Algorithms in Genome Research Winter 2017/2018

Exercises

Number 10, Discussion: 2018 January 19

Exercises by M. Sc. Linda Sundermann.

- 1. The lineage relation matrix Z
 - Does the following matrix Z encode a proper phylogenetic tree? If not, which entries prevent the matrix from encoding a tree?

-1	1	1	1
-1	-1	1	-1
-1	-1	-1	1
-1	-1	-1	-1

• The following matrix Z does not encode a proper tree. To get a proper tree, it's sufficient to change one single entry. Which one is it and how do you have to change it?

-1	1	1	1	1	1
-1	-1	0	1	1	0
-1	-1	-1	1	1	0
-1	-1	-1	-1	1	0
-1	-1	-1	-1	-1	0
-1	-1	-1	-1	-1	-1

- When checking whether a matrix Z encodes a proper tree, all triplets $(Z_{k,k'}, Z_{k,k''}, Z_{k,k''})$, with $1 \le k < k' < k'' < K$, need to be considered. How many different triplets do exist?
- 2. Lineage-based subclonal reconstruction
 - A tumor samples was sequenced and investigated. You know that there are
 - three lineages with the frequency 100 %, 80 % and 30 %,
 - two segments with the following allele-specific copy numbers: $c_A = (1, 1.3), c_B = (1, 1),$
 - four SNVs, the first two lie on segment 0, the last two on segment 1,
 - the following read counts for the SNVs: V = (28, 11, 39, 28) and D = (70, 70, 81, 81)
 - Find the subclonal reconstruction that maximizes the log likelihood.

- 3. Variables and constraints of SNVs
 - Define the variables ΔS , ΔS_A and ΔS_B for the MILP¹?
 - Write down the constraint for the infinite site assumption for an SNV j.

 $^{^{1}}$ mixed integer linear programming