century, when 
Galois wrote his much acClaimed theory for solving algebraic equations. Here we 
briefly recall a few classical results that are useful in genome rearrangements. For 
more information see references (Jacobson, 1985; MacLane and Birkhoff, 1971). 
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Given a base set E, a permutation on E is a one-to-one function from E 
onto itself. Permutations are composed of one or more cycles. A cycle involving 
elements a, b, c, for instance, is written: 

(a b c) 

meaning that a is mapped into b, which is mapped into c, which in turn is mapped 
back into a. Cycles can be of any length. Cycles of length 1 are not explicitly 
written. Thus, if we write: 

a = (a b c) 

we implicity mean that all others elements are left in place by a, that is, a(x) = x 
for x =f. a, b, c. Note: (a b c) = (b c a) = (c a b). 

The product or composition of two permutations a, (3 is denoted by a(3. In 
general a(3 =f. (3a, but when a and (3 are disjoint cycles they commute: a(3 = (3a. 
Every permutation can be written in an unique way as a product of disjoint cycles 
(apart from the order of the factors). We refer to this as the cycle decomposition 
of a permutation. 

The identity permutation, that maps every element into itself, will be denoted 
by 1. Every permutation a has an inverse a-I such that aa-1 = a-1a = 1. 
For cycles, the inverse is obtained reverting the order of the elements: (a b c) is 
the inverse of (c b a). For a general permutation, invert every cycle in its cycle 
decomposition. 

To compute the product of a and (3, a(3, we must keep in mind that (3 will be 
applied first, and then (3, as in a(3(x) = a((3(x». Therefore, to compute a product 
of nondisjoint cycles we need to proceed as follows. Take the example: 

(a b c)(a b d)(c db). 

To compute this, we start with any element, say a, and compute its image. 
The element a is fixed by the rightmost cycle, then is mapped into b by the second 
cycle, and b is mapped into c by the leftmost cycle. So, the final destination of a 
is c. We then write: 

(a b c)(a b d)(c d b) = (a c '" 

and then proceed finding out the image of c: c goes to d, d goes to a, a goes to b, 
respectively, by the rightmost, middle, and leftmost cycle, so c is finally mapped 
into b. And so on. We reach the result: 

(a b c)(a b d)(c d b) = (a c b)(d) = (a c b) 

since singleton cycles do not need to be explicitly indicated. 
One important operation is the conjugation. The conjugation of (3 by a is the 

permutation a(3a-1. This results in a permutation with the same cycle structure 
of (3 but the elements are changed by a. For instance, if (3 = ((31 (32 ... 13k) then: 

a(3a-1 = (a((3d a((32) ... a((3k» 
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If (3 is a product of disjoint cycles, each one will be affected by a in the same 
way to form a(3a-1 • Conjugations are so important that we will have a special 
notation for them: a· (3 means the same as a(3a-1 • 

2.1. Two- and Three-Cycles 
A two-cycle, or 2-cycle, is a cycle of size 2. A three-cycle, or 3-cycle, is a cycle of 
order 3. It is important to know how products by 2- or 3-cycles affect an arbitrary 
permutation. It is simple, too. 

Let a = (a b) be a 2-cycle. Its effect on an arbitrary permutation (3 can be 
described as follows. If a and b are in the same cycle in (3, this cycle is broken in 
two in a(3. If a and b are in two distinct cycles in (3, these two cycles become one 
in a(3. Here and in the rest of the paper we say "cycle in (3" meaning "cycle in the 
unique cycle decomposition of (3". 

The same results are valid for (3a. Notice that (3a and a(3 are conjugates: 
a((3a)a-1 = a(3, and therefore have the same cycle structure. 

Now take an arbitrary 3-cycle a = (a b c) and an arbitrary permutation (3. 
Three cases appear: 

1. If a, b, and c are in three different cycles in (3, these three cycles become-a 
single cycle in a(3. 

2. If two of a, b, c, are in the same cycle, and the third element is in a different 
cycle in (3, then these two cycles recombine into another two cycles in a(3. 
Thus, the total number of cycles is maintained. 

3. If a, b, and c are all in the same cycle in (3, the result depends on the 
orientation they have in this cycle of (3. Selecting a as the starting point, 
this cycle can have the form (a ... b ... c ... ) or (a ... c .,. a ., .). In 
the first case, the cycle becomes (a ... c ... b ... ) in a(3. In the second 
case, the cycle breaks into (a .. . )(b .. . )(c ... ) in a(3. 

The same results (except for the exact format of the resulting cycles in case 3) 
are valid for (3a. 

3. Genome rearrangements 

To formalize genome rearrangement problems we will use as base set for the per-
mutations the set En = {-1,+1,-2,+2, ... ,-n,+n}, where n is the number of 
genes. Thus, we will be modeling both strands of the underlying DNA molecule. 
Each element +i or -i represents a marker on the ith gene, with its opposite 
meaning a marker in the same location in the opposite strand. We will first model 
circular genomes, which conform more naturally to the formalism, and will later 
comment on the necessary adaptations for linear genomes. 
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Table 1. Examples of admissible cycles a and their reverse complement. 

a reverse complement 
(+3 -1 + 7 + 5) (-5 -7 + 1 - 3) 

(+2 +4 +6) (-6 - 4 - 2) 

To begin with, let "( be the permutation that maps each elements into its 
counterpart On the other strand. The permutation "( can be written as: 

"(=(-1 +1)(-2 +2) ... (-n +n) 

that is, a product of n disjoint 2-cycles. Notice that ')'(a) =I- a for all a E En, 
and ')'2(a) = ')'b(a)) = a for all a E En. In other words, ')'2 = lor, equivalently, 
,),-1 = ')'. 

A cycle is admissible when it does not contain -i and +i for the same i. Thus, 
')' is far from being an admissible cycle. An admissible cycle of size n is called a 
genome strand, because it models a strand of a genome formed by these n genes 
in some order. If we have an admissible cycle 0, we can compute its reverse 
complement, as in the examples of the Table 1. 

There is an algebraic way of obtaining the complement, though. If 0 is an 
admissible cycle, a-I is its reverse; ')' . 0 = ')'0')' is its complement. The reverse 
complement is when we do both: b· a)-lor "(. (0-1), which results in the same 
expression ,),0-1,),. 

Given a genome strand 'Il"1, its reverse complement 'Il"2 = ,),'Il"-I,), forms the 
complementary strand of the same genome. We represent this genome as the 
product of the two strands: 'Il" = 'Il"I'1l"2. Since the strands form two disjoint cycles 
it does not matter in which order we take the product: 'Il"1'1l"2 = 'Il"2'1l"1. Also, it 
does not matter which strand we call 'Il"1: had we started with 'Il"2 we would have 
computed its reverse complement 'Il"1 and the final genome would have been the 
same. This is just as DNA should be: no matter which strand you pick, when you 
let it pair with its reverse complement, you get the same DNA molecule. 

Formally, we define a genome as a permutation that can be written as 'Il"1 ')''Il" 11,,(, 

for some genome strand 'Il"1. Notice that "('Il""( = 'Il"-1 for every genome 'Il". The 
general genome rearrangement problem then becomes: given two genomes 'Il" and 
a and a class of operations, find the minimum number of events (operations) that 
transform 'Il" into a. This minimum number is called the distance between 'Il" and 
a. 

We will talk about classes of operations later, but for any of the several prob-
lems obtained by choosing a different set of operations, the breakpoint graph plays 
an important role. Classically, the breakpoint graph is constructed as in Figure 1. 

Details of the construction have been described previously several times and 
will not repeated here (Hannenhalli and Pevzner, 1995; Meidanis and Setubal, 
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Figure 1. Breakpoint Graph for genomes 1r = (-3 + 2 - 5 - 4 + 1) and (1' = (+1 + 
2 +3 +4 +5). 

1997). Our objective is to obtain this graph, or an equivalent structure, byalge-
braic manipulations. The breakpoint graph is used when we want to transform 'Tr 
into a constant permutation a = (+ 1 + 2 + 3 + 4 + 5). It then depends on both 
'Tr and a. In fact, it has been defined for linear genomes, and to adapt to that we 
need consider "extended" versions of'Tr and a: 'Trl = (+0 - 3 + 2 - 5 - 4 + 1) 
and identify-O with -6. 

The breakpoint graph is composed of black edges, which depend only on 1r, 

and of gray edges, which depend only on a. Its turns out that ,,/'Tr is a product of 
2-cycles that correspond exactly to the black edges. And ,,/0' corresponds to the 
gray edges in the same way. In the preceding example, we have: 

,,/'Tr=(-O +0)(-1 +1)(-2 +2)(-3 +3)(-4 +4)(-5 +5) 
(+0 -3 +2 -5 -4 +1)(-1 +4 +5 -2 +3 -0) 

=(+0 +3)(-3 -2)(+2 +5)(-5 +4)(-4 -1)(+1 -0), 

exactly the black edges. And ,,/0' will give the gray edges: 

,,/0' = (+0 -1)(+1 - 2)(+2 - 3)(+3 - 4)(+4 - 5)(+5 - 0). 

In the classical theory of genome rearrangements the cycle structure of the 
breakpoints graph plays an important role. Although we could not obtain the 
cycles themselves of the breakpoint graph, we derived an algebraic expression for 
the square of each cycles. This expression is just the product ("f'Tr)("fa) = ,,/'Tr,,/a. 
In the example, we have: 

,'Tr,a = (+0 - 4)(+3 - 1)( -3 + 5 + 1)( -2 - 0 + 2)( -5)( +4) 

For each cycle of breakpoint graph we have two cycles in ,,/'Tr,,/a. If the cy-
cle in the breakpoint graph is (al a2 ... a2k) , we have (al a3 ... a2k-d and 
(a2k a2k-2 ... a2) in ,,/'Tr,,/a. Therefore, this is not exactly the square of break-
point cycle, because one of them is reversed. Strictly speaking, we cannot model 
as permutations the cycles of the breakpoint graph, since they have no orienta-
tion. This in part explains why one cycle in the square is reversed. Had we taken 
,,/'Tr,a the other cycle would have been reversed. Notice that ,,/'Tr,,/a = 'Tr-1a, and 
,a,'Tr = a-1'Tr. 
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Figure 2_ Linear genomes with fixed extremes_ 
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Figure 3. Linear genomes without fixed extremes. 

In any case, this constructions allow us to rephrase technical properties of 
breakpoint graphs in algebraic terms. For instance, how many breakpoints 7r has 
with respect to a? This is just the number of elements not fixed by 'Y7r'Ya, divided 
by 2: 

b( ) = ISupp(r7r'Ya)I 
7r, a 2 

where the support Supp(a) of a permutation a is the set of elements not fixed by 
a: 

Supp(a) = {x E En I a(x) i- x} 

Likewise, the number of cycles in the breakpoint graph is half the number of 
cycles in 7r- 1a. We can define also the length (size) of the cycles, good or bad 
cycles, cycle that can be broken by certain operations. We hope to be able to 
define interleaving cycles, hurdles, fortresses, all in algebraic terms. 

3.1. Linear Genomes 

The theory developed so far fits nicely with circular genomes. In this section we 
will briefly examine the case of linear genomes. 

First, we must recognize that there are actually two kinds of linear genome: 
free and with fixed extremes. Let us define each kind, starting with the one with 
fixed extremes. 

When we compare two regions of two different genomes, and these regions are 
flanked by conserved parts, we need to use the fixed-extreme case (Figure 2). In 
this case, we add an extra dummy gene BA, which represents the fixed extremities 
of the regions, and proceed as in the circular case. 

When we compare two entire linear genomes, we need to take into account that 
there is a free reversal that can be applied, so the distance in this case becomes: 

d free = min( d fixed (7r, a), dfixed ('Y . 7r, a)) 

More details on the relationship between linear and circular genome rearrange-
ment problems can be found in the references (Walter, 1999; Meidanis et al., 
1997a). 
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A reverse complement of A 

u 

Figure 4. A reversal p applied to genome 1r. 

3.2. Operations 

We will define in this section the events (operations) of reversal, transposition (or 
block move), and block interchange, some of them in the their signed and unsigned 
version. We will do a very detailed job for reversals, and then just state the results 
for the others, to save space. 

Given a genome 7r, to perform a reversal (signed) on it we need to choose two 
distinct markers u and v, in the same strand of 7r, and then replace the path from u 
to v (excluding u but including v) by its reverse complement. Of course, a similar 
operation will be performed on the other strand, to make sure the final result is 
still a valid genome. Figure 4 shows what is meant. 

We want to write the resulting genome a as 7rP, where p is a permutation that 
will represent the reversal. With some work, we see that a differs from 7r only in 
the following mappings: 

au = ,v, av = ,U, a,7rU = 7rV, a,7rV = 7rU. 

Therefore, p = 7r-1a maps: 

pu = 7r-1,V, pv = 7r-1,U, p/7rU = v, p/7rV = U 

220 



with all other elements fixed by p. Noting that 71"-1, = ,71" for every genome 71", 

we arrive at: 
pU = ,7I"V, pv = ,7I"U, p,7I"U = V, p")'7I"V = U 

or, written as a product of disjoint cycles: 

p = (u ,7I"v)(v '7I"u). 

This is then the general formula of a reversal applicable to 71", where U and v are 
two elements in same strand of 71". We say that 71" and (J differ by a reversal when 
there is such a reversal p with (J = 7I"p. Notice that the definition of a reversal 
depends on 71". There is no way to define a class of permutations that will be ''the 
reversals", valid for all genomes. Each genome has a particular set of reversals that 
can be applied to it, and this sets varies from one genome to another. 

For this reason, we cannot view the genome rearrangement problem directly as 
a "group generators" problem, where a class of generators of the symmetric group is 
given and we seek the minimum number of generators to write a given permutation. 
Nevertheless, it can be wieved as a group generators problem. Details are given 
in the full version. 

The reversal distance problem is: given two genomes 71" and (J, find the minimum 
k such that there are genomes 15o, 151 , ••• , 15k with 71" = 15o, (J = 15k and Ji differs 
from Ji +1 by a reversal, for i = 0, ... , (k - 1). 

An unsigned reversal is defined similarly, but has the form: 

p = (u v)(r7l"V ,7I"u) 

where, as before, U and v are distinct elements of the same strand in 71". 

A transposition (unsigned) is defined as: 

r = (u v W)(,7I"W ,7I"V ,7I"u) 

where u, v and ware three distinct elements in the same strand in 71", appearing 
in this order (u,v,w) in the strand. 

A signed transposition is defined as: 

r = (u v ,7I"w)(w ,7I"V ,7I"u) 

where u, v and ware distinct elements in the same strand in 71", appearing in this 
order (u, v, w) in this strand. A signed transposition models the event in which a 
block detaches itself from a genome and reappears elsewhere, in the same strand 
but the block is reversed. 

A block interchange is defined as: 

(3 = (u w)( '}'7I"W '}'7I"u)( V x)( ,7I"X '}'7I"v) 

where u, v, wand x are four distinct elements in the same strand of 71", appearing 
in the order (u, V, w, x) in this strand. 
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Each one (or a group of) of these types of events can be used to define a genome 
rearrangement problem: given two genomes 11: and a, find the minimum k such 
that there are genomes 150 ,151, .. . ,Jk with 11: = 15o, a = 15k and Ji differs from JiH by 
the specific operation (or a group of), for i = 0, ... , (k - 1). 

4. Using the theory 

We will use the theory developed to show two results whose proof was based on 
pictorial representations. The first result appears in Christie's proof that a block 
interchange cannot create three cycles (Christie, 1997). The other result is that 
there is only one way for a transposition to break a cycle, proved byWalter et al. 
(1998) by reference to a picture. 

Theorem 7. Let 11: and a be two genomes, and 13 a block interchange on 11:. Then 
the number of cycles in (11:j3)-la is not higher than 4 plus the number of cycles in 
11:-1a. 

Proof. We have (11:j3)-la = j3-111:-1a, which differs from 11:-1a by a multiplication 
by 13-1 • The cycle structure of 13-1 is the same as j3's: four 2-cycles. By the 
classical results about products by 2-cycles it is immediate that multiplying by 
four 2-cycles we cannot create more than 4 extra cycles. D 

Theorem 8. Let 11: and a be two genomes, and T = (u V W)(')'11:W ,11:V ,11:u) a 
(unsigned) transposition on 11:, where U,V,W appear in this order in the same cycle 
of 11:. Then (11:T)-la has four more cycles than 11:- 1a if and only if U,V,W are in 
the same cycle in 11:-1a and appear in the order (u,v,w) in this cycle. 

Proof. Transpositions do not mix genome strands (at least unsigned transposi-
tions, which is the kind we are using here), and therefore we know that the ele-
ments of a strand of 11: will form a strand in 11:T (possibly in different order). Let 11:1 
be the strand that contains u, v and w, and aI, the corresponding strand in a. We 
then have 11: = 11:1,11:11" a = anal1" and 11:-1a = 11:l1al(,11:n)(,all,). Then 
(11:T)-l a = T-111:-1a will be the product of disjoint permutations (w v u)11:l1al' 
and (')'11:U ,11:V ,11:w)(')'11:n)(,al 1,). 

In the first component (w v u)11:l1al we have a product of a 3-cycle by 11:11al. 
We know from classical permutation group theory (see Section 2.1) that this pro-
duces two extra cycles if and only if u, v, w appear in the same cycle of 11:l1al in 
the order (u,v,w), as stated. D 

5. Conclusions 

We propose a new way of looking of genomes as permutations, one that is more 
comfortable for those that have experience in permutation groups. Much remains 
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do be done, but we feel this is the right way to attack difficult problems such as 
the transposition distance. 
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