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Preface

As the title implies, the focus of these notes is on ideas and algorithmic methods that are
applied when evolutionary relationships are to be reconstructed from molecular sequences or
other species-related data. Biological aspects like the molecular basis of evolution or methods
of data acquisition and data preparation are not included.

A number of textbooks have been published covering most of the material discussed in these
lecture notes, e.g. by Hillis et al. [1], Graur and Li [2], Gusfield [3], Page an Holmes [4],
Felsenstein [5], and others. Nevertheless we believe this collection with a focus on algorith-
mic aspects of phylogenetic reconstruction methods is quite unique.

We thank Rainer Matthiesen for his notes taken during the Winter 2001/2002 lectures in
Berlin, Rod Page for help with the practical course, and Heiko Schmidt for several discus-
sions.

Berlin, February 2002

Martin Vingron, Jens Stoye, Hannes Luz

Meanwhile, this course has been given a number of times by various people: Jens Stoye (win-
ter 2002/2003), Sebastian Böcker (winter 2003/2004), Marc Rehmsmeier (winter 2004/2005),
Sven Rahmann and Constantin Bannert (winter 2005/2006). Each time the lecture notes were
updated a little bit, and I have also made some additions for the winter 2006/2007 term. Nev-
ertheless, some chapters are still not in a satisfactory state, sorry about this and all other errors
contained.

Bielefeld, September 2006

Jens Stoye

After the last course (winter 2006/2007), Jens Stoye again updated the lecture notes. Mean-
while, Zsuzsanna Lipták gave a lecture with overlapping content and made some suggestions
to improve these notes. During the preparation for the lecture in winter 2009/2010, I inte-
grated her advices and contributed with own improvements and additions. Mainly, I revised
the PP algorithm and the chapter on small parsimony. Thanks to Peter Husemann for his
valuable comments and help.

Bielefeld, September 2009

Roland Wittler
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It’s my turn again. Last semester, Katharina Jahn gave the class. She made some correc-
tions and suggested further improvements, which I tried to realize during my preparations. I
corrected and shortened the parsimony chapter, and most notably, the last part of the notes
has been restructured: There is now a proper Part V: Beyond Reconstruction; other former
“construction sites” have been removed.

Bielefeld, September 2011

Roland Wittler

. . . and again. Some changes (hopefully improvements) here and there, and a new part on
gene tree/species tree reconciliation.

Bielefeld, September 2012

Roland Wittler

After generations of students complained about a figure on row-wise branch-and-bound being
misleading, I now replaced it. Apart from some minor changes, that’s basically it.

Bielefeld, September 2013

Roland Wittler

Minor changes. Bielefeld, September 2014, Roland Wittler

We unsuccessfully tried to trace back the origin of the term “column-wise branch-and-bound”,
which has been confusing because the algorithms does not really work in a branch-and-bound
fashion. So I rephrased this part, and while I was at it, I reworked the whole chapter on
maximum parsimony a bit. I also included a proof of the pointer trick in the construction
of a perfect phylogeny and some words on linear programming in the minimum evolution
section. Apart from that, there are some minor changes by Pedro Feijão, who gave the lecture
in winter 2015/2016, and myself.

Bielefeld, September 2016

Roland Wittler
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Jens, Tizian and I have collected quite some ideas to improve the lecture notes here and
there during winter 2017/2018. In addition to many minor modifications, there is now a new
example to illustrate the inexactness of the spanning tree heuristic (and thus a new picture
on the cover), some more details on Neighbor Joining, and some additions on score matrices
(including the BLOSUM matrix).

Bielefeld, April 2018

Roland Wittler
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Basics
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1 Introduction: Evolution and
Systematics

“Where do we come from” is one of the most frequently asked and discussed questions.
Many theories and hypotheses suggest possible answers. One way to explain our origin is that
we (and everything else) were created by an almighty god (Creationism, Intelligent Design).
Often, creationism and evolution are presented as conflict, where people have to believe either
in creation, or in evolution. However, we encourage another point of view: If we assume the
existence of an almighty god, we can probably find answers to most questions. However,
many of these answers depend on belief alone. In modern science, we try to answer our
questions by experiments with reproducible results. This does not mean that we deny the
existence of god, we just leave him/her/it out of consideration, because we cannot prove or
disprove his/her/its existence.

For centuries, biologists have tried to detect and classify the diversity in the biological world,
this effort is known as systematics. If we assume that the biological diversity we see today
is due to evolution, every species has a phylogeny, a history of its own evolutionary devel-
opment. These two concepts gave rise to the science of Phylogenetic Systematics, where
organisms are classified into groups by their phylogeny. Traditionally, this is based on mor-
phological characters, while today molecular systematics prevail. Here is a short historical
tour.

• Carl Linné (1707–1778): The Swedish botanist Linné (original name Linnæus) revo-
lutionized the way in which species were classified and named. He proposed to group
them by shared similarities into higher taxa, being: genera, orders, classes and king-
doms. He also invented the ‘binomial system’ for naming species, where a name is
composed of genus and species in latin, as in Homo sapiens. The system rapidly be-
came the standard system for naming species. In his early years as a researcher in
botany, Linné believed in invariant species. Later on, he admitted that a certain varia-
tion was possible. His most important works are Systema naturae (1735) and Genera
plantarum (1737).

• Chevalier de Lamarck (1744–1829): Lamarck started as taxonomist in botany, and he
was in general well educated. He applied Linné’s ideas also to animals: Philosophie
zoologique (1809). Lamarck was one of the first to believe in some kind of evolution—
although not assuming an overall ancestor of all species. Further, his way of explaining
the observed changes was not accurate: In response to environmental changes, organ-
isms would over- or underuse certain parts of their bodies. The heavily used parts
would improve, the underused parts wither. These changes would be inherited by the
offspring.
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• Georges Cuvier (1769–1832): Cuvier’s specialty was the comparison of organisms,
characterizing their differences and similarities. He introduced the idea of the Phylum,
but still believed in creation. He also studied fossils and observed changes in com-
parison with contemporary organisms. He explained them by a series of catastrophes.
Each would have wiped out all life on earth, which would be newly created afterwards.
Cuvier was a colleague of Lamarck, but he had no respect for Lamarck’s theory of
‘inheritance of acquired characteristics’.

• Charles Darwin (1809–1882): Here is an excerpt from the famous book On the origin
of species by means of natural selection by Charles Darwin, 1859:

Whatever the cause may be of each slight difference in the offspring from
their parents—and a cause for each must exist—it is the steady accumula-
tion, through natural selection, of such differences, when beneficial to the
individual, that gives rise to all the more important modifications of struc-
ture, by which the innumerable beings on the face of this earth are enabled
to struggle with each other, and the best adapted to survive.

Darwin was not the first who believed in some sort of evolution. By the time he pub-
lished his famous book, many biologists did not believe in the notion of fixed species
anymore. However, Darwin was the one who was able to explain how this evolution
could have occurred. His concept of evolution by natural selection may be expressed
as a very simple set of statements:

1. The individual organisms in a population vary.

2. They overproduce (if the available resources allow).

3. Natural selection favors the reproduction of those individuals that are best adapted
to the environment.

4. Some of the variations are inherited to the offspring.

5. Therefore organisms evolve.

• Alfred Russel Wallace (1823–1913) found during his extensive filed work, beside oth-
ers, the “Wallace line”, which separates Indonesia into two areas. In one part, he found
species of Australian origin whereas in the other part, most species had Asian back-
ground. He and Darwin had similar ideas about natural selection and had continuous
contact and discussions about their theories. Darwin decided to publish quickly and
Wallace became a co-discoverer in the shadow of the more famous and acknowledged
Darwin. Nevertheless, he settled for the resulting benefit. In contrast to Darwin, he
explained the emergence of striking coloration of animals as a warning sign for adver-
saries and he devised the Wallace effect: Natural selection could inhibit hybridization
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1 Introduction: Evolution and Systematics

and thus encourage speciation. Wallace also was an advocacy of spritualism. In oppo-
sition to his colleagues, he claimed that something in the “unseen universe of Spirit”
had interceded a least three times during evolution [6, p. 477].

• Ernst Haeckel (1834–1919) did a lot of field work and is known for his “genealogical
tree” (1874, see Figure 1.1). He proposed the biological law “ontogeny recapitulates
phylogeny”, which claims that the development of an individual reflects its entire evo-
lutionary history.

• Emil Hans Willi Hennig (1913–1976) was specialized in dipterans (ordinary flies and
mosquitoes). He noticed that morphological similarity of species does not imply close
relationship. Hennig not only called for a phylogeny based systematic, but also stated
corresponding problems, developed first, formal methods, and introduced an essential
terminology. This was the basis for the parsimony principle and modern cladistics.

• Emile Zuckerkandl (1922–2013) and Linus Pauling (1901-1994) were among the first
to use biomolecular data for phylogenetic considerations. In 1962, they found that
the number of amino acid differences in hemoglobin directly corresponds to time of
divergence. They further abstracted from this finding and formulated the molecular
clock hypothesis in 1965.
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Figure 1.1: The genealogical tree by Ernst Haeckel, 1874.
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2 Graphs, Trees, and Phylogenetic Trees

2.1 Graphs

In this course we talk a lot about trees. A tree is a special kind of graph. So we start with the
definitions of a few graph theoretical terms before we see how trees are defined.

Undirected Graphs.

• An undirected graph is a pair G = (V,E) consisting of a set V of vertices (or nodes)
and a set E ⊆

(
V
2

)
of edges (or branches) that connect nodes. The number of nodes

|V | is also called the size of G.

• The set
(
V
2

)
referred to above is the set of all 2-element subsets of V , i.e., the set of

all {v1, v2} with v1 6= v2. Sets are used to model undirected edges because there is no
order among the vertices for an undirected edge.

• If e = {v1, v2} ∈ E is an edge connecting vertices v1 and v2, e is said to be incident to
v1 and v2. The two vertices v1 and v2 are adjacent.

• The degree of a vertex v is the number of edges incident to v.

• A path is a sequence of nodes v1, v2, . . . , vn where vi and vi+1 are connected by an
edge for all i = 1, . . . , n − 1. The length of such a path is the number of edges along
the path, n−1. In a simple path all vertices except possibly the first and last are distinct.
Two vertices vi and vj are connected if there exists a path in G that starts with vi and
ends with vj . A graph G = (V,E) is connected if every two vertices vi, vj ∈ V are
connected.

• A simple cycle is a simple path in which the first and last vertex are the same. A graph
without simple cycles is called acyclic.

Directed Graphs.

• A directed graph (digraph) is a pair G = (V,E), as for an undirected graph, but where
now E ⊆ V × V .

• An edge e = (v1, v2) is interpreted to point from v1 to v2, symbolically also written as
v1

e→ v2. We usually assume that v1 6= v2 for all edges, although the definition does
allow v1 = v2; such an edge is called a loop. Graphs without loops are loopless.

• In a directed graph one distinguishes the in-degree and the out-degree of a vertex.
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2.2 Trees

Additional information in graphs.

• If edges are annotated by numbers, one speaks of a weighted graph. Edge weights
often represent lengths. The length of a path in a weighted graph is the sum of the edge
lengths along the path.

• If edges are annotated by some label (e.g., letters or strings), one speaks of a labeled
graph. One example is the definition of suffix trees.

Graphs are useful data structures in modeling real-world problems. Applications in bioinfor-
matics include:

• modeling metabolic, regulatory, or protein interaction networks,

• physical mapping and sequence assembly (interval graphs),

• string comparison and pattern matching (finite automata, suffix trees),

• modeling sequence space,

• phylogenetic trees,

• modeling tree space.

2.2 Trees

2.2.1 Graph-theoretical Definition

A tree is a connected acyclic undirected graph. A leaf (terminal node) is a node of degree
one. All other nodes are internal and have a degree of at least two. The length of a tree is the
sum of all its edge lengths.

Let G = (V,E) be an undirected graph. The following statements are equivalent.

1. G is a tree.

2. Any two vertices of G are connected by a unique simple path.

3. G is minimally connected, i.e., if any edge is removed from E, the resulting graph is
disconnected.

4. G is connected and |E| = |V | − 1.

5. G is acyclic and |E| = |V | − 1.

6. G is maximally acyclic, i.e., if any edge is added to E, the resulting graph contains a
cycle.
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2 Graphs, Trees, and Phylogenetic Trees

One distinguishes between rooted and unrooted trees.

• An unrooted tree is a tree as defined above. An unrooted tree with degree three for all
internal nodes is called a binary tree.

• A rooted tree is a tree in which one of the vertices is distinguished from the others and
called the root. Rooting a tree induces a hierarchical relationships of the nodes and
creates a directed graph, since rooting implies a direction for each edge (by definition
always pointing away from the root). The terms parent, child, sibling, ancestor, de-
scendant are then defined in the obvious way. Rooting a tree also changes the notion
of the degree of a node: The degree of a node in a rooted tree refers to the out-degree
of that node according to the above described directed graph. Then, a leaf is defined as
a node of out-degree zero. A rooted tree with out-degree two for all internal nodes is
called a binary tree. Each edge divides (splits) a tree into two connected components.
Given a node v other than the root in a rooted tree, the subtree rooted at v is the remain-
ing tree after deleting the edge that ends at v and the component containing the root.
(The subtree rooted at the root is the complete, original tree.) The depth of node v in a
rooted tree is the length of the (unique) simple path from the root to v. The depth of a
tree T is the maximum depth of all of T s nodes. The width of a tree T is the maximal
number of nodes in T with the same depth.

2.2.2 Tree Representation and Tree Shape/Topology

A simple and often used notation to represent a tree, especially in Phylogenetics, is the
PHYLIP or NEWICK1 format, where it is represented by a parenthesis structure, see Fig-
ure 2.1. This format implies a rooted tree where the root is represented by the outmost pair
of parentheses. If unrooted trees are considered, different parenthesis structures can represent
the same tree topology, see Figure 2.2.

It is important to notice that the branching order of edges at internal nodes is always arbi-
trary. Hence the trees (A, (B,C)); and ((B,C), A); are the same! (“Trees are like mobiles.”)
Sometimes, as in nature, rooted trees are drawn with their root at the bottom. More often,
though, rooted trees are drawn with their root at the top or from left to right. Unrooted trees
are often drawn with their leaves pointing away from the center of the picture.

1http://evolution.genetics.washington.edu/phylip/newicktree.html
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2.3 Phylogenetic Trees

(((A,B),C),(D,E));

A B

C

D E

Figure 2.1: A rooted tree with five leaves and the corresponding parenthesis structure.

A

B E

D

C

etc.

(((A,B),C),(D,E));

((A,B),(C,(D,E)));

(A,(B,(C,(D,E))));

((A,B),C,(D,E));

Figure 2.2: An unrooted tree and several parenthesis structures representing this tree.

2.3 Phylogenetic Trees

2.3.1 What are Phylogenetic Trees?

Phylogenetic (also: evolutionary) trees display the evolutionary relationships among a set of
objects. Usually, those objects are species, but other entities are also possible. Here, we focus
on species as objects, an example is shown in Figure 2.3 (left).

The n contemporary species are represented by the leaves of the tree. Internal nodes are
branching (out-degree two or more in a rooted tree), they represent the last common ancestor
before a speciation event took place. The species at the internal nodes are usually extinct,
and then the amount of data available from them is quite small. Therefore, the tree is mostly
based on the data of contemporary species. It models their evolution, clearly showing how
they are related via common ancestors.
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2 Graphs, Trees, and Phylogenetic Trees

ti
m
e

rooted species tree unrooted multifurcating tree

speciation

speciation

A B C

A

B

C

D

E

Figure 2.3: Left: Rooted, fully resolved species tree. Right: Unrooted tree with five taxa. The
internal node branching to C, D and E is a polytomy.

Figure 2.4: A microscopic view at evolution.

Speciation. The interpretation of phylogenetic trees requires some understanding of spe-
ciation, the origin of a new species. A speciation event is always linked to a population of
organisms, not to an individual. Within this population, a group of individuals emerges that
is able to live in a new way, at the same time acquiring a barrier to genetic exchange with the
remaining population from which it arose (see, e.g. [7]). Usually, this is due to environmental
changes that lead to a spatial separation, often by chance events. That is why speciation can
not really be considered a punctual event, more realistic is a picture like in Figure 2.4.

After the separation of the two populations, both will diverge from each other during the
course of time. Since both species evolve, the last common ancestor of the two will usually
be extinct today, in the sense that the genetic pool we observe in either contemporary species
is not the same as the one we would have observed in their last common ancestor.
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2.3 Phylogenetic Trees

Figure 2.5: Left: Gene tree, the same letter refers to the same species. Some species har-
bors two copies of the gene, indicated by the subscripts. Right: Species tree with a gene
duplication and gene loss.

Gene trees and species trees. In modern molecular phylogeny, often the species at
the leaves of a phylogenetic tree are represented by genes (or other stretches of genomic
DNA). Such a tree is then often called a gene tree. In order to be comparable, all genes
that are compared in the same tree should have originated from the same ancestral piece of
DNA. Such genes are called homologous genes or homologs. It might also be that more
than one homologous gene from the same species is included in the same tree. This can
happen if the gene is duplicated and both copies are still alive. The full picture is then a
mixture of speciations and gene duplications, see Figure 2.5. It is also possible that an internal
node represents a cluster of species (the ones at the leaves in the subtree). Such a cluster is
sometimes also called an operational taxonomic unit (OTU).

Orthology and paralogy. Two important concepts that are best explained with the help
of gene trees and species trees are orthology and paralogy. Two genes are orthologs (or or-
thologous genes) if they descend from the same ancestor gene and their last common ancestor
is a speciation event. They are paralogs (paralogous genes) if they descend from the same an-
cestor gene and their last common ancestor is a duplication event. For example, genesA1, B1

and C1 in Figure 2.5 are orthologs, whereas genes A2 and B1, for example, are paralogs.

This example nicely demonstrates the importance to distinguish the two relations: The evolu-
tionary distance between genesA1 andB1 (orthologs) correlates to the distance of the species
A and B. In contrast, genes A2 and B1 (paralogs) are drastically more distant—not at all re-
flecting the relation between the species. Choosing these genes as representatives to draw
conclusion about the phylogeny would be a pitfall.

11



2 Graphs, Trees, and Phylogenetic Trees

2.3.2 Gene Tree/Species Tree Reconciliation

How do we obtain a scenario as given in Figure 2.5? When we have computed gene trees from
the sequence data of several genes, how can we determine the species tree? If all gene trees
are equal, the species tree will most likely be the corresponding tree and drawing the picture
is trivial. But in practice, this is often not the case, as again emphasized in a recent Nature
article about the great apes’ phylogeny ((Human,Chimp),Gorilla): “In 30% of the genome,
gorilla is closer to human or chimpanzee than the latter are to each other” [8]. This example is
just on three species with a quite established phylogeny. But it demonstrates to which extent
a phylogenic puzzle can be shuffled.

When gene trees differ, one usually seeks for a parsimonious solution: a scenario with as
few gene duplications and losses as possible. For a given species tree, we have to find a
parsimonious way to fit the gene trees into it. This problem is called gene tree/species tree
reconciliation. If the species tree is not known, one has to find such a tree that allows for a
most parsimonious reconciliation.

In the following, we describe a classical solution for the reconciliation problem, the LCA-
approach [9]. For a given rooted binary gene tree G and a rooted binary species tree S,
it outputs a minimal number of duplications necessary to reconcile G with S, where the
duplications are as close to the leaves as possible.

Definitions. For an (ancestral) gene g in gene tree G, let γ(g) be the set of species in
which any descendant from g occurs. We define M(g) to be the last common ancestor (LCA)
of γ(g).

That means,M(g) points to the last possible ancestral species that must have harbored gene g.
See Figure 2.6 for an example. This mapping allows us to infer the duplication/speciation
scenario and thus to draw a picture as in Figure 2.5. If a gene g maps to the same node s in S
as one of its child nodes g′, i.e. M(g) = M(g′), species s must have harbored a duplication.
Otherwise we have a speciation of the genes.

The LCA reconciliation method is based on the following two observations. Let g1 and g2 be
the child nodes of g. Then,

(1) M(g) cannot be lower than M(g1) or M(g2), and

(2) M(g) must be the last common ancestor of M(g1) and M(g2).

Hence, traversingG from bottom to top allows us to compute M(g) recursively, in a dynamic
programming fashion as follows. An example is given in Figure 2.6, which results in the
reconciliation shown in Figure 2.5.

12



2.3 Phylogenetic Trees

Figure 2.6: Example for the LCA approach to reconcile a gene tree G with a species tree S.
The mapping function M is symbolized by arrows originating at nodes in G and pointing
to nodes in S. Letters A through C represent species names. The resulting reconciliation is
shown in Figure 2.5.

1. (Initialization) For each leaf g in gene tree G, set M(g) to the leaf in S with the corre-
sponding species name.

2. (Bottom-Up Phase) We traverse the gene tree from the leaves to the root such that when
a node g is processed, both children g1 and g2 have already been processed. During this
phase, we compute M(g) for each internal node g:

1. M(g) := LCA
(
M(g1),M(g2)

)
2. if M(g) = M(g1) or M(g) = M(g2),

then g is a duplication
else g is a speciation.

For n genes, the initialization can be done in O(n) time. The run time complexity of the
second step depends on the implementation of the LCA routine. A simple solution takes
O(n) time in the worst case of a maximally unbalanced tree where each LCA is the root.
More sophisticated solutions allow to compute an LCA in constant time after an O(n) time
preprocessing of the tree [10, 11]. During the traversal, each node is visited once, resulting in
O(n) LCA computations and thus in a total run time of O(n2) or O(n), respectively.

2.3.3 Tree Classification: Fully Resolved vs. Multifurcating

The difference between rooted and unrooted trees was already explained in Section 2.2. How-
ever, aside from being rooted or unrooted, trees can also be fully resolved or not. For example,

13



2 Graphs, Trees, and Phylogenetic Trees

in a fully resolved rooted tree, each internal node has an in-degree of one, and an out-degree
of two. The only exception is the root, which has an in-degree of zero. Trees that are not fully
resolved (a.k.a. multifurcating trees) contain internal nodes with out degree of three or more.
Those nodes are called unresolved nodes or polytomies, see Figure 2.3 (right). A polytomy
can be due to simultaneous speciation into multiple lineages, or to the lack of knowledge
about the exact speciation order.

2.3.4 Weights in Phylogenetic Trees

Often in phylogeny one has weighted trees, where the edge lengths represent a distance. One
example is the evolutionary time that separates two nodes in the tree. Here, trees are usually
rooted, the time flowing from the root to the leaves. Another example for an edge weight is the
number of morphological or molecular differences between two nodes. Generally, both rooted
and unrooted weighted trees are considered in phylogeny. A special class of rooted weighted
trees are those where each leaf has the same distance to the root, called dendrograms. Note
that the same tree (same topology) can represent very different weighted trees!

Unlike general graphs, trees can always be drawn in the plane. However, sometimes it is
difficult or impractical to draw the edge lengths of a tree proportional to their weight. In
such cases one should write the edge lengths as numbers. However, one has to make sure
that the reader does not confuse these numbers with other annotations like bootstrap values.
(Bootstrap values are discussed in Chapter 12.)

2.4 Counting Trees

Finally we want to count how many different tree topologies exist for a given set of leaves.
One has to distinguish between rooted and unrooted trees. Here we only consider unrooted
trees.

Observation. Each unrooted binary tree with n ≥ 2 leaves has exactly n − 2 internal
nodes and 2n− 3 edges.

Based on these formulas, we can prove the following relation.

Lemma. Given n objects, there are Un =
∏n

i=3(2i− 5) labeled unrooted binary trees with
these objects at the leaves.

14



2.4 Counting Trees

Proof. For n = 1, 2 recall that by definition the product of zero elements is U1 = U2 = 1,
and this is the number of labeled, unrooted trees with n = 1, respectively n = 2 leaves. For
n ≥ 3 the proof is by induction:

Let n ≥ 3. There are exactly n leaves and thus 2n − 3 edges. A new edge (creating the
(n+1)-th leaf) can be inserted in any of the 2n−3 existing edges. Hence, by induction
hypothesis,

Un+1 = Un · (2n− 3) = Un · (2(n+ 1)− 5)

=
n∏

i=3

(2i− 5) · (2(n+ 1)− 5)

=
n+1∏
i=3

(2i− 5).

Hence the number of unrooted labeled trees grows super exponentially with the number of
leaves n. This is what makes life difficult in phylogenetic reconstruction. The number of
unresolved (possibly multifurcating) trees is even larger.
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3 Characters and States

Given a group of species and no information about their evolution, how can we find out the
evolutionary relationships among them? We need to find certain properties of these species,
where the following must hold:

• We can decide if a species has this property or not.

• We can measure the quality or quantity of the property (e.g., size, number, color).

These properties are called characters (“Merkmale”). The actual quality or quantity of a
character is called its state (“Ausprägung”). Formally, we have the following:

Definition. A character is a pair C = (λ, S) consisting of a property name λ and an
arbitrary set S, where the elements of S are called character states.

Examples:

• The existence of a nervous system is a binary character. Character states are elements
of {False, True} or {0, 1}.

• The number of extremities (arms, legs,...) is a numerical character. Character states are
elements of N.

• Here is an alignment of DNA sequences:

Seq1: A C C G G T A
Seq2: A G C G T T A
Seq3: A C T G G T C
Seq4: T G C G G A C

A nucleotide in a position of the alignment is a character. The character states are
elements of {A,C,G,T}. For the above alignment, there are seven characters (columns
of the alignment) and four character states.

The definition given for characters and states is not restricted to species. Any object can be
defined by its character states. Given a set of characters, an object may be considered as a
vector of states.
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Example: Bicycle, motorcycle, tricycle and car are objects. The number of wheels and the
existence of an engine are characters of these objects. The following table holds the character
states:

# wheels existence of engine
bicycle 2 0
motorcycle 2 1
car 4 1
tricycle 3 0

17
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4 Perfect Phylogenies

The terms and definitions of characters and states originate from paleontology. A main goal
of paleontologists is to find correct phylogenetic trees for the species under consideration. It
is generally agreed that the invention of a ‘new’ character state is a rare evolutionary event.
Therefore, trees where the same state is invented multiple times independently are considered
less likely in comparison with trees where each state is only invented once.

Definition: Let C be a character, and T be a tree with its leaves labeled with states of C.
Then C is compatible with T if all internal nodes of T can be labeled such that each character
state induces one connected subtree.

Note: This implies that a character with k states that actually occur in our data will be com-
patible with a tree if we observe exactly k − 1 changes of this state in that tree.

Example: Given a phylogenetic tree on a set of objects and a binary character c = {0, 1}:
If the tree can be divided into two subtrees, where all nodes on one side have state 0, and 1 on
the other, we count only one change of state. This can be seen in Figure 4.1 (a). The character
’existence of engine’ is compatible with the tree, as the motor is invented only once (if the
internal nodes are labeled correctly). The same character is not compatible with the tree in
Figure 4.1 (b), where the engine is invented twice (if we assume that the common ancestor
had no engine). The character ’number of wheels’ is compatible with both trees.

01

bicycle cartricyclemotorcycle

invention of engine

(a)

2 2 3 4

number of
wheels

(b)

motorcycle car bicycletricycle

0011

0

Figure 4.1: Putative phylogenies of vehicles. Tree (a) is compatible with the character ‘ex-
istence of engine’. The engine is invented once, in the edge connecting the root and the
common ancestor of car and motorcycle. It is also compatible with ‘number of wheels’.
Tree (b) is compatible with ‘number of wheels’, but would be incompatible with ‘existence
of engine’.

.

19



4 Perfect Phylogenies
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Figure 4.2: Perfect phylogeny for binary character states of M shown as (a) a rooted tree
(numbers at edges denote invention of characters), and (b) an unrooted tree (crossed dashed
lines represent splits, a number at a split denotes the character inducing the split)

If a tree is compatible with all given characters, this is called a perfect phylogeny. Formally
stated:

Definition: Let C be a set of characters, and T be a tree with its leaves labeled with states
for each character C ∈ C. Then T is called a perfect phylogeny (PP) for C if all characters
C ∈ C are compatible with T .

Example: The objects A,B,C,D,E share five binary (two-state) characters. The ma-
trix M holds their binary states:

1 2 3 4 5
A 1 1 0 0 0
B 0 0 1 0 0
C 1 1 0 0 1
D 0 0 1 1 0
E 0 1 0 0 0

The trees in Figure 4.2 show a perfect phylogeny for M . There are two ways of looking at
this perfect phylogeny:
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• As a rooted tree in a directed framework with development (Figure 4.2 (a)): A (virtual)
ancestral object is added as the root. Its characters have state 00000. During develop-
ment, on the way from this root to the leaves, a character may invent a new state ’1’
exactly once. In the subtree below the point where the state switches, the state will
always remain ’1’.

• As an unrooted tree in a split framework (Figure 4.2 (b)): A binary character corre-
sponds to a split (a bipartition) in a set of objects. In a tree this is represented by an
edge. In this framework, characters 4 and 5 are uninformative. The splits they induce
are trivial as they separate a single object from the other ones and hence do not tell us
about the relationships among the objects. Character 3 is just the opposite of charac-
ter 2. It describes the same split.

We can define an object set for each character: character i corresponds to the set of objectsOi

where the character i is “on”, that is it has value 1. Then each column of the matrix M corre-
sponds to a set of objects: O1 = {A,C}, O2 = {A,C,E}, O3 = {B,D}, O4 = {D}, O5 =
{C}.

The Perfect Phylogeny Problem (PPP) addresses the question if for a given matrix M there
exists a tree as shown in Figure 4.2 (a) and, given its existence, how to construct it.

An alternative formulation for the PPP with binary characters is the formulation as a Charac-
ter Compatibility Problem: Given a finite set S and a set of splits (binary characters) {Ai, Bi}
such that Ai ∩Bi = ∅ and Ai ∪Bi = S, is there a tree as in Figure 4.2 (b) that realizes these
splits?

In general, the PPP is NP-hard. Given binary characters, it is easy, though. Gusfield [12]
formulates the following theorem:

Theorem. If all characters are binary, M has a PP (with all character states being 0 at the
root) if and only if for any two columns i, j one of the following conditions holds:

(i) Oi ⊆ Oj , (ii) Oj ⊆ Oi, (iii) Oi ∩Oj = ∅.

The condition in the above theorem describes the compatibility of two characters. Two char-
acters are compatible if they allow for a PP. And Gusfield’s theorem becomes: “A set of
binary characters has a PP if and only if all pairs of characters are compatible.” Recently,
Lam et al. [13] showed that this sentence similarly holds for three-state characters: “There
is a three-state PP for a set of input sequences if and only if there is a PP for every subset
of three characters.” But note that this is not true in general, i.e. for r-state characters with
r > 3, as there are many “tree realizations” (see [14]).
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4 Perfect Phylogenies

The naı̈ve algorithm to check if a PP exists is to test all pairs of columns for the above con-
ditions which has time complexity O(nm2), where n is the number of rows, and m is the
number of columns in M . We will present here a more sophisticated method for recognition
and construction of a PP with a time complexity of O(nm). The algorithm is influenced by
Gusfield ([12] and [3, Chapter 17.3.4]), Waterman [15], and Setubal and Meidanis [16].

The algorithm is as follows (an example is given on page 24):

1. Check the inclusion/disjointness property of M :

a) Sort the columns of M decreasing by their number of ‘1’s.
(Note that this can also be done in O(nm) time.)

b) Add a column number 0 containing only ‘1’s.

c) For each ‘1’ in the sorted matrix, draw a pointer to the previous ‘1’ in the same
row.

Observation.1 M has a PP if and only if in each column, all pointers end in the same
preceding column.

If the condition is fulfilled, we can proceed constructing a PP.

2. Build the phylogenetic tree:

a) Create a graph with a node for each character.

b) Add an edge (i, j) between direct successors in the partial order defined by the
Oi set inclusion as indicated by the pointers: If the pointers of column j end in
column i < j, draw an edge from i to j. Because of the set inclusion/disjointness
conditions, the obtained graph will form a tree.

1Thanks to Zsuzsanna Lipták for suggesting the pointer trick.
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3. Refine and annotate the tree:

a) Annotate all leaf nodes labeled j with the object set Oj , mark these objects as
‘used’, and annotate the parent edge with j.

b) In a bottom-up fashion, for each internal node which is labeled with character j
and whose children are all re-labeled, do

i. Re-label the node with all objects of Oj which are not yet marked as ‘used’,

ii. mark these objects as ‘used’, and

iii. annotate the parent edge with j (not for the root node).

c) For each node u and each object o it is labeled with, if u is not a leaf labeled only
with o, remove o from the labeling and append a new leaf v labeled with o.

Finally, we obtain a PP where the edges are annotated with the invented characters and the
leaves are labeled with the objects.

Before we give an example of the construction, we provide a proof of the observation used
after the first step.

Proof of Observation. The modified and sorted matrix has a PP if and only if the original
matrix has a PP since the existence of a PP does neither depend on the order of the charac-
ters/columns nor on column 0. We prove both directions of the observation separately and
make use of Gusfield’s theorem in each step.

1. M has a PP⇒ all pointers end in the same column
The following holds for each column j in M : Since M contains column 0, there is
always a column i to the left of j such that Oi ∩ Oj 6= ∅. Let î be the rightmost such
i. According to the sorting of the columns and the theorem, Oî ⊇ Oj . Hence all ‘1’s
from j point to î.
For each j, the requirements of the observation hold. It remains to prove the other
direction.

2. all pointers end in the same column⇒M has a PP
For any pair of columns i and j in M , where i is to the left of j, one of the following
two cases holds.

• Either, all ‘1’s from j point to i—directly or indirectly via columns in between i
and j. Then Oj ⊆ Oi.
• Or, no ‘1’ from j points to i—neither directly nor indirectly. Then Oi ∩Oj = ∅.

In any case, the requirements of the theorem are fulfilled for all pairs of columns, and
thus a PP exists for M .
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4 Perfect Phylogenies

Example:

1 2 3 4 5
A 0 1 1 0 1
B 0 0 0 1 0
C 1 1 1 0 0
D 0 0 0 1 0
E 0 0 1 0 0

1.
=⇒

0 3 2 4 1 5
A 1 1 1 0 0 1� � �

B 1 0 0 1 0 0�

C 1 1 1 0 1 0� � �

D 1 0 0 1 0 0�

E 1 1 0 0 0 0�

# ‘1’s 3 2 2 1 1

2.
=⇒

0 

3 4 
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5 1 

3.a)
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3.c)
=⇒

1

43

2

5

CA

  E B D

24



5 The Small Parsimony Problem

5.1 Introduction

There are many possibilities to construct a phylogenetic tree from a set of objects. Consistency
is a very strict criterion and most ‘real world’ data sets have no perfect phylogeny. Here, we
define a relaxed objective: Parsimony.

The general idea is to find the tree(s) with the minimum amount of evolution, i.e., with the
fewest number of evolutionary events. More generally, we use some weighting scheme to
assign specific costs to each event and seek for an evolutionary scenario with minimal total
cost. We call such a tree the most parsimonious tree. Note that, if a perfect phylogeny exists,
this is in particular most parsimonious.

There are several methods to reconstruct a most parsimonious tree from a set of data. First,
they have to find a possible tree. Second, they have to be able to calculate and optimize
the changes of state that are needed. As the second problem is the easier subproblem of
the general parsimony problem, we start with this one: We assume that we are given a tree
topology and character states at the leaves, and the problem is to find a most parsimonious
assignment of character states to internal nodes. This problem is referred to as the Small
Parsimony Problem.

Not only the concept of parsimony itself, but a considerable amount of variants of weighting
schemes for different applications has been studied and discussed in the past. Traditionally,
the following properties are used to characterize a cost function cost(c, e, x, y), which assigns
a specific cost to the event “character c changes at edge e from state x to y”. It is called

character independent if cost(ci, e, x, y) = cost(cj , e, x, y) for any characters ci and cj .

edge independent if cost(c, ei, x, y) = cost(c, ej , x, y) for any edges ei and ej . If the
evolutionary distances in a tree are known, e.g. in terms of time and/or mutation rate,
this knowledge can be used to define costs for events on each edge separately.

symmetric if cost(c, e, x, y) = cost(c, e, y, x) for all states x and y. When handling
unrooted trees, symmetry allows us to arbitrarily root a tree—which is sometimes
useful for algorithmical purposes—without affecting the overall cost. However, we
might assume that the invention of a phenotype (0 → 1) is less probable than its loss
(1→ 0). This can easily be modeled by assigning a higher value to cost(c, e, 0, 1) than
to cost(c, e, 1, 0).
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5 The Small Parsimony Problem

In the following, we want to shortly review some classical, concrete weighting schemes. For
a broader and more detailed discussion, see for example the review of Felsenstein [5].

In 1965, Camin and Sokal introduced a model that assumes an ordering of the states. A char-
acter can only change its state stepwise in the given direction—from “primitive to derived”—
and reversals are not allowed. Another long-standing model is the so-called Dollo Parsimony.
It assumes that the state 1 corresponds to a complex phenotype. Following Dollo’s principle,
the loss of such a rare property is irreversible. Thus convergent evolution, the development of
a trait in different lineages, is precluded. That means, state 1 is allowed to arise only once and
we minimize only the number of changes from 1 to 0. Corresponding theory and methods
have been developed by Farris and Le Quesne in the 1970s. However, there are several exam-
ples of convergence known by now, for example the parallel development of wings of birds
and bats. Since we cannot exclude this phenomenon in the development of phenotypes, we
should not rule it out on principle, but rather explicitly allow for convergent evolution. This
ensures to be able to detect and examine this interesting feature, which might elucidate the
evolution of certain phenotypes.

The most basic but also commonly used cost function for multiple state characters is the Fitch
parsimony (Felsenstein defines this model as Wagner parsimony). Here, we simply count the
number of events by assuming (character and edge independent) unit costs: If a character has
state x at some node and state y at a child node, we assign cost(x, y) = 0 for x = y and
cost(x, y) = 1 for x 6= y.

A common method for finding a most parsimonious labeling under the Fitch parsimony
weighting scheme was first published by Fitch and is thus well-known as the Fitch algo-
rithm. Concurrently, Hartigan developed a similar, but more powerful framework, published
two years later in 1973. In contrast to the Fitch algorithm, his method is not restricted to
binary trees. Since he proved its correctness, he also first showed the correctness of Fitch’s
algorithm by presenting it as a special case of his general method.

Shortly after, Sankoff and Rousseau described a generalization for any cost function that is
edge independent, symmetric but may be character dependent and thus vary for certain events.
In this context, where not only the number of changes is counted, but the “amount of change”
is weighted, we also speak of the minimal mutation problem. Erdős and Székely, in turn,
proposed a similar approach in a further generalized framework for edge dependent weights
in 1994. Even for asymmetric models, a linear-time algorithm was introduced by Miklós
Csűrös recently.
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5.2 The Fitch Algorithm

All of the above variants of the Small Parsimony Problem can be subsumed in a formal prob-
lem statement: We have given a phylogenetic tree T = (V,E) where each leaf l is labeled
with state s(c, l) for each character c in a set C of all characters under consideration. We want
to assign a state s(c, v) to each internal node v for each character c such that the total cost
W (T, s) is minimized:

W (T, s) :=
∑

(u,v)∈E

∑
c∈C

cost(c, (u, v), s(c, u), s(c, v))

In general, all models assume that the different characters evolve independently. This allows
us to perform the construction of a parsimonious labeling character-wise. That means, we can
compute labelings for all characters separately, each minimizing the parsimony cost. Finally,
the combination results in an overall labeling which minimizes the total cost.

min
s

(W (T, s)) = min
s

( ∑
(u,v)∈E

∑
c∈C

cost
(
c, (u, v), s(c, u), s(c, v)

))
=
∑
c∈C

min
s

( ∑
(u,v)∈E

cost
(
c, (u, v), s(c, u), s(c, v)

))

In the following, we present two classical dynamic programming algorithms: We begin
with the simple algorithm of Fitch [17] and then introduce an algorithm due to Sankoff and
Rousseau [18, 19] (nicely described in [20]) that works for more general state change costs.

5.2 The Fitch Algorithm

Fitch’s algorithm solves the Small Parsimony Problem for unit costs (Wagner parsimony)
on binary trees. Recall the problem statement: We have given a phylogenetic (binary) tree
T = (V,E) where each leaf l is labeled with state s(c, l) for character c. We want to assign
a state s(c, v) to each internal node v for each character c such that the total number of state
changes is minimal.

We assume that the tree is rooted. If not, we can introduce a root node at any edge without
altering the result. The method works in a dynamic programming fashion. For each character,
it performs two main steps to construct a labeling s(c, v) for each node v of the tree: A bottom-
up phase, followed by a top-down refinement. An example can be found in Figure 5.1 on the
next page.
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5 The Small Parsimony Problem
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Figure 5.1: Example for the Fitch algorithm on one character. For each internal node, the
candidate set is given. The bars indicate one of two possible solutions which can be found
during the top-down refinement.

For each character c do:

1. (Bottom-up phase) We traverse the tree from the leaves to the root such that when a
node is processed, all its children have already been processed. Obviously the root is
the last node processed by this traversal. During this phase, we collect putative states
for the labeling of each node v, stored in a candidate set S(v).

1a. (Leaves) For each leaf l, set S(l) := {s(c, l)}.

1b. (Internal nodes) Assume an internal node u with children v and w. If the v
and w share common candidates, only these are candidates for u. Otherwise, the
candidates of both children have to be considered as candidates for u.

S(u) :=

{
S(v) ∩ S(w) if S(v) ∩ S(w) 6= ∅,
S(v) ∪ S(w) otherwise.

2. (Top-down refinement) The most parsimonious reconstruction of states at the internal
nodes is then obtained in a top-down pass according to the following rules:

2a. (Root) If the candidate set of the root contains more than one element, arbitrarily
set s(c, root) to one of these states.

2b. (Other nodes) Let v be a child of u, and let a denote the state assigned to u.

(i) If a is contained in S(v), set s(c, v) := a.

(ii) Otherwise, arbitrarily set s(c, v) to any state from S(v).
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5.3 The Sankoff Dynamic Programming Algorithm

Already the bottom-up phase gives some important information: The number of performed
union operations is equal to the minimum total cost for the given character. If only the par-
simony cost are of interest, it suffices to perform this phase for each character and count the
unions.

After performing both phases for all characters, a most parsimonious overall labeling s can
be returned. A traversal takes O(n) steps and the computation for each node can be done in
time O(σ), where σ is the maximal number of different states for a character. Hence, the two
phases can be performed in O(nσ) time for each of the m characters. This gives a total time
complexity of O(mnσ).

This kind of two step approach is generally called backtracing: In a forward phase, interme-
diate results are computed, which are then used (like a “trace”) during a backward phase to
compose a final solution. In steps 2a and 2b of the above algorithm, we generally can choose
between different states to label a node. In any case, we obtain an optimal solution. But,
for the algorithm as presented here, backtracking (recursively following each possible way of
constructing a solution) does not yield all optima.

But in contrast, the original algorithm as stated by Fitch [17] allows for finding all optimal
labelings. He separated the top-down phase into two steps. In the first sub-step, the internal
nodes are labeled additionally with alternative character states which can also contribute to
an optimum. In a second sub-step, the sets of primary and alternative states are combined in
all possible ways to concrete optimal labelings.

5.3 The Sankoff Dynamic Programming Algorithm

Fitch’s algorithm is restricted to unit costs. Sankoff developed a generalization for symmetric,
edge independent costs which may vary for certain events [18, 19, 20]. Again, a backtracing
approach, composed of a bottom-up and a top-down phase, is performed for each character
separately. Backtracking can be used to obtain all optimal solutions. The algorithm is given
below (see Figure 5.2 on the following page for an example).

Similar to Fitch’s algorithm, the bottom-up phase is sufficient for computing the parsimony
cost. In contrast to Fitch’s algorithm, processing one node in the bottom-up phase (step 1b.)
takes O(σ2) steps: For each state in u we have to minimize over all possible states in v.
Hence, the algorithm solves the problem correctly in O(mnσ2) time and space, where m is
is the number of characters, n the number of leaves, and σ is the maximal number of different
states of a character.
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cost A C G T
A 0 2 1 2
C 2 0 2 1
G 1 2 0 2
T 2 1 2 0

Figure 5.2: The dynamic programming algorithm of Sankoff on one character for the given
weighting scheme. For each internal node, the values for C are shown. The bars indicate a
solution. In this case, there is no further optimum.

For each character c do:

1. (Bottom-up phase) Assume we process a node u. Define C(u) as the minimum par-
simony cost for the subtree Tu rooted at u. Let C(u, a) be the cost of the best la-
beling of Tu when node u is required to be labeled with state a. Obviously, C(u) =
mina C(u, a).

1a. (Leaves) The state for a leaf l is fixed by the input. For this base case we set
C(l, a) = 0 for a = s(c, l) and C(l, a) =∞, otherwise.

1b. (Internal nodes) The recurrence relation to compute C(u, a) for an internal
node u is given by

C(u, a) =
∑

v child of u

min
b

(cost(a, b) + C(v, b)) .

2. (Top-down refinement) The optimal assignment of states to the internal nodes is then
obtained in a backtracing phase.

2a. (Root) Set s(c, root) to any state a such that C(root) = C(root , a).

2b. (Other nodes) In a top-down traversal, the child v of an already labeled node u
(say, u was labeled with state a) is assigned a state b that yielded the minimum in
the bottom-up pass, i.e., s(c, v) := b where

cost(a, b) + C(v, b) = min
b′

[cost(a, b′) + C(v, b′)] .
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6 Maximum Parsimony

6.1 Introduction

The algorithms covered in the previous chapter solve the Small Parsimony Problem, where a
tree is given. They compute a most parsimonious assignment of states to the internal nodes
of the tree. However, in reality we do not know the tree, but are looking for a tree that yields
the minimum cost (maximum parsimony) solution among all possible tree topologies.

Therefore, the algorithms that solve the Maximum Parsimony Problem (also known as Large
Parsimony Problem) find an optimal tree among all possible ones. The problem is actually
NP-hard. Nevertheless, we present some slow and exact methods and some faster but possibly
suboptimal heuristics that solve the problem. Finally, we mention an even harder problem
(generalized tree alignment) that arises when no alignment is given initially. We also discuss
drawbacks of the parsimony model (Section 6.6).

Before describing algorithms, however, we clarify the meaning of the term heuristic. In
general, one speaks of a heuristic method for the solution of a problem if the method uses
exploratory problem-solving techniques based on experience or trial-and-error, without in
the worst case necessarily to perform better or faster than naive methods. It can mean two
different things.

Correctness heuristic. A fast (efficient) computational method for a computationally dif-
ficult problem that is not guaranteed to return an optimal solution, but is expected to
produce a “good” solution, sometimes provably within a certain factor of the optimum.

Running time heuristic. An exact algorithm that is guaranteed to return an optimal solu-
tion, but not within a short time, although it may do so on some inputs.

An example of the first type of heuristic is the greedy method discussed in Section 6.3, and
examples of the second type of heuristic are described in Section 6.2.2

6.2 Exact Methods

6.2.1 Brute-Force Method: Exhaustive Enumeration

The algorithms for the Small Parsimony Problem allow us to evaluate any given tree topology.
Therefore a naive algorithm suggests itself: In principle we can solve the Small Parsimony
Problem for all possible trees, and the one(s) with lowest cost will be the most parsimonious
tree(s). As we have already seen, the number of different trees grows super-exponentially
with the number of taxa; therefore an exhaustive enumeration is in practice infeasible for

31



6 Maximum Parsimony

more than about 12 taxa. However, the advantage would be that we get all most parsimonious
trees if there are several equally good solutions.

6.2.2 Running time heuristics

Running time heuristics are usually based on the following principle: The search space is
examined by constructing candidate solutions step by step. On the one hand, the construction
has to ensure that all solutions can be enumerated. On the other hand, partial solutions are
not persued if they provably cannot lead to an (optimal) solution of the complete problem,
i.e., corresponding parts of the search space are omitted to save running time. The maximum
parsimony problem is well suited to apply such techniques.

If we construct a tree from a multiple alignment of n taxa as shown in Figure 6.1 where we
consider each of them columns as an independent character, there are two alternative ways to
explore the solution space to find a most parsimonious tree: column-by-column and row-by-
row. Both procedures have in common that they start with an upper bound on the total cost of
a most parsimonious tree, obtained e.g., by an approximation algorithm such as a minimum
spanning tree (see Section 6.4.3). This upper bound allows to prune the search space and is
updated whenever a tighter bound is found.

As pointed out by Fitch [21], for any approaches to construct a maximum parsimony tree
from an alignment matrix, it makes sense to have a close look at the matrix before, because
not all columns need to be fully considered.

Uninformative columns. Obviously, any column in which all character states are the
same (columns 1 and 10 in Figure 6.1) does not require any state change in any possible
tree, because we can simply assign the same state to all inner nodes. Such columns can be
disregarded completely. Now consider a column in which all but one character are the same
(columns 4 and 7). Such a character state which only appears once in a column is called

m columns
1 2 3 4 5 6 7 8 9 10 11 12

A . . . A R E L K F - A N N Y K . . .
B . . . A N G L K P V A - N L K . . .
C . . . A D H L K S V A C N Y N . . .
D . . . A C H L M T V R C N L A . . .
E . . . A Q H I M W V R C N Y R . . .

Figure 6.1: A multiple alignment for four taxa A, B, C, D with m columns.
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6.2 Exact Methods

a singularity. In such cases, in any possible tree, all inner nodes can be labeled with the
dominant state, and exactly one character state change is required, namely on the edge to
the singularity. Furthermore, also a column possessing several singularities but only a single
non-singular character state (column 12) does not favor any tree. Again, all inner nodes can
be labeled with the non-singular state, and one character state change is required for each
edge leading to a singularity. In general, any column possessing exactly one non-singular
state and s singularities contributes a minimum cost of s to any possible tree, and can thus be
left aside during the search for a most parsimonious tree. Analogously, columns composed
of singularities only (columns 2 and 6) contribute a minimum cost of n − 1 for any possible
tree—simply label all inner nodes with any of the n states.

Fitch further introduces the concept of equivalence of alignment columns. Consider, for
instance, columns 5 and 8 in our example, which are clearly not identical. But they provide
the same information. One could transform both columns into the same one by isomorphically
relabeling the states. We could, e.g., apply the mappings A 7→K and R 7→K in column 8 to
substitute them by a single column, column 5, and multiply its contribution by two.

What remains from the matrix in Figure 6.1 are column 5 (times two), column 11, and a cost
of 0 + 4 + 2 + 1 + 4 + 1 + 2 + 0 + 3 = 17 for the uninformative columns, which we would
have to add to the obtained minimum parsimony cost.

Column-wise Approach

Intuitively it seems reasonable to consider the columns of the sequence alignment to con-
struct trees since they are independent by assumption. For each possible tree topology, one
first computes the minimal cost for the first alignment column, then for the second, and so
on. Once the sum of these costs is larger than the best solution computed so far, the proce-
dure stops and continues with the next tree topology. The speedup by this procedure is not
impressive, though.

Row-wise Branch-and-Bound

A branch-and-bound algorithm enumerates all candidate solutions in a tree like fashion. The
complete search space is considered as being recursively split into smaller sub-spaces. The
search space can generally be fully explored by continuously branching into all sub-spaces,
but a sub-space is not explored further (bound) if it is certain that it cannot contain an optimal
solution.

This approach, which is due to Hendy and Penny [22], does branch-and-bound on the se-
quences, in parallel to the enumeration of all possible trees. The idea is that adding branches
to a tree can only increase the total cost. Hence we start with the first three taxa, build the
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6 Maximum Parsimony

only possible unrooted tree for them and compute its cost. Then, in an iterative fashion, we
add the other taxa—one at a time, in all possible ways (i.e., at all edges existing so far, see
Figure 6.2 for the first and second iteration). This way, we would generate all possible un-
rooted trees. By proceeding in a depth-first order, we can bound our search: Whenever one of
the intermediate trees already has cost larger than the best complete solution computed so far,
the procedure stops, otherwise it is continued by adding the next taxon, etc. This approach
may be used for finding a maximum parsimony tree for up to 20 taxa. The actual speedup
that can be achieved depends on the input alignment, however. In a worst case scenario, the
actual speedup may be quite small.

... ......

Figure 6.2: Branch-and-bound applied to the alignment rows.

For even larger numbers of taxa, heuristic procedures have to be used that no longer guarantee
optimality, some ideas can be found in the following sections.

6.3 Correctness Heuristic

Adding a taxon in all possible edges of an existing tree, thereby generating a number of new
trees, is called sequential addition. This approach is used to enumerate the tree space in the
row-wise Branch-and-Bound scenario in Section 6.2.2. The idea is used in the even faster,
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6.3 Correctness Heuristic

but less accurate approach Greedy Sequencial Addition, visualized in Figure 6.3: starting with
a tree with three taxa, a fourth taxon is added to each possible edge, and the net amount of
evolutionary change is determined (e.g., by using the Fitch algorithm). However, only the
best of the resulting trees is kept. It is used as input in the next iteration:

1. Construct tree T3 := (t1, t2, t3);.

2. For i = 4, . . . , n:

a. For each edge e in Ti−1:

i. Connect taxon ti to edge e.

ii. Compute the cost of this tree.

b. Select Ti with minimal cost among all above considered trees of size i.

3. Return Tn.

Figure 6.3: Visualization of Greedy Sequential Addition. The initial tree (A,B,C); is ex-
tended by taxon D in any possible way. Only the best of these three trees is extended
further. Picture adapted from [5].
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6 Maximum Parsimony

Finally, once the (heuristic) tree is constructed, it can be improved in an iterated fashion
by local modifications such as Subtree Pruning and Regrafting or Nearest Neighbor Inter-
change.

Nearest Neighbor Interchange (NNI). Consider a tree T that is not necessarily optimal,
but which we assume to have small parsimony cost and thus being “only a few steps away”
from an optimal tree. These steps are formally defined by the notion of nearest neighbor
interchanges as explained in Figure 6.4.

1

2 4

3

1

3 4

2 1

4 2

3

Figure 6.4: Nearest Neighbor Interchange (NNI). In an unrooted binary tree, each internal
edge (thick edge) has four neighboring edges (the thin edges). Each of these edges is con-
nected to a subtree (shown as gray triangles). A nearest neighbor interchange consists of
separating these four edges and re-connecting them in one of two other possible ways.

For all internal edges, both neighbors are constructed and their parsimony cost is computed
each. If no neighbor has lower cost, the current tree is reported as a local optimum. Otherwise
a neighbor with lowest cost is selected and the NNI search is continued iteratively.

1. Compute W (T ), the parsimony cost of tree T .

2. Construct all neighbors of T .

3. Compute cost for all neighbors.

4. If
(
W (T ′) ≥W (T ) for all neighbors T ′

)
then return T ,

else:

a. Select any Tnext with minimal cost among all neightbors, and

b. repeat from Step 1 with T ← Tnext.

Figure 6.5 depicts the search space for an NNI search.
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Figure 6.5: Complete search space for a Nearest Neighbor Interchange (NNI) search on five
taxa. Trees are connected by a line, if one can be converted into the other by one Nearest
Neighbor Interchange operation on any of the internal edges. Picture adapted from [5].

The best tree computed in this way is not necessarily a most parsimonious one, but mostly a
good approximation. The quality of the resulting tree also depends on the choice of the three
taxa that are used for the initial tree [5].

6.4 Steiner Trees and Spanning Trees

Steiner trees can also be used to solve the Maximum Parsimony Problem. However, finding
a best Steiner tree is itself a difficult problem. Before we explain it (see Section 6.4.4), we
introduce some basic concepts.

6.4.1 The DNA Grid Graph

If the objects whose phylogenetic tree we wish to reconstruct are aligned DNA sequences, all
of the same length m, the DNA grid graph provides the means to formalize the notion of such
a tree “as perfect as possible”.
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Definition. The DNA grid graph G = (V,E) is defined as follows. Every possible DNA
sequence of length m is represented by a vertex in V . Two vertices are connected by an edge
in E if and only if there is exactly one mismatch between the represented sequences.

Obviously, the graph contains 4m vertices, and the length of a shortest path between two
vertices is the Hamming distance between the represented sequences.

Now suppose that we are givenN aligned sequences of lengthm each. These define the set U
of terminal nodes in this graph. (In this context, the notion of terminal nodes does not exactly
correspond to the term leaf as stated in Section 2.2.)

6.4.2 Steiner Trees

Definition. Given a connected weighted graph G = (V,E) and a subset of the vertices
U ⊆ V of terminal nodes. A tree that is a subgraph of G and connects the vertices in U is
called a Steiner tree of U .

Note that in general, a Steiner tree will also contain a subset of the remaining vertices of G,
not in U , which we call Steiner nodes.

Definition. A Steiner tree of minimum length is a minimum Steiner tree.

Minimum Steiner Tree Problem. Given a connected weighted graph G = (V,E) and a
subset of the vertices U ⊆ V , find a minimum Steiner tree of U .

Theorem [23]. The Minimum Steiner Tree Problem is NP complete.

Assume once again that the set of terminal vertices U are objects from the DNA grid graph.
Then, a minimum Steiner tree of U will be a shortest tree that connects all vertices in U , and
hence, a most parsimonious explanation of the DNA sequence data.

Although the Minimum Steiner Tree Problem is NP complete, phrasing the Maximum Parsi-
mony Problem in the framework of DNA grid graphs provides a way to tackle the problem.
For this, we introduce spanning trees in the following section, before we then give an al-
gorithm to solve the Minimum Steiner Tree Problem—and thus the Maximum Parsimony
Problem—approximately.
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6.4.3 Spanning Trees

Definition. Let G = (V,E) be a connected weighted graph. A tree that is a subgraph of G
and connects all vertices of G is called a spanning tree. A spanning tree of minimum length
is called a minimum spanning tree.

Property. Let T be a minimum spanning tree in a graph G. Let e be an edge in T , splitting
T into two subtrees T1 and T2. Then e is of least weight among all the edges that connect a
node of T1 and a node of T2.

There are fairly simple algorithms to construct a minimum spanning tree. Two such algo-
rithms are presented in Section 24.2 of [24], Kruskal’s algorithm and Prim’s algorithm. Both
algorithms run in O(|E| log |V |) time. They are based on the following generic algorithm:

Given a graph G, maintain a set of edges A that in the end will form a minimum spanning
tree. Initially, A is empty. Then step by step safe edges are added to A, in the sense that an
edge e is safe for A if A ∪ {e} is a subset of the edges of a minimum spanning tree.

Kruskal’s Algorithm implements the selection of a safe edge as follows: Find, among all
edges that connect two trees in the growing forest that one of least weight.

1. Sort the edges by nondecreasing weight, such that w(e1) ≤ w(e2) ≤ · · · ≤ w(e|E|).

2. For each edge i from 1 to |E|, test if adding ei closes a cycle (for example by main-
taining for each node a representative element from the connected component that it is
contained in), and if not, add it to A.

Correctness follows from the above property of minimum spanning trees. The first step takes
O(|E| log |E|) time. For the second step, a run time ofO(|E|α(|E|, |V |)) can be achieved us-
ing a disjoint-set data structure where α is the (very slowly growing) inverse of Ackermann’s
function. For details, see [24].

Prim’s Algorithm also follows the generic algorithm, using a simple greedy strategy. The
selected edges always form a single tree. The tree starts from an arbitrary root vertex and
at each step an edge of minimum weight connecting a vertex from the tree with a non-tree
vertex is selected. This is repeated until the tree spans all vertices in V .

Again, correctness follows from the above property of minimum spanning trees.

Implementation: Maintain a priority queue that contains all vertices that are not yet members
of the tree, based on the least weight edge that connects a vertex to the tree. Using a bi-
nary heap, the priority queue can be implemented in O(|V | log |V |) time, resulting in a total
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running time of O(|E| log |V |). (This can be improved to O(|E| + |V | log |V |) by using a
Fibonacci heap.) Again, see [24] for details.

6.4.4 Spanning Trees as Approximations of Steiner Trees

The following algorithm is a simple heuristic for the Minimum Steiner Tree Problem on a
graph G = (V,E) and subset of vertices U ⊆ V .

Spanning tree heuristic:

1. Compute all-pairs shortest-paths on the terminal nodes in U . This gives a complete,
weighted graph G′ with nodes U and each edge corresponding to a path in G.

2. Compute a minimum spanning tree on G′.

3. Map back the minimum spanning tree into the original graph G.

All steps require polynomial time. The Algorithm is illustrated in Figure 6.6.

The algorithm does not solve the Minimum Steiner Tree Problem exactly. It is a correctness
heuristic with the nice property that the result will not be worse than a certain factor of the
optimum.

Definition. A constant factor approximation algorithm is a heuristic algorithm for the so-
lution of a problem such that the result of the heuristic will deviate from an optimal solution
by at most a certain multiplicative factor.

(a) Given graph G with terminal
nodes shown in gray. The min-
imum Steiner tree is highlighted
in bold.

⇒

(b) Graph G′. A minimum span-
ning is highlighted in bold.

⇒

(c) In bold, the minimum span-
ning tree from G′ mapped back
to the original graph G.

Figure 6.6: Illustration of the spanning tree heuristic. In this example, the heuristic cannot
find the minimum Steiner tree of length 5. Independent of the minimum spanning tree
chosen in the second step, only a sub-optimal Steiner tree of length 6 will be found.
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Theorem. The spanning tree heuristic is a 2-approximation of the Minimum Steiner Tree
Problem.

The proof of this property involves the notion of Traveling Salesman Tours.

Definition. Given a connected graph G, a simple cycle that traverses all the nodes of G is
called a Hamiltonian cycle. In a connected weighted graph, a Hamiltonian cycle of minimum
length is also called a Traveling Salesman Tour.

Proof of Theorem. Let T ′ be a minimum spanning tree on subgraph G′ and T be a mini-
mum Steiner tree of graph G. Let W be a full walk of T (the path obtained by traversing the
tree in a circular order). Further let c denote the total cost for a tree, tour, or walk, resp. We
want to show that c(T ′) ≤ 2c(T ). Let H ′ be a Traveling Salesman Tour on G′. We make the
following two observations:

1. c(T ′) ≤ c(H ′) because by removing one edge from H ′ one gets a (linear) tree which
is a spanning tree that cannot be shorter than the minimum spanning tree T ′ and

2. 2c(T ) = c(W ) ≥ c(H ′) because H ′ mapped on G is a shortest tour in G that contains
all nodes in U .

Together we have c(T ′) ≤ c(H ′) ≤ 2c(T ).

Recall our usage of the heuristic: Given a set of aligned DNA sequences whose phylogeny
we want to reconstruct, we represent them as vertices in a DNA grid graph. Now we can
use the spanning tree heuristic to compute a Steiner tree on these vertices. This tree is a 2-
approximation of a correct Steiner tree, i.e., one with the minimum amount of evolutionary
changes. BUT: The approximated Steiner tree is not necessarily binary, nor will it necessarily
have the terminal nodes as leaves (which would be expected of a phylogenetic tree).

6.5 Generalized Tree Alignment

In all of the above discussion, we assumed that a multiple alignment of the sequences was
given. If that is not the case, we have the following even harder problem.
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Generalized Tree Alignment Problem: Given k sequences, find a tree with the se-
quences at the leaves and new reconstructed sequences at the internal nodes such that the
length of the tree is minimal. Here the length of the tree is the sum of the edit distances of the
sequences at the end of the edges.

This very hard problem can also be modeled in the framework of DNA grid graphs. In this
generalized definition, nodes correspond to strings of any length (instead of fixed length)
and edges correspond to an edit distance (instead of Hamming distance) of one—increasing
the number of nodes by a factor of the maximum string length, and the number of edges by
corresponding factors for inserting and deleting single characters.

A dynamic programming algorithm that runs in exponential time exists [19]. Heuristic ap-
proximations also exist, see e.g. [25] and [26].

6.6 Long Branch Attraction

A standard objection to the parsimony criterion is that it is not consistent, i.e., even with
infinite amount of data (infinitely long sequences), one will not necessarily obtain the correct
tree. The concept consistency will be discussed in more detail in Section 11.1.

The standard example for this behavior of parsimony methods is subsumed under the term
long branch attraction. Assume the following tree with correct topology ((A,B), (C,D)).

A

B

C

D

A

B

C

D

Figure 6.7: Left: the considered “true” tree. Right: tree obtained by Maximum Parsimony.

Since the branches pointing toA and C are very long, each of these two taxa looks essentially
random when compared to the other three taxa. The only pair that does not look random is the
pair (B,D), and hence in a most parsimonious tree these two will be placed together giving
the topology ((B,D), (A,C)).
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Distance-based Methods
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Distance based tree building methods rely on a distance measure between the taxa, resulting
in a distance matrix. Distance measures usually take a multiple alignment of the sequences as
input. After the distance measure is performed, sequence information is not used any more.
This is in contrast to character based tree building methods which consider each column of
a multiple sequence alignment as a character and which assess the nucleotides or amino acid
residues at those sites (the character states) directly.

The idea when using distance based tree building methods is that knowledge of the “true
evolutionary distances” between homologous sequences should enable us to reconstruct their
evolutionary history.

Suppose the evolutionary distances between members of a sequence set {A,B,C,D,E}were
given by a distance matrix dM , as shown in Figure 7.1(a).

A B C D E
A 0 200 300 600 600
B 0 300 600 600
C 0 600 600
D 0 200
E 0

(a)

A B C D E

d(C,D) = 600

d(A,C) = 300

present day
sequences

100

150

300

(b)

Figure 7.1: An example for distance based tree reconstruction methods. (a) The “true” evo-
lutionary distances are given in a matrix dM . For example, the value 300 in the first row
of the above matrix shall be read as “the evolutionary distance between A and C is 300
units.” (b) Rooted phylogenetic tree with weighted edges (dendrogram). A root has been
assigned assuming that the sequences have evolved from a common ancestor. The sum of
edge weights along the path between two leaves is the evolutionary distance between the
two leaves. These distances dT correspond to the measured data, given in (a).

Consider now the tree in Figure 7.1(b). A tree like this is called a dendrogram as the nodes
are ranked on the basis of their relative distance to the root. The amount of evolution which
has accumulated in A and C since divergence from their common ancestor is 150. In other
words, the evolutionary distance from A (and C) to the common ancestor of A and C is 150.
In general, the sum of edge weights along the path between two nodes corresponds to the
evolutionary distance between the two nodes. Deriving distances between leaves is done
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by summing up edge weights along the path between the leaves. Distances derived in this
way from a tree form the path metric dT of the tree. For the data in Figure 7.1, we see that
dT = dM . In general, it is not always possible to construct a “perfect” tree. In such a case, the
aim is to find a tree whose path matrix dT is as similar to the given matrix dM as possible.

7.1 Basic Definitions

Definition. A metric on a set of objects O is given by an assignment of a non-negative real
number dij (a distance) to each pair of objects (i, j), i, j ∈ O, if dij fulfills the following
requirements for any i, j, k ∈ O:

(i) dij = 0⇔ i = j

(ii) dij = dji

(iii) dij ≤ dik + dkj

Definition. Let d be a metric on a set of objectsO, then d is an additive metric if it satisfies
the inequality

dij + dkl ≤ max(dik + djl, dil + djk) ∀ i, j, k, l ∈ O.

Note that the above condition has to hold for any selection of four elements and for any
assignment of the variable names i, j, k and l to those elements. An alternative and equivalent
formulation is the four point condition according to Buneman [27]:

Four point condition. A metric d is an additive metric on O, if and only if every four
elements from O can be named x, y, u and v such that

dxy + duv ≤ dxu + dyv = dxv + dyu.

This is a stronger version of the triangle inequality. See Figure 7.2 for an illustration. In
contrast to the original definition, here just one assignment of variables to elements has to
fulfill the condition. Thus, depending on whether you want to (i) proof or (ii) disproof that a
given matrix is additive, it is more efficient to use the (i) four point condition or (ii) definition,
respectively.

Observation. For an additive metric dM , there exists a unique tree T such that dT =dM .
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Figure 7.2: The four point condition. It implies that the path metric of a tree is an additive
metric.

Definition. Let d be a metric on a set of objects O, then d is an ultrametric if it satisfies

dij ≤ max(dik, djk) ∀ i, j, k ∈ O.

Again, there is an alternative formulation:

Three point condition. A metric d is an ultrametric on O, if every three elements from
O can be named x, y, z such that

dxy ≤ dxz = dyz.

This is an even stronger version of the triangle inequality than the four point condition. If d
is an ultrametric, it is an additive metric. See Figure 7.3 for an illustration. Analogously to
additivity, depending on whether you want to (i) prove or (ii) disprove that a given matrix is
ultrametric, it is more efficient to use the (i) three point condition or (ii) original definition.

Observation. For an ultrametric dM , there exists a unique tree T with dM = dT rooted
in such a way that the distance from the root to any leaf is equal. Such a tree is called an
ultrametric tree.

dxy d d=xz yz

x

y

z

x

y

z

Figure 7.3: Three point condition. It implies that the path metric of a tree is an ultrametric.
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7.2 Ultrametric Distances

The previous section dealt with the connection between matrices and trees. In the following,
we discuss the reconstruction of ultrametric trees. Such a tree is given by the dendrogram
in Figure 7.1(b). There is a clear interpretation inherent to ultrametric trees: Sequences have
evolved from a common ancestor at constant rate (molecular clock hypothesis).

The path metric of an ultrametric tree is an ultrametric. Conversely, if distances dM between
a set of objects form an ultrametric, there is a unique ultrametric tree T corresponding to the
distance measure, that is dT = dM . Note that T is not necessarily binary. (A modified version
of the three point condition ensures a unique binary tree: dxy < dxz = dyz .)

Given an ultrametric, the corresponding ultrametric tree can easily be reconstructed by one of
the agglomerative clustering procedures described below.

Distance measures on real sequence data generally do not form an ultrametric. However, if
the observed distances are close to an ultrametric, clustering procedures such as UPGMA
(see Section 7.2.1) are the simplest and fastest way to reconstruct an ultrametric tree. While
this is a very common approach, it is a heuristic (“algorithmic”) method which does not
optimize a simple objective function. As mentioned above, being close to an ultrametric
implies the existence of a molecular clock or a constant rate of evolution (which sometimes
may hold for closely related sequences). Note that clustering procedures are sensitive to
unequal evolutionary rates. If the assumption of rate constancy among lineages does not hold,
UPGMA may give the wrong topology (for an example see Section 7.3.4 and Figure 7.4).

Note: Other distance based methods like Neighbor Joining are more general, that is, they do
not presume a molecular clock (see Section 7.3.4).

7.2.1 Agglomerative Clustering

Agglomerative clustering is conceptually simple and fast. Singleton clusters are successively
merged into larger clusters to form a hierarchy:

Given a set of objects O with n elements and distances dij , i, j ∈ O, initially each object is
assigned a singleton cluster. Then the algorithm proceeds as follows:
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7 Distance-based Trees

While there is more than one cluster left, do:

1. Find the two clusters i and j (i 6= j) with the smallest distance dij .

2. Create a new cluster u that joins clusters i and j.

3. Define the height (i.e. distance from leaves) of u to be lij := dij/2

4. Compute the distance dku of u to any other cluster k /∈ {i, j} in one of the ways
described below.

5. Replace clusters i and j by the new cluster u.

Different clustering methods differ in how they define the distance dku between two clusters
in step 4. In the following, four popular variants will be introduced.

Single linkage clustering:
dku := min(dki, dkj).

Complete linkage clustering:
dku := max(dki, dkj).

UPGMA (unweighted pair group method using arithmetic averages):

dku :=
1

nknu

∑
x object in k,
y object in u

dxy

where ni is the number of objects in cluster i. The new distance dku is the arithmetic
average of the original distances of all elements in k and all elements in u. A straight-
forward calculation would result in a quadratic (overall cubic) run time. However, the
following formula yields the same distances and can be used to update them efficiently.

dku :=
nidki + njdkj
ni + nj

UPGMA takes the single distances of the individual objects equally into account and is
therefore called unweighted. The following method does not. It is thus called weighted.

WPGMA (weighted pair group method using arithmetic averages):

dku :=
dki + dkj

2
.
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Example. Given a set of objects O = {A,B,C,D,E} and an ultrametric distance ma-
trix dM on O with entries

A B C D E

A 0 8 8 12 8
B 0 2 12 4
C 0 12 4
D 0 12
E 0

We want to reconstruct an ultrametric tree using UPGMA. As dBC = 2 is the smallest dis-
tance we join B and C into a new cluster (BC) with depth 1:

B C

11

We update the distance matrix. E.g. dA (BC) = (1 · 8 + 1 · 8)/(1 + 1) = 8, etc.

A (BC) D E

A 0 8 12 8
(BC) 0 12 4

D 0 12
E 0

We join (BC) and E with depth 2:

C

1
2

1

E

1

B

We obtain distances to ((BC)E), e.g. dA ((BC)E) = (2 · 8 + 1 · 8)/(2 + 1) = 8.

The modified distances are

A ((BC)E) D

A 0 8 12
((BC)E) 0 12

D 0

We join A and ((BC)E) with depth 4, and finally (A ((BC)E)) and D are left to join:
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2
1

E

2

4

2

6

A D

1

B C

1

Note that in this example single linkage, complete linkage and WPGMA yield the same tree.
This is due to distances being ultrametric: All mentioned clustering methods give the (unique)
correct tree when the distances are ultrametric. If the data is not ultrametric, the results can
be different.

UPGMA was originally developed for phenetics [28], i.e., for constructing phenograms re-
flecting phenotypic similarities rather than evolutionary distances. Given an approximately
constant rate of evolution, that is, if observed distances are close to an ultrametric, it is also
suited for phylogeny reconstruction, and it is the most commonly used clustering method for
this purpose.

Single linkage and complete linkage are somewhat extreme cases of clustering. While com-
plete linkage clusters are usually very compact (each element in a cluster is connected to each
other element), single linkage clusters may contain pairs of elements that by direct compari-
son are rather dissimilar when there is a “path” of connecting elements between them.

The run time complexity of agglomerative clustering—at least for the above variants—is
dominated by the step to determine the minimum distance in the matrix. Naively scanning
all entries would result in a cubic overall run time. Maintaining a priority queue per row (or
column) reduces picking the minimum entry to O(n log n) in each iteration, thus yielding a
total run time of O(n2 log n). However, for all variants presented here, even a quadratic run
time can be achieved by elaborate approaches.

7.3 Additive Distances

We have seen that ultrametric trees are rooted trees and imply the existence of a molecular
clock. But rates of evolution vary among species, among gene families, among sites in molec-
ular sequences and generally in the course of sequence evolution. To cope with this, we seek
for general, unrooted weighted trees, often called additive trees. (This term can be seen as a
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7.3 Additive Distances

tautology as additivity always implies a tree and vice versa.) Additive trees do not presume a
constant evolutionary rate nor do they make any assumption about the rooting and therefore
reflect our ignorance as to where the common ancestor lies. Given an additive distance matrix
there is exactly one tree topology that allows for realization of an additive tree. We will show
how to reconstruct it in Section 7.3.1.

If one wants to construct a tree T from a distance matrix dM , then the aim is that distances dT

are as similar as possible to the observed distances dM . In Sections 7.3.2 and 7.3.3 we discuss
two methods that optimize a simple objective function when observed distances dM are not
additive, the Fitch-Margoliash algorithm and the Minimum Evolution method, which aim at
reconstructing an additive tree T with distances dT being as similar as possible to observed
distances dM . Finally in Section 7.3.4 we present the popular and heuristic method called
Neighbor Joining.

7.3.1 Exact Reconstruction of Additive Trees

An additive metric can be represented as a unique additive tree which can be reconstructed
in time complexity O(n2) using the method proposed by Waterman [29]. This algorithm
successively inserts objects into intermediate trees until no objects are left to insert.

We use the following rationale: Given an intermediate tree T ′ containing leaf i and leaf j, we
test if we can insert an edge connecting a new leaf k to the intermediate tree along the path
between i and j. We denote the node connecting i, j and k as v and the weight of the edge
being inserted as dvk.

d ij

jk

i j

k

dvk

v

i j

k

d ik d

We observe that

dik + djk = div + dvk + djv + dvk = 2 · dvk + dij

and therefore the weight of the inserted edge would be

dvk =
1

2
(dik + djk − dij)

and the other two: div = dik − dvk
djv = djk − dvk.
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7 Distance-based Trees

The overall algorithm is then the following. Given a set of objects O and an additive metric d
on O, one first picks two arbitrary objects i, j ∈ O and connects them by an edge with
weight dij . This gives the first intermediate tree T ′. Then, iteratively each object k ∈ O not
yet in T ′ is connected to T ′ by an edge ek by the following algorithm.

1. Pick a pair of leaves i, j ∈ T ′.

2. Compute the weight of ek by means of the above rationale.

3. If the insertion of ek in T ′ implies that ek has to be inserted inside an edge, split that
edge, insert a node and attach ek to that node; otherwise (if the insertion point is a
node), replace j (or i) by a leaf from the subtree along the edge at this node not leading
towards i or j and continue with step 2.

To see that the algorithm runs in O(n2) time, observe that there are n − 2 iterations, each
requiring a linear number of weight computations. The directed traversal of the tree in order
to test if the branching point is a node or not can be done in time proportional to the number
of nodes traversed with a few simple data structures.

Note that the algorithm can process non-additive metrics. But in this case, the resulting tree
distances might be inconsistent with the given distances.

Example: Given a set of objectsO = {A,B,C,D,E} and the following additive metric d
on O:

A B C D E

A 0 3 7 10 7
B 0 8 11 8
C 0 9 6
D 0 5
E 0

We first pick two arbitrary objects, sayA andC, and connect them by an edge of weight dAC =
7 to set up the first intermediate tree T ′:

C7A

We connect B by an edge eB to T ′. The weight of eB is

dAB + dCB − dAC

2
=

3 + 8− 7

2
= 2.
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1

2eB

A C

B

6

We try to connect D by an edge eD branching off the path between B and C. The weight of
eD would be

dBD + dCD − dBC

2
=

11 + 9− 8

2
= 6

and inserting eD on the edge branching off to C is therefore consistently possible:

D

3

3

6
e

D

A

1

2

B

C

Finally we have to connect E by an edge eE . We try to let eE branch off the path between B
and C. The weight of eE would be

dvE =
dBE + dCE − dBC

2
=

8 + 6− 8

2
= 3

and hence

dBv = dBE − dvE = 8− 3 = 5.

E

6

v

E
D

ee

A

1

2

B

C

D

3

3
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7 Distance-based Trees

This implies that eE has to be inserted at node v, and hence the procedure is repeated with C
being replaced by D. Choosing the path between B and D, the weight of eE is

dBE + dDE − dBD

2
=

8 + 5− 11

2
= 1

and as dDE = 5, eE branches off eD:

3

2 4

1

D

E

e
E

A

1

2

B

C

3

7.3.2 Least Squares (Fitch-Margoliash)

In practice, a distance measure dM on a set of homologous sequences hardly will form an
additive metric. If the given distances dM are close to being additive, we want to find such a
tree T with a path metric dT that is as “similar” to dM as possible. (Note that in this context,
the superscript T is used to refer to tree T , and not to indicate the transpose of a vector or
matrix.) Fitch-Margoliash [30] and other methods are based on a family of objective functions
called least squares to formally define “similarity”.

e6

e3

e

e

e
5

4

7

A

B

C
E

D
e2

e1

Consider the above tree T with its set of leaves O = {A,B,C,D,E} and weighted edges
e1, e2, ..., e7. In general, for a tree with n leaves, let ~w be the vector of the 2n − 3 edge
weights w(ei). In a binary table, as shown below, we assign 1 to a pair of leaves (X,Y ) and
an edge ej whenever ej belongs to the simple path betweenX and Y , and 0 otherwise. Such a
table, interpreted as a (n(n−1)

2 ×2n−3) matrixMT , is called the path edge incidence matrix.
We can then see that

~dT := MT ~w

is a vector holding the tree distances between the leaves of T .
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d(A,B)
d(A,C)
d(A,D)

...

d(C,E)
d(D,E)


=



e1 e2 e3 e4 e5 e6 e7

(A,B) 1 1 0 0 0 0 0

(A,C) 1 0 1 0 1 1 0

(A,D) 1 0 1 1 0 0 0

(A,E) 1 0 1 0 1 0 1

(B,C) 0 1 1 0 1 1 0

(B,D) 0 1 1 1 0 0 0

(B,E) 0 1 1 0 1 0 1

(C,D) 0 0 0 1 1 1 0

(C,E) 0 0 0 0 0 1 1

(D,E) 0 0 0 1 1 0 1



·



w(e1)
w(e2)

...

w(e6)
w(e7)



Fitch and Margoliash [30] define the disagreement between a tree and the distance measure
by

E := ||~dT − ~dM ||2 =
∑
i

(dTi − dMi )2.

One then wants to find a tree topology and edge lengths such thatE is minimal. (To be precise,
Fitch and Margoliash weight the difference of dT and dM by their measured distances, i.e.
E :=

∑
i<j(d

T
ij − dMij )2/(dMij )2, because they want to minimize the square of the relative

error, i.e., they assume that the uncertainty of the measurement is by the same percentage for
all measurements.)

This can be solved by linear algebra: For a given tree topology (represented by a matrix
MT ), one can find the edge lengths ~w that minimize E using singular value decomposition.
A numerical solution is also possible and often faster.

This allows to optimize the branch lengths for a given topology. Still, one has to repeat this
test for all (or many) topologies. The least squares tree is then the tree that minimizes E.

In practice this exact method takes very long. That is why Fitch and Margoliash suggest in
their paper [30] a heuristic clustering algorithm to find tree topologies that have small (but
not necessarily minimal) least squares error.

7.3.3 Minimum Evolution

A tree with minimal overall length of the tree is called Minimum Evolution tree (ME tree).
Minimum Evolution is a quite prominent approach and there are several methods to (heuris-
tically) compute ME trees. Simulations have shown that Minimum Evolution consistently
constructs better trees than Least Squares.
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Waterman et al. [29] have formulated a variant of their exact approach (Section 7.3.1) to
heuristically construct a ME tree from possibly non-additive distances. Again, taxa are se-
quentially added one by one. Like in Greedy sequencial addition (Section 6.3), all internal
edges are tested for including a new leaf node, and an intermediate solution is greedily cho-
sen to proceed. As selection criterion, the minimal tree length is determined for each topoloy
using a linear program.

Linear Programming “is concerned with the maximization or minimization of a linear
objective function in many variables subject to linear equality and inequality constraints” [31].
Formulating a problem in this way may help to further analyze it theoretically. But often linear
programs are just used to solve complex optimization problems by utilizing sophisticated
software, so-called LP-solvers.

In the context of Minimum Evolution, the objective function of our linear program is the
overall length of the tree.

minimize L :=
2n−3∑
i=1

wi

where the wi are the 2n−3 edge lengths. (Also other objective functions have been proposed,
similar to the Least Squares criterion.)

There are two constraints to the linear program:

(i) all the branch lengths are non-negative, wi ≥ 0; and

(ii) the alignment distance between two sequences may underestimate the number of chan-
ges that have occurred between the two sequences in the course of evolution, but not
overestimate. Therefore, for any pair of sequences, the tree distance is not allowed to
be smaller than the measured distance:

dTij ≥ dMij ∀i, j.

Fast Mininum Evolution is another well-known ME heuristic [32]: An initial tree is
constructed using Neighbor Joining (see Section 7.3.4), which is then refined by Nearest
Neighbor Interchange under ME edge weight optimization.

7.3.4 Neighbor Joining

The Neighbor Joining (NJ) method [33] is similar to cluster analysis in some ways. The
individual taxa are iteratively grouped together, forming larger and larger clusters of taxa.
In contrast to UPGMA, Neighbor Joining does not assume a molecular clock, but it assumes
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that observed distances are close to an additive metric. Given an additive metric, the Neighbor
Joining method identifies the correct tree [34] and it also reconstructs the correct tree if the
given distance matrix is nearly additive, i.e., any given distance differs from the true distance
in the tree by less than half of the shortest branch length in the tree [35].

Definition. Two taxa are neighbors in a tree if the path between them contains only one
node.

The tree in Figure 7.5 (c) contains two pairs of neighboring leaf nodes: (A,B) and (C,E).
If, e.g., A and B are considered as a combined taxon AB, this would be a neighbor of D.
This way, neighbor relationships iteratively define a tree topology. In each iteration of the
NJ algorithm, every pair of taxa is evaluated for being neighbors, and if so, they are grouped
together to form a new taxon for the next iteration.

Note that neighbors do not need to have the smallest distance in the distance matrix. For an
example, see the tree in Figure 7.4. The corresponding distance matrix d is:

A B C D

A 0 3 4 5
B 0 5 4
C 0 7
D 0

UPGMA would pick taxaA andB to cluster them together, since dAB is the smallest distance.
Actually A and B are not neighbors, but A and C are. This effect is due to the long edge with
weight 3 (corresponding to a high rate at which mutations have accumulated) branching off
to C. After presenting the central theorem and the algorithm, we show that Neighbor Joining
correctly identifies the neighbor relationships for the tree in the figure.

The concept to identify neighbors is a variation of the Minimum Evolution principle (see
also Section 7.3.3): A star tree is decomposed such that the tree length is minimized in each
step. Consider the star tree with n leaves in Figure 7.5 (a). The star tree corresponds to the

B

C D

1

1 1

A

3 3

Figure 7.4: Neighbors do not necessarily have the smallest distance.

57



7 Distance-based Trees
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Figure 7.5: Neighbor Joining successively decomposes a star tree by identifying neighbors.
Pairs of neighbors are written in parenthesis.

assumption that there is no clustering of taxa. In general there is a clustering of taxa and if
so, the overall tree length (the sum of all branch lengths) of the true tree or the final NJ tree
(see Figure 7.5 (c)) is smaller than the overall tree length of the star tree. Consider the tree in
Figure 7.5 (b) with resolved neighbors A and B. It is clear that the tree length of this tree is
smaller than that of the initial star tree. A general formula for the tree length Sij of a tree like
in Figure 7.5 (b) when considering taxa i and j as neighbors is

Sij =
n∑

k=1
k 6=i,j

dki + dkj
2(n− 2)

+
dij
2

+
n∑

k<l
k,l 6=i,j

dkl
n− 2

where n is the number of taxa. Computation for the tree in Figure 7.5 (b) yields

SAB = (3a+3b+6f+2c+2d+2e) · 1
6

+
a+ b

2
+ (2c+2d+2e) · 1

3
= a+b+f+c+d+e

Theorem: Given an additive tree T . O is the set of leaves of T . Values of Sij are computed
by means of the path metric dT . Then u, v ∈ O are neighbors in T , if Suv ≤ Sij for all
i, j ∈ O.

A simple proof makes use of the four point condition (see Section 7.1). It enables us to
identify a pair of neighbors given additive distances between a set of taxa by computing Sij
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for all pairs of taxa and choosing taxa i and j showing the smallest Sij value. The identified
neighbors are combined into one composite taxon and the procedure is repeated. We rewrite

Sij =
1

2(n− 2)

2
n∑

k<l
k,l 6=i,j

dkl +
n∑

k=1
k 6=i,j

(dki + dkj)

 +
dij
2

=
1

2(n− 2)

2

(
n∑

k<l

dkl −
n∑

k=1

dki −
n∑

k=1

dkj + dij

)

+

(
n∑

k=1

dki +

n∑
k=1

dkj − 2dij

) +
dij
2

=
1

2(n− 2)

(
2

n∑
k<l

dkl −
n∑

k=1

dki −
n∑

k=1

dkj

)
+

dij
2

=
1

2(n− 2)

(
2

n∑
k<l

dkl − ri − rj

)
+

dij
2

with ri :=
∑n

k=1 dik. Since the sum
∑n

k<l dkl is the same for all pairs of i and j, we can
replace Sij by

Mij := dij −
ri + rj
n− 2

for the purpose of minimization: argmin
(i,j)

(Sij) = argmin
(i,j)

(Mij) .

Algorithm: Given distances dij between members of a set O of n objects. Represent the
objects as terminal nodes in a starlike tree:

i

ri

k

j
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1. For each terminal node i compute

ri :=
n∑

k=1

dik.

2. For all pairs of terminal nodes (i, j) compute

Mij := dij −
ri + rj
n− 2

.

3. Let (i, j) be a pair with minimal value Mij for i 6= j. Join i and j into a new terminal
node u. The branch lengths from u to i and j are

wiu =
dij
2

+
ri − rj
2n− 4

and wju = dij − wiu.

4. Obtain the distances from u to another terminal node k by

dku =
dik + djk − dij

2
.

uj

ukd

uw

w

j

u

k

i

i

5. Delete i and j from the set of objects and replace them by u, thus reducing n by one.
If there are more than two clusters left, continue with step 1.

In step 1, O(n) sums are computed in O(n) time each. In the second step, O(n2) values are
computed in constant time each. The remaining steps take constant (steps 3 and 5) or linear
(step 4) time, such that each iteration requires O(n2) time. Because in each iteration, the
number of objects under consideration is reduced by one, there are O(n) iterations, resulting
in a total run time complexity of O(n3).

Now we will give an example for a tree reconstruction given an (exact) additive metric by
means of the NJ algorithm.
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Example. The path metric dT for the tree in Figure 7.4 is given by the following dis-
tances:

A B C D

A 0 3 4 5
B 0 5 4
C 0 7
D 0

In the first iteration A, B, C and D are the terminal nodes of the star tree and we compute
rA = rB = 12, rC = rD = 16 and MAB = dAB − (rA + rB)/(n − 2) = 3 − 24/2 = −9,
MAC = MBD = 4− 28/2 = −10, MAD = MBC = 5− 28/2 = −9, MCD = 7− 32/2 =
−9. MAC and MBD have the smallest value, that is, the NJ algorithm correctly identifies
A and C as well as B and D as neighbors. We combine A and C into a composite taxon
(AC).

D

e

b
a=1

c=3

(AC)

A

d

B

C

The edge lengths a and c are a = dAC/2 + (rA − rC)/(2n − 4) = 2 + (−4/4) = 1 and
c = dAC − a = 4 − 1 = 3. New distances of the composite taxon (AC) to B and D are
d(AC)B = (dAB + dCB − dAC)/2 = (3 + 5− 4)/2 = 2 and d(AC)D = 4. We delete A and
C from the set of objects and do the second iteration with the distance matrix

(AC) B D

(AC) 0 2 4
B 0 4
D 0

There are three terminal nodes left and therefore we expect them all to be pairwise neighbors.
Computations yield r(AC) = 6, rB = 6, rD = 8 and M(AC)B = d(AC)B − (r(AC) +
rB)/(n − 2) = 2 − 12 = −10, M(AC)D = 4 − 14 = −10, M(BD) = −10. Grouping
(AC) and B together into ((AC)B), we obtain e = d(AC)B/2 + (rAC − rB)/2 = 1 and
b = 2− 1 = 1. Now, there is only one distance left to compute: d = d(ACB)D = (d(AC)D +
dBD−d(AC)B)/2 = (4+4−2)/2 = 3. The NJ tree is the same as the true tree (Figure 7.4).
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8.1 Split Decomposition

8.1.1 Introduction

The methods for reconstructing (ultrametric or additive) trees we have looked at before will
always construct a tree even if the underlying distance data is not tree-like. In such a case
a tree-like relationship will be suggested which is not present in the data. Unfortunately in
most cases the methods do not even tell how little the data reflects the resulting tree. And
even if they do (as in the least-squares method), only a single quantity is returned without
any information as to specific regions where the dissimilarity occurs or what alternative trees
might be.

A method called split decomposition developed by Bandelt and Dress [36, 37] allows both
to quantify the tree-likeness of given distance data and present alternative relationships. A
measured dissimilarity matrix dM is decomposed into a number of splits (binary partitions
of the set of taxa) weighted by isolation indices (indicating the strength of the split), plus a
residual noise term. This is motivated by the assumption that measured distance data may
underly a systematic error. Assume that dM = dT + dE where dT is the true tree-like
relationship and dE is an error term. If dE itself represents a tree (different from the true
one), then the two sets of splits will overlay. Ab initio it will not be possible to distinguish
which splits are the true ones, and which result from the error term, but if the true splits are
stronger than the error splits, one can assume that those splits with the larger isolation index
belong to dT rather than to dE .

8.1.2 Basic Idea

First remember the case of three taxa A, B, C and three distances dAB , dAC , dBC . As long as
the triangle inequality (dAC ≤ dAB + dBC) holds, it is always possible to compute a unique
tree. We have three conditions and three unknowns (the lengths of the three terminal edges)
a, b, c:

c

b
B

a
A

C
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a =
1

2
(dAB + dAC − dBC),

b =
1

2
(dAB + dBC − dAC),

c =
1

2
(dAC + dBC − dAB).

In the case of four taxa, a tree is no longer uniquely defined: we have six conditions, but a
tree with four leaves has only five edges. However, the following diagram, which shows a
generalized “tree” whose internal edges are replaced by a rectangle, has six unknown edge
lengths a, b, c, d, e, f :

A

C

D

f

a

b c

d

e

f

e

B

a =
1

2
(dAB + dAD − dBD),

b =
1

2
(dAB + dBC − dAC),

c =
1

2
(dBC + dCD − dBD),

d =
1

2
(dAD + dCD − dAC),

e =
1

2
(dAC + dBD − dAD − dBC),

f =
1

2
(dAC + dBD − dAB − dDC).

Now assume that the phylogenetic relationship is such that the true split separates the pair
(A,B) from the pair (C,D).

C
B

D
A
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8 Phylogenetic Networks

Then due to the four-point condition the true tree distances dT are related as follows:

dTAB + dTCD ≤ dTAC + dTBD = dTAD + dTBC .

As discussed above, the measured (evolutionary) distances dM will usually not fulfill this
relationship, normally not even the two orderings

dMAB + dMCD ≤ dMAC + dMBD and dMAB + dMCD ≤ dMAD + dMBC .

However, one could hope that at least dMAB + dMCD is not the largest of the three sums.

8.1.3 Definitions

Based on this idea, one can define a split with respect to dM or a dM -split (or d-split when
it is clear from the context that we mean dM ) between a group J and a group K of taxa as
follows. For any two taxa i, j from J and k, l from K, the sum dij + dkl must not be the
largest among the three possible sums, i.e.

dij + dkl ≤ max{dik + djl, dil + djk}.

It can be shown that for n taxa there can be at most
(
n
2

)
such splits [36, Theorem 3 and

Corollary 4]. This number, however, is considerably larger than 2n− 3, the maximal number
of splits (edges) in an additive tree. Hence, splits define a relationship more general than a
tree, though the number of d-splits observed in real data is usually only about 2n.

Each d-split receives a positive weight. The isolation index αJ,K for J,K is defined as

αJ,K =
1

2
min
i,j∈J
k,l∈K

(max{dij + dkl, dik + djl, dil + djk} − dij − dkl).

Note that all partitions that do not qualify as d-splits have isolation index 0. Moreover, the
isolation index of a split in an additive tree is the length of the edge that defines the split.

The split metric δJ,K defined by a split J,K assigns distance 0 to two taxa if both are in J
or both are in K, and 1 otherwise. Moreover, define d1 to be the sum of all split metrics
weighted by their isolation indices,

d1 =
∑

d−splits J,K

αJ,KδJ,K .

Then it can be shown [36] that dM can be approximated by dM = d0 + d1 where d0 is a
metric that does not contain any further splits. The proportion of d that can be split is called
the splittable percentage ρ where

ρ :=

 ∑
taxa i,j

d1
ij/

∑
taxa i,j

dMij

 · 100%.

64



8.2 NeighborNet

8.1.4 Computation of the d-Splits

The set of d-splits of a distance matrix of n taxa 1, 2, . . . , n can be computed by the following
recursive algorithm:

1. Start with taxa 1, 2, 3, 4. This case can easily be solved exhaustively.

2. For i = 5, . . . , n do the following:

(i) Assume the d-splits restricted to the subset {1, . . . , i − 1} are given. For each
d-split J,K of this subset, test if J ∪ {i},K or J,K ∪ {i} qualifies as a d-split.

(ii) Test if {1, . . . , i− 1}, {i} is a d-split.

The algorithm can easily be implemented such that it has an O(n6) time complexity.

Graph drawing. For a tree this is trivial: splits correspond to edges. In general, the re-
sulting graphs are subgraphs of the

(
n
2

)
-dimensional hypercube, but usually they are rather

simple, often planar. A split corresponds to several parallel edges, the length of which is
proportional to the isolation index of the split.

The splits diagram can be constructed incrementally. The outcome is not unique; it depends
on the order in which the splits are processed.

Tree selection. In addition, one may choose a set of splits that define a tree by greedily
selecting those splits with maximal isolation index if they are compatible (every pair has parts
with empty intersection) with previously selected ones.

Program. The splits method is implemented in a program called Splitstree that can be
downloaded from http://www.splitstree.org. It finds the splits, draws a picture of the splits
diagram, and calculates the splittable percentage. An example from the SplitsTree home page
is given in Figure 8.1.

8.2 NeighborNet

Recently, a few other methods for reconstructing phylogenetic networks have been developed.
One is NeighborNet by Bryant and Moulton [38] which is a combination of Neighbor Joining
and SplitsTree. The network is constructed incrementally, similar to Neighbor Joining. The
result is a network as in SplitsTree, but with a better resolution. The running time isO(n3).
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8 Phylogenetic Networks

Figure 8.1: SplitsTree4 screen shot.
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9 Modeling Sequence Evolution

9.1 Basics on Probability

9.1.1 Events and Probabilities

Throwing a die may be seen as an experiment: We do not know in advance which number
will turn up. All we know is that a number between 1 and 6 will turn up.

Definition. The set of all possible outcomes of an experiment is called sample space Ω. A
subset A ⊆ Ω is called an event. Elements ω ∈ Ω are called elementary events. The event
Ω is called the certain event and the event ∅ is called the null event. The complement of an
event A is denoted by AC := Ω \A. Events A and B are called disjoint if A ∩B = ∅.

Example. A die is thrown. The sample space is Ω = {1, 2, 3, 4, 5, 6}. The event A =
{2, 4, 6} means that the outcome of the experiment is an even number.

We want to assign real numbers representing probabilities to subsets of Ω, that is to events. If
Ω is infinite, e.g. Ω = R, it is not possible to reasonably assign probabilities to all members
of the power set denoted by {0, 1}Ω which contains all subsets of Ω. Therefore, we introduce
the collection F of subsets of Ω containing all events of interest.

Definition. A collection F of subsets of Ω is called a σ-algebra if it satisfies the following
conditions:

(i) ∅ ∈ F ,

(ii) A1, A2, ... ∈ F ⇒
⋃∞

i=1Ai ∈ F ,

(iii) A ∈ F ⇒ AC ∈ F .

Example. A die is thrown. The sample space is Ω = {1, 2, 3, 4, 5, 6}.
F = {∅, {2, 4, 6}, {1, 3, 5},Ω} is a σ-algebra.

We proceed by defining the properties of a function Pr assigning probabilities to events.
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9.1 Basics on Probability

Definition. A probability measurePr on (Ω,F) is a functionPr : F → [0, 1] satisfying

(i) Pr(∅) = 0, P r(Ω) = 1;

(ii) if A1, A2, ... is a collection of disjoint members of F then

Pr
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai).

The triple (Ω,F , P r) is called a probability space, Pr(A) is called the probability of eventA.

Example. A die is thrown. The sample space is Ω = {1, 2, 3, 4, 5, 6} and we can take
F = {0, 1}Ω. The elementary event ωi denotes the event that number i turns up. Suppose the
die is fair, that is, each elementary event ωi has the same chance to occur. As Pr(Ω) = 1 and⋃6

i=1 ωi = Ω where ωi ∩ ωj = ∅ for all i, j ∈ Ω with i 6= j, we see that Pr(ωi) = p = 1/6.
The probability for the event A = {ω1, ω2} that ‘1’ or ‘2’ turns up is Pr(A) = 2p = 1/3.

9.1.2 Conditional Probability

Suppose, we have some prior knowledge of the outcome of an experiment.

Definition. The conditional probability that an event A occurs given another event B is

Pr(A|B) =
Pr(A ∩B)

Pr(B)
, if Pr(B) > 0.

Example. A fair die is thrown. What is the probability for the eventA that the number turn-
ing up is bigger than 1 given we know that the number is even? The probability for the event
B that the number is even is Pr(B) = 1/2. We see that Pr(A ∩ B) = Pr({2, 3, 4, 5, 6} ∩
{2, 4, 6}) = Pr({2, 4, 6}) = 1/2. Therefore we get Pr(A|B) = (1/2)/(1/2) = 1.

Lemma. If A and B are events and Pr(B) > 0 and Pr(BC) > 0 then

Pr(A) = Pr(A|B) Pr(B) + Pr(A|BC) Pr(BC).

Proof. A = (A ∩ B) ∪ (A ∩ BC). As (A ∩ B) ∩ (A ∩ BC) = ∅ we get Pr(A) =
Pr(A ∩B) + Pr(A ∩BC) = Pr(A|B)Pr(B) + Pr(A|BC)Pr(BC).
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9 Modeling Sequence Evolution

Example. A fair die is thrown. Let A be the event that the number turning up is even and
B the event that the number is greater than two. Then Pr(B) = 2/3 and Pr(BC) = 1/3. As
expected, we get Pr(A) = Pr(A|B)Pr(B)+Pr(A|BC)Pr(BC) = 1/2 ·2/3+1/2 ·1/3 =
1/2.

9.1.3 Bayes’ Formula

From the definition of conditional probability we obtain

Pr(A ∩B) = Pr(A|B) Pr(B) = Pr(B ∩A) = Pr(B|A) Pr(A).

Solving for Pr(A|B) we obtain Bayes’ formula

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

which often turns out to be useful for the computation of conditional probabilities.

Example. A fair die is thrown. Let A be the event that the number turning up is greater
than one and B the event that the number is even. Then Pr(A) = 5/6, Pr(B) = 1/2 and
Pr(B|A) = 3/5. Using Bayes’ formula, we get Pr(A|B) = (3/5 · 5/6)/(1/2) = 1.

9.1.4 Independence

Definition. Two events A and B are independent if

Pr(A ∩B) = Pr(A)Pr(B).

Example. A fair die is thrown. Suppose event A is that the number turning up is bigger
than 2 and event B is that the number turning up is even. A ∩ B = {4, 6} and therefore
Pr(A ∩ B) = 1/3. We see that Pr(A)Pr(B) = 2/3 · 1/2 = 1

3 = Pr(A ∩ B). Events A
and B are independent.

Example. Two fair dice are rolled. The sample space is Ω = {(a, b) : a = 1, . . . , 6; b =
1, . . . , 6} and |Ω| = 36. Let events A and B be that a ‘1’ turns up on the first and the
second die, respectively. The probability for the event (1, 1) that two times ‘1’ turns up is
Pr(A ∩B) = 1/6 · 1/6 = 1/36. A and B are independent.
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9.2 Markov Chains

9.1.5 Random Variables

Often we are not directly interested in the outcome of an experiment but in a function on the
outcome, e.g. in the sum of numbers when rolling two dice.

Definition. A random variable is a function X : Ω→ X where X may be any set.

Example. Two fair dice are rolled. The sample space is Ω = {(a, b) : a = 1, . . . , 6; b =
1, . . . , 6}. We define the random variableX byX(ω) := a+b for ω = (a, b) ∈ Ω. Therefore
X = {2, 3, . . . , 12}. The probability that X takes value ‘3’ is Pr(X = 3) = Pr({(1, 2)}) +
Pr({(2, 1)}) = 1/18.

9.2 Markov Chains

Assuming that sites in DNA and amino acid sequences evolve independently from each other,
evolution of molecular sequences is commonly modeled by means of a Markov chain at each
site.

9.2.1 Time Discrete Markov Chains

Definition. A time discrete Markov chain is a sequence of random variables Xn, n ∈ N0,
taking values of a finite set of states A where

(i) X0 is sampled according to an initial distribution π(0):

π
(0)
i = Pr(X0 = xi), xi ∈ A;

(ii) the Markov property has to be satisfied:

Pr(Xn = xn|Xn−1 = xn−1, ..., X0 = x0) = Pr(Xn = xn|Xn−1 = xn−1),

for all n ∈ N and all states x0, ..., xn ∈ A.

When modeling sequence evolution, A will usually be the set of amino acid residues A =
{A,C, ..., Y } or the set of nucleotides A = {A,C,G, T}, respectively. Thus we can think
of the Markov Chain as describing the behavior of a site in a molecular sequence in time.
The Markov property means that the conditional probability for the observation of a state at

71



9 Modeling Sequence Evolution

a given time point only depends on the previous time point. The conditional probability for a
state to reach another state is called transition probability.

We assume that the Markov chain is time homogeneous, that is for each pair of states xi, xj ∈
A the transition probability Pr(Xn = xj |Xn−1 = xi) is the same for all n ∈ N.

Transition probabilities are held in the transition probability matrix P with entries

Pij = Pr(Xn = xj |Xn−1 = xi), xi, xj ∈ A.

P is a stochastic matrix, i.e. each entry is nonnegative, Pij ≥ 0 for all xi, xj ∈ A, and each
row sums up to 1,

∑
j Pij = 1. The pair (π(0), P ) specifies a unique homogeneous Markov

chain.

We want to compute transition probabilities for k steps of the Markov chain. Let’s start with
two steps and A = {A,C,G, T}. We obtain

Pr(Xn+1 = T |Xn−1 = A) = Pr(Xn = A|Xn−1 = A) Pr(Xn+1 = T |Xn = A)

+ Pr(Xn = C|Xn−1 = A) Pr(Xn+1 = T |Xn = C)

+ Pr(Xn = G|Xn−1 = A) Pr(Xn+1 = T |Xn = G)

+ Pr(Xn = T |Xn−1 = A) Pr(Xn+1 = T |Xn = T )

=
∑
y∈A

P1yPy4.

We denote P (1) = P 1 = P as the 1-step transition matrix. We see that the 2-step transition
matrix is P (2) = P 2 = P · P , and generally the k-step transition matrix is P (k) = P k =
PP k−1.

Definition. A Markov chain is irreducible if for any two states xi, xj ∈ A there exists a
k ∈ N such that P (k)

ij > 0.

That is, a Markov chain is irreducible if it is possible for the chain to reach each state from
each state. This generally holds for the Markov chains in our applications.

The distribution of the states after k time steps, π(k), is a row vector that is obtained from the
initial distribution π(0) by

π
(k)
j =

∑
xi∈A

π
(0)
i · P

(k)
ij ,

π(k) = π(0) · P (k).
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9.2 Markov Chains

Definition. A distribution π is a stationary distribution on A if

πj =
∑
xi∈A

πiPij ∀ xj ∈ A,

π = πP.

If π(0) = π, everyXn is distributed as π. Furthermore each irreducible homogeneous Markov
chain converges against its stationary distribution:

Theorem. Given an irreducible time homogeneous Markov Chain (π(0), P ), there exists
exactly one stationary distribution π and

lim
k→∞

P
(k)
ij = πj ∀ xi ∈ A.

9.2.2 Time Continuous Markov Chains

In this subsection we will transfer the notions from time discrete Markov chains to time
continuous Markov chains.

Definition. A time continuous Markov chain is a set (of uncountably infinite size) of ran-
dom variables Xt, t ∈ R+

0 , taking values of a finite set of states A. Xt0 is distributed as π(0)

and the Markov property holds:

Pr(Xtn = xn|Xtn−1 = xn−1, ..., Xt0 = x0) = Pr(Xtn = xn|Xtn−1 = xn−1)

for all n ∈ N, time points t0 < t1 < ... < tn and all states x0, x1, ..., xn ∈ A.

The Markov chain is time homogeneous if there exists a transition probability matrix P (t)
such that

Pr(Xs+t = xj |Xs = xi) = Pij(t), ∀ s, t ≥ 0, ∀ xi, xj ∈ A.

The transition probability matrix P (t) is a stochastic matrix and has the following proper-
ties:

• P (0) = 1 (where 1 is the identity matrix),

• Pij(t) ≥ 0 and
∑

xj∈A Pij(t) = 1 ∀xi ∈ A (P is a stochastic matrix),

• P (s+ t) = P (s)P (t) for s, t ≥ 0 (Chapman-Kolmogorov equation).
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9 Modeling Sequence Evolution

A time continuous Markov chain is irreducible if for any period t > 0 each state can reach
each state: Pij(t) > 0 for all xi, xj ∈ A. In that case there exists a unique stationary
distribution π which is the solution of πP (t) = π.

9.2.3 The Rate Matrix

We assume that the transition probability matrix P (t) of a time continuous Markov chain is
continuous and differentiable at any t > 0. I.e., the limit d

dtP (t0) = lim∆t→0
P (t0+∆t)−P (t0)

∆t
exists. We define

Q :=
d

dt
P (0) = lim

∆t→0

P (∆t)− 1
∆t

.

Q is known as the rate matrix or, alternatively, the generator of the Markov chain. For very
small time periods ∆t > 0, transition probabilities are approximated by

P (∆t) ≈ 1 + ∆tQ

Pij(∆t) ≈ Qij ·∆t, i 6= j.

From the last equation we see that the entries of Q may be interpreted as substitution rate per
site per time unit.

From the Chapman-Kolmogorov equation we get the forward and backward equation

d

dt
P (t0) = lim

∆t→0

P (t0)P (∆t)− P (t0)P (0)

∆t
(Chapman-Kolmogorov)

= P (t0) lim
∆t→0

P (∆t)− P (0)

∆t
= P (t0)Q , and similarly

d

dt
P (t0) = QP (t0).

This differential equation can be solved under the initial condition P (0) = 1 and yields

P (t) = exp(tQ) =
∞∑
k=0

Qktk

k!
.

Thus, transition probabilities for any time t > 0 may be computed from the matrix Q. Q pro-
vides an infinitesimal description of the process. As

∑
j Pij(t) = 1, we have for all i∑

j

Qij = 0

(the rows of the rate matrix sum to 0) and therefore Qij ≥ 0 for i 6= j and Qii ≤ 0.
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We may denote the time continuous Markov chain by (π(0), Q) (if Q exists and has the above
properties). Then π is a stationary distribution if∑

i

πiQij = 0 ∀ j,

πQ = ~0.

9.2.4 Definition of an Evolutionary Markov Process (EMP)

So far we have collected basic notions on time discrete and time continuous Markov chains.
We additionally make the assumption that Xt is reversible and calibrate the rate matrix Q
to a time unit. This enables us to define an evolutionary Markov process (EMP) according
to Müller and Vingron [39]. The definition of an EMP summarizes the requirements on the
Markov chain such that it is suited to describe the substitution process at a site of a molecular
sequence. We start by defining time units.

Definition. One PEM (percent of expected mutations) is the time in which one substitution
event (mutation) per 100 sites is expected in. One PAM (percent of accepted mutations) is the
time for which the average number of substitutions per 100 sites is one.

• Given a rate matrix Q and a distribution π, one expects per time unit

E :=
∑
i

(
πi
∑
j 6=i

Qij

)
=
∑
i

(
πi

(∑
j

Qij︸ ︷︷ ︸
=0

−Qii

))
= −

∑
i

πiQii

substitutions per site. We calibrate Q by multiplying it with a constant. If E = 1/100,
Q is calibrated to 1 PEM.

• Given a 1-step probability transition matrix P (1)

E′ :=
∑
i

πi
∑
j 6=i

P
(1)
ij = 1−

∑
i

πiP
(1)
ii

is the average number of sites being in another state after one time unit. If E′ = 1/100,
P (1) is calibrated to 1 PAM. If not, we have to multiply the off-diagonal entries of P
by some constant λ, reset the entries on the main diagonal such that all values on a row
sum up to one again, and choose λ such that E′ becomes 1/100.
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A B

ancestor

descendants

<=<

A B

<=<

A B

Figure 9.1: Illustration of reversibility.

In contrast to PAM units, PEM units take back-mutations into account. Therefore, 1 PEM is
a slightly shorter time unit than 1 PAM.

We observe pairs of homologous sequences having evolved from a common ancestor. Yet we
do not have any information about ancestral sequences. Therefore, we assume that evolution
from ancestors to descendants can be modeled by the same process as its reverse. Thus
the divergence of two homologous present-day sequences is explained by one process as
illustrated in Figure 9.1. This property of Markov chains is called reversibility.

Definition. The Markov chain Xt is reversible if the probability for Xt being in state xi
at time t = 0 and reaching state xj at time t = s is the same as the probability for being in
state xj at time t = 0 and reaching state xi at time t = s for any xi, xj ∈ A and any s > 0.

πiPij(t) = πjPji(t), ∀ t > 0

πiQij = πjQji.

Now we are able to define an EMP.

Definition. We call a time continuous Markov chain Xt on the set of states A an evolu-
tionary Markov process (EMP) with the stationary distribution π on the states if and only
if:

• Xt is time homogeneous.

• Xt is stationary and the initial distribution π(0) is the stationary distribution π. There-
fore Xt is distributed according to π for all t ∈ R+

0 .

• Xt is irreducible: Pij(t) > 0 for all t > 0 and xi, xj ∈ A, i.e. π is unique.

• Xt is calibrated to 1 PEM: −
∑

i πiQii = 0.01.

• Xt is reversible: πiPij(t) = πjPji(t) for all t > 0 and all xi, xj ∈ A.
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9.3 Nucleotide Substitution Models

9.3 Nucleotide Substitution Models

In this section we focus on two important models for nucleotide substitutions, the Jukes-
Cantor model and the Kimura 2-parameter model. Both models make assumptions on the
rate matrix Q. Given Q, the EMP is fully described, as the stationary distribution π can be
obtained by solving πQ = 0 with

∑
xi∈A πi = 1.

9.3.1 The Jukes-Cantor Model (JC)

The Jukes-Cantor model assumes that each substitution occurs at equal rate α. Thus the rate
matrix is

Q =


−3α α α α
α −3α α α
α α −3α α
α α α −3α

 .

The Jukes-Cantor model is reversible and the stationary distribution is the uniform distribution
π = (1

4 ,
1
4 ,

1
4 ,

1
4). Calibration to 1 PEM yields

E = −
4∑

i=1

πiQii = 3α
!

= 1/100,

α = 1/300.

Due to the simple structure of Q, P (t) = exp(tQ) can be calculated explicitly. The transition
probability matrix is

P (t) =


1− 3at at at at
at 1− 3at at at
at at 1− 3at at
at at at 1− 3at

 ,

where

at =
1− exp(−4αt)

4
=

1− exp(−4t/300)

4
.
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9 Modeling Sequence Evolution

Jukes-Cantor correction. A simple application of the Jukes-Cantor model is the follow-
ing: Given an alignment of two DNA sequences we want to estimate the evolutionary distance
between the sequences. Since taking the observed substitutions as a measure would under-
estimate the actual distance, we want to correct the distance for more accurate phylogentic
inferences.

Let n denote the length of the alignment and u the number of mismatches. A naive distance
estimator may take the relative amount of observed substitutions into account only, e.g. D =
u/n. But D underestimates the amount of events, since multiple and back mutations may
have been occurred. Think of a nucleotide, e.g. ‘A’, being substituted by a ‘G’ and the ‘G’
being substituted by an ‘A’ again in the course of evolution. We cannot observe such an
event. But we can calculate the probability that any nucleotide remains the same at any site
in time t:

1−D = Pr(Xt = xi|X0 = xi) =
∑
xi∈A

πiPii(t)

= 4 · 1

4
(1− 3at)

=
1 + 3 exp(−4αt)

4

We also know that 3αmutation events are expected per site and per time unit: E = −
∑

i πiQii =
4 · (3/4)α = 3α. We denote the number of expected mutation events per 100 sites in time
t by d: d = 300αt PEM and therefore αt = d/300 PEM. We can replace αt in the above
equation and get

Pr(Xt = xi|X0 = xi) =
1 + 3 exp(−4d/300 PEM)

4
.

We observe u mismatches at n sites and establish

Pr(Xt = xi|X0 = xi) =
n− u
n

= 1−D =
1 + 3 exp(−4d/300 PEM)

4
.

Solving for d yields

d = −300

4
ln

(
1− 4

3
D

)
PEM.

This is known as Jukes-Cantor correction (of the linear distance estimator D). If d� n, then
ln(1− (4/3)D) ≈ −(4/3)D and d ≈ 100 ·D PEM. If there are more than five substitutions
per 100 sites, that is D > 0.05, then d > 100 · D PEM. Note that if D > 3/4, d becomes
undefined because the argument of the logarithm becomes negative.
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9.3 Nucleotide Substitution Models

In practice, the Jukes-Cantor correction is used in the following scenario: (i) For a set of
sequences, multiple sequence alignments are computed to obtain the number of substitu-
tions (underestimated distance D). (ii) All distances are corrected using the above formula.
(Sometimes, the new distances are multiplied by some constant, e.g. 10, and rounded to the
next integer.) (iii) A distance-based method is used to reconstruct the phylogeny.

9.3.2 Kimura 2-Parameter Model (K2P)

Transitions (A ↔ G and C ↔ T ) are more frequently observed than transversions as A and
G are purines and C and T are pyrimidines. The Kimura 2-parameter model takes that into
account by introducing different rates for transitions (α) and transversions (β < α). With the
order AGCT of nucleotides, the rate matrix Q is

Q =


−α− 2β α β β

α −α− 2β β β
β β −α− 2β α
β β α −α− 2β

 .

For this model, which comprises two parameters, the calculation and calibration of the sta-
tionary distribution is analytically feasible. For more parameters, these computations would
become very hard. The stationary distribution is also uniform, and calibration to 1 PEM yields
α+ 2β = 1/100. The probability transition matrix is

P (t) =


1− (at + 2bt) at bt bt

at 1− (at + 2bt) bt bt
bt bt 1− (at + 2bt) at
bt bt at 1− (at + 2bt)

 ,

where

at := (2Et − et)/4, Et := 1− exp(−2t(α+ β)),

bt := et/4, et := 1− exp(−4tβ).
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9 Modeling Sequence Evolution

9.4 Modeling Amino Acid Replacements

There are only four states in Markov chains describing the evolution of DNA sequences, the
four nucleotides. The models presented in the previous sections make simple assumptions on
the rate matrices Q. This kind of procedure is not suited when modeling protein evolution.
There are 20 amino acid residues with a variety of replacement frequencies being distributed
irregularly. In general one wants to estimate the rate matrix Q or the probability transition
matrix P by means of amino acid sequence alignments.

9.4.1 Parameter Estimation

The strategy of Dayhoff et al. [40] is to estimate the 1-step transition probability matrix P (1)

of a time discrete Markov chain and to extrapolate to higher PAM distances. For this pur-
pose, pairwise alignments of closely related sequences are collected which are assumed to
be correct and which contain approximately 1% mismatches. Entry mij of a matrix m holds
the frequency a pair of residues (xi, xj) occurs with, where each pair of residues is counted
twice ((xi, xj) and (xj , xi)) such that the Markov chain is reversible. Variable fi denotes the
relative frequency the residue xi occurs, and N is the total count of residue pairs (twice the
number of columns).

Then, the evolutionary model can be estimated as follows. The initial ditribution πi is esti-
mated by fi, and the probability to observe a residue xi that is substituted by xj is estimated
by its observed frequency:

πi P
(1)
ij =

mij

N
, and thus P

(1)
ij =

mij

fi N
. (9.1)

By the choice of the underlying alignments, the transition rate of P (1) is already close to
1 PAM. After a proper calibration to 1 PAM, the k-step transition matrices are obtained by
extrapolating P (k) = P k = PP k−1, for k ≥ 2. P k is also called PAM-k probability ma-
trix.

The main disadvantage of this method is that closely related sequences are taken into account
only. It is desirable to exploit sequence alignments of different evolutionary distances for
parameter estimation. Say we want to estimate the rate matrix Q of an EMP. The problem
is that the estimator for Q clearly should account for the evolutionary divergence of each
alignment in the dataset. But evolutionary divergence of an alignment has to be estimated
by means of the model parameters Q. Müller and Vingron [39] present an iterative approach
cycling between estimating evolutionary distances of sequences in an alignment and updating
the current rate matrix Q.
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9.4 Modeling Amino Acid Replacements

9.4.2 Score Matrices

Searching a protein database with a query protein requires a similarity measure on amino acid
sequences. Usually, similarity measures on amino acid sequences are based on a similarity
measure on the residues which is stored in a score matrix S assigning a score to each pair of
residues (xi, xj). Based on some probability matrix P , we now deduce a corresponding score
matrix.

The rationale is the following: Similar residues are replaced by each other more frequently
than less similar residues. Vice versa one defines similarity by means of replacement frequen-
cies. Since the chance to observe replacements of frequently ocurring residues is higher than
for rare redidues, the distribution of residues is taken into account. Consider the following
ratio:

πiPij(t)

πiπj
=
πjPji(t)

πiπj
.

The numerator is the probability to observe the pair (xi, xj) in a pair of sequences which
have evolved according to the model with the transition matrix P (t). The denominator is the
probability to observe the pair (xi, xj) in independent sequences.

The overall probability to observe a given alignment is the product of the probabilities of
each alignment column, which suggests a multiplicative scoring. By taking the logarithm, we
obtain an additive score, the so-called “log odds ratio”:

Sij(t) := ln
πiPij(t)

πiπj
.

It is positive if the pair (xi, xj) frequently occurs in evolutionarily related sequences, oth-
erwise negative. It is usually scaled by some factor and rounded to obtain handy integer
numbers. The total score of an alignment is the sum of the scores of each alignment col-
umn.

Different concrete scoring matrices are based on the log odds ratio, the two most prominent
being the PAM [40] and the BLOSUM [41] matrices.

PAM. Based on a PAM-k probability matrix P (k) as obtained in Section 9.4.1, a corre-
sponding PAM-k score matrix Sij(k) is deduced that is optimally suited to score alignments
of sequences with an evolutionary distance of k PAM.
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9 Modeling Sequence Evolution

BLOSUM. In contrast to PAM matrices, the contruction of BLOSUM matrices circumvents
the explicit use of a evolutionary model. Substituting the probability πiPij to observe pair
(xi, xj) in the above formula for Sij by the corresponding observed frequency mij

N as in
Equation 9.1, we can estimate the score directly based on the observed substitution counts
mij and residue frequencies fi:

Sij(t) = ln
mij

Nπiπj
= ln

mij

Nfifj
.

The absense of P in the formula prevents the extrapolation for different evolutionary distances
as done for PAM matrices. Instead, specific sets of alignments have been extracted from a data
base to obtain different score matrices. For example, BLOSUM45 is based on alignments with
less than 45% sequence identity and is applicable for distantly related sequences, whereas
BLOSUM90 is based on a 90% threshold and is applicable for closely related sequences.

Note that the numbering of PAM and BLOSUM matrices have to be interpreted in oppo-
site directions, because increasing evolutionary distance (value k) corresponds to decreasing
identity values in alignments (value for BLOSUM). Most widely used are PAM-250, which
is scaled by a factor of 3/ log 2, and BLOSUM62, which is scaled by 2/ log 2.

9.4.3 Maximum Likelihood Estimation of Evolutionary Distances

Given two sequences A = (A1, ..., An) and B = (B1, ..., Bn) of the same length which have
evolved according to an EMP with transition matrix P . We want to estimate the evolutionary
distance between A and B in PEM units. The probability that A and B have evolved from
each other in t time units is

Pr(A,B | t) :=
n∏

k=1

πAk
PAk,Bk

(t).

We consider Pr(A,B | t) as likelihood function of time t to be estimated and try to find a
t such that the probability for the observed data A and B is maximal (Maximum Likelihood
Estimator). Maximizing the logarithm yields the same t. Note that the terms πAk

do not
depend on t. Therefore we try to find the maximum of the function

L(t) :=
n∑

k=1

log (PAk,Bk
(t)) .

In general this is done numerically.
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10 Maximum Likelihood Trees

10.1 Computing the Likelihood of a Given Tree

In the context of reconstructing phylogenetic trees from molecular sequence data, the likeli-
hood function which under a fixed model returns for given data the likelihood that these data
were produced under the model, L := Pr(data | model), can be written as

L = Pr(alignment | tree and evolutionary model).

In the following we study a method to reconstruct the most likely tree for a given multiple
sequence alignment, under a given evolutionary model.

Observations:

1. The tree with the highest likelihood can be found by computing the likelihood for each
possible tree topology and then choosing the one with the highest likelihood value.

2. The likelihood can be computed for each site of the alignment independently. The total
likelihood is then the product over all characters (alignment positions).

Hence, for the moment we will assume that we have given a fixed tree topology with a single
character state at each leaf and an evolutionary model that provides us for two character states
xi and xj and an evolutionary distance t with a probability Pij(t) that xi has changed to xj
within time t.

A simple example:

t2t1

root

A G

Assuming the reduced alphabetA = {A,G}, the total likelihood of this tree is the sum of the
likelihoods for the two possible assignments of character states at the root:

t2t1
t2t1

A G A G

A G

83



10 Maximum Likelihood Trees

Ltotal = LA at root + LG at root

= P (A at root)PAA(t1)PAG(t2) + P (G at root)PGA(t1)PGG(t2).

P (i at root) is often chosen as the background frequency πi of state (DNA base) xi. Often
log-likelihoods are used for easier computation.

After the relation between likelihood and branch lengths is established, the branch lengths ti
can be adjusted. In this simple example, a short calculation allows to maximize the likelihood
using ∂

∂tk
lnLtotal = 0. In larger examples, the maximum is usually computed numerically,

e.g. by Newton’s method.

The general method. To compute the likelihood for a larger tree, we use a dynamic
programming algorithm. For each vertex v, we define the conditional likelihood Li(v) as the
likelihood of the subtree below v given that the character state in v is xi. Then, as above, we
have given a tree labeled with one character state at each leaf and an evolutionary model. The
algorithm goes as follows.

1. Choose an arbitrary root.

2. Traverse the tree bottom-up from the leaves to the root and do the following:

a) Assign the likelihood at the leaves: For each leaf v, Li(v) = δij where xj is the
character at leaf v and δij denotes the Kronecker delta.1

b) At an internal node v compute all conditional likelihoods Li(v). To this end, the
likelihoods of the different branches are multiplied:

Li(v) =
∏

v′ child of v

∑
xj∈A

Pij(tv→v′)Lj(v
′).

3. The total likelihood of the tree is the sum of all conditional likelihoods at the root,
weighted by the background probability πi of the respective character state (DNA
base) xi:

L =
∑
xi∈A

πiLi(root).

1δij := 1 if i = j and δij := 0 otherwise.
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10.1 Computing the Likelihood of a Given Tree

A larger example: The following figure shows a rooted tree with four leaves.

t2t1
t6t5

t4t3

v1 v2

root

A G C C

Then, for example,
LA(v1) = PAA(t1)PAG(t2)

or, more general, for the root

Li(root) =

∑
j

Pij(t3)Lj(v1)

∑
j

Pij(t4)Lj(v2)

 .

The total likelihood is:

L = πALA(root) + πGLG(root) + πCLC(root) + πTLT (root)

Pulley Principle. In his pioneering work on maximum likelihood [42], Joseph Felsenstein
has shown that the likelihood for a tree is independent of the location of the root node. That
means, we can consider the tree as unrooted, choose any node as the root or even add a
new root node anywhere into any edge. This observation is based on the assumption of the
evolutionary process being reversible and the Chapman-Kolmogorov equation.

When the tree topology is unknown and we want to find those that maximizes the total like-
lihood, the pulley principle considerably reduces the number of topologies which have to be
examined from all rooted trees to unrooted trees. It is also the basis for the following heuristic
to optimize the branch lengths of a given tree.

Repeat for all branches several times:

1. Choose an edge.

2. Choose a node incident to this edge as the root.

3. Compute the maximum likelihood for the rest of the tree as described above.

4. Choose the branch length such that the likelihood of the whole tree is maximized.
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10 Maximum Likelihood Trees

Notes on the Maximum Likelihood method:

• Changing the model may change the maximum likelihood tree.

• Maximum likelihood is in spirit similar to maximum parsimony, but (1) the cost of a
change in parsimony is not a function of the branch length; (2) maximum parsimony
only looks at individual, lowest cost solutions, whereas maximum likelihood looks at
the combined likelihood for all solutions (ancestral states) consistent with the tree and
branch lengths.

• The method is extremely time consuming. Heuristic methods exist, e.g. Quartet Puz-
zling: For each quartet (group of 4 sequences), (1) consider all of the three possible
tree topologies and compute their likelihoods, (2) compose intermediate trees from the
quartet trees (repeat multiple times), and (3) construct a majority rule consensus tree
from all the intermediate trees; then optimize the branch lengths.
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Beyond Reconstruction
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11 Evaluating, Comparing and
Combining Trees

Once a phylogenetic tree is constructed, it is important to ensure that the result does not
originate of some algorithmic artifacts. For example, remember the Long Branch Attraction
problem of Parsimony methods, explained in Section 6.6; or the discussion in Section 8.1.1
about methods that always reconstruct a tree, even if the underlying data is not at all tree-like.
In such a case, the result may be some tree, but if the data were looking only slightly different,
the tree could be rather different.

One way towards solving this problem is the Splits decomposition method presented in Chap-
ter 8 that produces a tree only for tree-like data, and otherwise a network that shows how
strong and in which region the data deviate from a tree.

Another way to get an estimate about how “correct” a reconstruction is, e.g., how robust the
result is with respect to the data, or how tree-like the given data is, will be introduced in the
Chapter 12.

A common approach to evaluate the general reconstruction accuracy of a method is to com-
pare a computed tree to a given gold standard. In our context, this is a phylogenetic tree pub-
lished in the literature, agreed on by several scientists, approved by widely accepted methods,
based on several types of data, etc. Given such a “true” and a newly constructed tree, we
want to measure their difference or identify similarities. These objectives will be discussed in
Chapters 13 and 14.

Besides for such benchmarking purposes, these methods can also be used in another setting:
For one set of species, we can in general obtain several trees—for instance by applying dif-
ferent methods or by processing different data, e.g., alignments of several genes. Again, we
want to find differences or similarities.

11.1 Consistency

There is an old discussion about which method for reconstructing phylogenetic trees is the
best one. Without going too much into the details, here is a list of possible criteria to compare
the different methods:

• Consistency: the tendency of the method to converge on the correct answer as more
data (characters) are added.

• Efficiency (or power): the ability of the method to recover the correct answer with
limited amounts of data.
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11.1 Consistency

• Robustness: A method is robust if it is relatively insensitive to violations of its assump-
tions.

• Computational speed: the length of time a method takes to solve a problem.

• Versatility: What kind of information can be incorporated into the analysis?

In the following we want to focus on consistency, which has received much attention, al-
though it also has its weaknesses. Our discussion of consistency is based on [43] and [1,
Chapter 12].

Definition. A method is consistent if it converges to the correct tree when given infinite
data.

All methods are consistent when their assumptions are met, and all methods are inconsistent
if their assumptions are sufficiently violated. Therefore, one has to specify the conditions
under which a method is consistent.

For example, most distance-based methods (except UPGMA) are consistent under the Jukes-
Cantor model. We already discussed the phenomenon of long branch attraction (LBA) for
the parsimony criterion in Section 6.6. Maximum parsimony can be made consistent by using
a Hadamard transformation to correct the data [44]. Otherwise it is very sensitive to LBA.
Distance-based methods are less sensitive to LBA, and likelihood methods are more robust.
If the parameters are chosen correctly, maximum likelihood is consistent by definition.

The notion of consistency is not necessarily useful to assess the practical value of a method:
A method can be consistent, but very inefficient (like Lake’s method of invariants [45, 46]),
which means that in practice one will never be able to collect enough data to get a good result
with high likelihood.
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12 Assessing the Quality of a
Reconstructed Tree

A way to assess the reliability of a reconstructed phylogenetic tree is to apply the bootstrap
method, which is explained in the first section of this chapter. The second section explains
a way to judge about the tree-likeness of data using quartets, i.e. subsets of the data of size
four: likelihood mapping.

12.1 Bootstrapping

The standard reference for the Bootstrap method is the book by Efron and Tibshirani [47].
We first explain the general method, and then how it can be applied to phylogenetic tree
reconstruction methods.

12.1.1 The General Idea of Bootstrapping

Let Xn = (X1, X2, . . . , Xn) be a vector of n samples drawn from an unknown distribution.
Let T (X ) be some statistic on the samples, e.g. the median. This value depends on the actual
samples drawn (it would be different for new samples). For a given Xn, we can compute
the statistic T (Xn), but this gives only an estimate of the true statistic T (X ) of the unknown
distribution X .

We would like to know the error or variability of this estimate.

In principle, if the distribution of X was known, it would be possible to re-draw many Xn’s to
assess the variability, or to draw choosing a very large n, in order to increase the accuracy of
the estimate. If the distribution and the statistic would be mathematically feasible, we could
even calculate the true statistic.

However, usually the true distribution is unknown, and hence the following trick is used,
called bootstrapping: Use the sample data Xn and draw from them a new vector of the same
size by drawing n samples with replacement, such that some elements will be sampled once,
some several times and some not at all. This vector is called a bootstrap replicate:

X ∗n = (X∗1 , X
∗
2 , . . . , X

∗
n).

We repeat this sampling many times, and for each replicate, a new estimate T (X ∗n) of the
statistic is computed. This allows, e.g., to compute a standard error of the estimation.

A typical example is a (usually small) set of treatment and control data from a medical exper-
iment (where true replicates are usually very expensive).
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12.1.2 Bootstrapping in the Phylogenetic Context

In the context of phylogenetic tree reconstruction, bootstrapping was introduced by Felsen-
stein [48]. It can in general be used with any tree reconstruction method.

Here, the sample data are the columns of a multiple alignment (or another character-state
matrix). Resampling is done on the alignment columns. Each replicate is again a multiple
alignment of n columns, but some columns may be multiplied, others may be missing. Each
of these alignments gives rise to a tree. The various trees may be different.

Often the bootstrap replicates are used to measure the support for the different parts of the
original tree, i.e. the tree T that was created from the original alignment. A simple way to
do this is evaluating the splits: Recall that each edge in a tree divides the set of leaves in two
subsets: removing the edge results in two trees, the leaves of these two subtrees define one
subset each. A tree also contains trivial splits implied by external edges—those edges that are
incident to a leaf: {l1 | l2, l3, . . .}, {l2 | l1, l3, . . .}, etc. Since all trees defined over the same
set of leaves contain the same trivial splits, they can be disregarded and only the informative
splits are considered.

We count for each split (edge) of T , in how many of the bootstrap replicates this split is also
realized. This value, often written as a percentage value, is called the bootstrap support of the
edge. High bootstrap support indicates high reliability, whereas we should be skeptical about
regions of the tree with low support.

On rooted trees, sometimes the bootstrap values are written next to the internal nodes rather
than the edges. Then, a value at node v corresponds to the split { leaves below v | all other
leaves}.

12.1.3 Jackknifing

Instead of drawing n samples with replacement, the delete-half jackknife draws n/2 samples
without replacement. There are also the technique with the self-explanatory name leave-one-
out jackknife and further variants of jackknifing.

In general, depending on the statistic to be estimated, the underlying distribution, sample
size, and number of bootstrap or jackknife replicates, specific mathematical properties hold
and statistical statements can be made. These theorems however would go beyond the scope
of these lecture notes.
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12 Assessing the Quality of a Reconstructed Tree

12.2 Likelihood Mapping

Likelihood mapping is a pictorial way to estimate the tree-likeness of aligned molecular se-
quence data based on likelihood estimation.

1. Four sequences. For four sequences, there are three possible unrooted topologies.
Let Li be the maximum likelihood for topology i (i = 1, 2, 3). Define pi = Li/(L1 + L2 +
L3). The pi define a point in the two-dimensional simplex (for example, illustrated by an
equilateral triangle). Each corner corresponds to a topology. See Figure 12.1.

2. The general case. There are
(
n
4

)
quartets. Draw all or a large number of the points.

The distribution of points in the resulting picture shows the tree-likeness of the data set. If
many points are not in the corners, the data is star-like or not tree-like at all. (Note: The
opposite is not generally true.) Figure 12.2 shows interesting simulation results for star-like
and tree-like data.

Figure 12.1: Figure 2 in [49]: “Map of the probability vector P = (p1, p2, p3) onto an
equilateral triangle. Barycentric coordinates are used, i.e. the lengths of the perpendiculars
from point P to the triangle sides are equal to the probabilities pi. The corners T1, T2, and
T3 represent three quartet topologies with corresponding coordinates (probabilities) (1, 0,
0), (0, 1, 0), and (0, 0, 1).”
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12.2 Likelihood Mapping

Figure 12.2: Figure 4 in [49]: “Effect of sequence length (50, 100, 200, and 500 bp) on the
distribution of P vectors for a simulated data set with 16 sequences. (Upper) Sequences
evolving along a perfect star phylogeny. (Lower) Sequences evolving along a completely
resolved tree. [...]”
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Given a set of trees for the same set of taxa, we want to investigate how different they really
are, or which of them agree more and which are more different. To this end, we can perform
a pairwise comparison of the trees. In the following sections, some prominent examples
for difference measures will be introduced. Actually, all methods discussed are distances in
the mathematical sense, i.e., they define a metric. The following explanations are based on
Felsenstein’s book [5, Chapter 30].

13.1 Symmetric Distance

This is one of the first and simplest approaches [50]. It is also called partition metric, and it is
often referred to as (topological) Robinson-Foulds distance, as explained later in Section 13.3.
It ignores branch lengths and compares two given trees based on the edges, or splits, they
contain. As for bootstrapping, trivial splits can be disregarded.

To compute the symmetric distance, we simply list all (non-trivial) splits for both trees and
count those which are not shared by both trees. The trees shown in Figure 13.1 share the splits
{A,D,F | B,C,E,G} and {B,C | A,D,E, F,G}. The left tree has two further splits:
{D,F | A,B,C,E,G} and {E,G | A,B,C,D, F}, and the right tree has one further
split: {A,D | B,C,E, F,G}, resulting in a distance of three.
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Figure 13.1: Two unrooted, labeled phylogenetic trees as example for the computation of
distances between trees. (Taken from [5, Figure 30.8].)

13.2 Quartets Distance

The above mentioned symmetric distance is simple to compute and very sensitive. But ac-
tually, it can be too sensitive. For example, the two trees shown in Figure 13.2 differ only
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13.3 Robinson-Foulds Distance

in the placement of taxon A. But they have no common split and thus a maximal possible
symmetric distance.

In contrast, the quartets distance [51] is more sensitive for similarities. Instead of splits,
the quartets contained in the trees are compared. For instance, the quartet {B,D,E, F} is
realized as subtree ((B,D), (E,F )) in both topologies, whereas the quartets involving taxon
A differ between the trees, e.g., {A,B,C,G} is contained as ((A,B), (C,G)) in the first
and as ((A,G), (B,C)) in the second. Altogether, we find 20 unique and 15 commonly
realized quartets. The number of uniquely realized quartets divided by the total number, here
20/35 ≈ 0.57, defines the distance.

13.3 Robinson-Foulds Distance

This distance [52] takes branch lengths into account. To compute the distance, we create a
table with a row for each split that occurs in the trees. For each tree, we add a column with the
branch lengths of the corresponding edges, entering a zero if a split is not present in the tree.
Then, the Robinson-Foulds distance is simply the sum of the differences (absolute values)
between the values in these two columns. In contrast to the symmetric distance, we also
have to take the trivial splits into account, because the corresponding edge lengths may differ
between the two trees. Table 13.1 shows the computation for the two trees in Figure 13.1.

Table 13.1: Scheme for computation of the Robinson-Foulds distance of the two trees shown
in Figure 13.1 (cf. [5, Figure 30.8]).

Split Branch lengths Difference
{A,D | B,C,E, F,G} 0 0.2 0.2
{A,D,F | B,C,E,G} 0.4 0.3 0.1
{B,C | A,D,E, F,G} 0.2 0.3 0.1
{D,F | A,B,C,E,G} 0.3 0 0.3
{E,G | A,B,C,D, F} 0.1 0 0.1
{A | B,C,D,E, F,G} 0.05 0.2 0.15
{B | A,C,D,E, F,G} 0.2 0.2 0
{C | A,B,D,E, F,G} 0.15 0.15 0
{D | A,B,C,E, F,G} 0.1 0.1 0
{E | A,B,C,D, F,G} 0.1 0.1 0
{F | A,B,C,D,E,G} 0.2 0.1 0.1
{G | A,B,C,D,E, F} 0.2 0.2 0
Total 1.05
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Note that the Robinson-Foulds distance is a generalization of the symmetric distance: If all
branch lengths are considered as being one, the distances are the same. That is why the
symmetric distance is sometimes also called the topological Robinson-Foulds distance.

13.4 Tree-Edit Distances

A different class of metrics counts the minimum number of operations needed to transform
one tree into the other. Various types of operations can be used, for instance the nearest
neighbor interchange, as introduced in Section 6.3 on page 36.

The two trees in Figure 13.2 (already discussed in Section 13.2), can be transformed into each
other by four NNI’s moving taxon A through the tree. Since there is no “shorter” scenario,
the Nearest Neighbor Interchange distance is four.

For larger trees, computing an optimal rearrangement scenario can be quite difficult—this
problem has been shown to be NP-complete [53].
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Figure 13.2: Two tree topologies as example for the computation of distances between trees.
(Taken from [5, Figure 30.3].)
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In this chapter, we again address the problem of what to do when we have obtained different
trees by using different methods or data. Given several trees with the same set of elements
at their leaves, now, instead of comparing them, we combine them into one single tree: the
consensus tree.

The method described here is called the majority-rule consensus tree. To construct such a
tree, one collects all splits that are contained in more than 50% of the given trees.

Theorem. These splits form a tree.

Proof (sketch):

1. The splits chosen in this way are all pairwise compatible. To see this, assume that there
is a pair of splits that is not compatible. Then one can easily derive a contradiction.

2. Remember that for binary characters, pairwise compatibility implies that there exists a
perfect phylogeny (2nd version of Gusfield’s theorem in Chapter 4), hence they form a
(possibly multifurcating) tree.

Definition. The tree that realizes all splits that occur in more than 50% of the given trees
is called the majority-rule consensus tree.

Example. We consider the five trees shown in Figure 14.1 and count the number of times
a split occurs in the trees:
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Figure 14.1: Five unrooted, labeled phylogenetic trees as example for the computation of a
consensus tree.
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{A,C | B,D,E, F} 1
{A,E | B,C,D, F} 4
{B,C | A,D,E, F} 2
{B,D | A,C,E, F} 1
{D,F | A,B,C,E} 3
{B,D,F | A,C,E} 3
{A,E, F | B,C,D} 1

Trivial splits (edges incident to a leaf node) can be ignored since they occur in all given trees
and will be contained in any consensus tree anyway. Three of these splits occur in more than
50% of the trees, i.e. in three or more trees. These three splits correspond to the tree shown
in Figure 14.2 (left).

Analogously, the following stronger criterion can be used to infer a consensus tree.

Definition. The tree that realizes all splits which occur in all given trees is called the strict
consensus tree.

In the example above, we see that none of the splits is contained in all five trees. Hence, the
strict consensus tree is totally unresolved (the star tree). Even the strict consensus of the two
trees in Figure 13.2 (already mentioned in Chapter 13) is totally unresolved, although they
differ only in the placement of taxon A.

More generally, Ml consensus trees are defined: Only those splits are incorporated into the
consensus that occur in more than l percent of the given trees. (For l = 100, we take those oc-
curring in 100 percent.) Then majority-rule consensus trees are equivalent to M50 consensus
trees, and strict consensus trees to M100 trees.

Example. Again, consider the five trees shown in Figure 14.1. Only one split occurs in
more than 75% of the five trees, i.e. in at least four trees. This split defines theM75 consensus
tree as shown in Figure 14.2 (right).

C

B

E

A

D

F

F

D

CB

E

A

Figure 14.2: Consensus trees of the five trees shown in Figure 14.1. Left: Majority-rule
consensus. Right: M75 consensus.
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14.1 Supertrees

As we have seen in some of the examples above, sometimes, consensus trees contain highly
multifurcating vertices. Therefore they may be further refined by (greedily) adding all splits
that fit into a tree and annotating the edges with support values.

14.1 Supertrees

An important prerequisite of consensus methods is that all given trees need to contain the
same set of taxa. Supertrees are a generalization: Here the set of taxa have only to be overlap-
ping. As a consequence, the resulting supertree is usually larger than any of the input trees,
and thus displays “new” phylogenetic relationships not contained in any of the given topolo-
gies. A good survey on supertrees can be found in the book “Phylogenetic Supertrees” [54].
Also Table 14.1, which gives a brief overview on the major supertree methods, is taken from
there.

Table 14.1: Table 1 in [54]: “The major supertree methods and their variants. The methods are
subdivided according to whether they produce a supertree that either summarizes common
structure among the source tree (“agreement supertrees”) or maximizes the fit to the set of
source trees according to some objective function (“optimization supertrees”). [...]”

Agreement supertrees

• Gordon’s strict

• MinCutSupertree

• RankedTree

• Semi-Labelled- and
ancestralBuild

• Semi-strict

• Strict consensus merger

Optimization supertrees

• Average consensus (also known as matrix repre-
sentation with distances)

• Bayesian supertrees

• Gene tree parsimony

• Matrix representation with flipping (MRF; also
known as MinFlip supertrees)

• Matrix representation with parsimony (MRP)

• Quartet supertrees
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de Montréal, 1978.

[51] G.F. Estabrook, F.R. McMorris, and C.A. Meacham. Comparison of undirected phyloge-
netic trees based on subtrees of four evolutionary units. Systematic Biology, 34(2):193,
1985.

[52] D. Robinson and L. Foulds. Comparison of weighted labelled trees. Combinatorial
mathematics VI, pages 119–126, 1979.

[53] M. Li and L. Zhang. Twist-rotation transformations of binary trees and arithmetic ex-
pressions. Journal of Algorithms, 32(2):155–166, 1999.

[54] O.R.P. Bininda-Emonds. Phylogenetic supertrees: Combining information to reveal the
Tree of Life, volume 4. Springer Netherlands, 2004.

103


	I Basics
	1 Introduction: Evolution and Systematics
	2 Graphs, Trees, and Phylogenetic Trees
	2.1 Graphs
	2.2 Trees
	2.2.1 Graph-theoretical Definition
	2.2.2 Tree Representation and Tree Shape/Topology

	2.3 Phylogenetic Trees
	2.3.1 What are Phylogenetic Trees?
	2.3.2 Gene Tree/Species Tree Reconciliation
	2.3.3 Tree Classification: Fully Resolved vs. Multifurcating
	2.3.4 Weights in Phylogenetic Trees

	2.4 Counting Trees

	3 Characters and States

	II Parsimony Methods
	4 Perfect Phylogenies
	5 The Small Parsimony Problem
	5.1 Introduction
	5.2 The Fitch Algorithm
	5.3 The Sankoff Dynamic Programming Algorithm

	6 Maximum Parsimony
	6.1 Introduction
	6.2 Exact Methods
	6.2.1 Brute-Force Method: Exhaustive Enumeration
	6.2.2 Running time heuristics

	6.3 Correctness Heuristic
	6.4 Steiner Trees and Spanning Trees 
	6.4.1 The DNA Grid Graph
	6.4.2 Steiner Trees
	6.4.3 Spanning Trees 
	6.4.4 Spanning Trees as Approximations of Steiner Trees

	6.5 Generalized Tree Alignment 
	6.6 Long Branch Attraction


	III Distance-based Methods
	7 Distance-based Trees
	7.1 Basic Definitions
	7.2 Ultrametric Distances
	7.2.1 Agglomerative Clustering

	7.3 Additive Distances
	7.3.1 Exact Reconstruction of Additive Trees
	7.3.2 Least Squares (Fitch-Margoliash)
	7.3.3 Minimum Evolution
	7.3.4 Neighbor Joining


	8 Phylogenetic Networks
	8.1 Split Decomposition
	8.1.1 Introduction
	8.1.2 Basic Idea
	8.1.3 Definitions
	8.1.4 Computation of the d-Splits

	8.2 NeighborNet


	IV Likelihood Methods
	9 Modeling Sequence Evolution
	9.1 Basics on Probability
	9.1.1 Events and Probabilities
	9.1.2 Conditional Probability
	9.1.3 Bayes' Formula
	9.1.4 Independence
	9.1.5 Random Variables

	9.2 Markov Chains
	9.2.1 Time Discrete Markov Chains
	9.2.2 Time Continuous Markov Chains
	9.2.3 The Rate Matrix
	9.2.4 Definition of an Evolutionary Markov Process (EMP)

	9.3 Nucleotide Substitution Models
	9.3.1 The Jukes-Cantor Model (JC)
	9.3.2 Kimura 2-Parameter Model (K2P)

	9.4 Modeling Amino Acid Replacements
	9.4.1 Parameter Estimation
	9.4.2 Score Matrices
	9.4.3 Maximum Likelihood Estimation of Evolutionary Distances


	10 Maximum Likelihood Trees
	10.1 Computing the Likelihood of a Given Tree


	V Beyond Reconstruction
	11 Evaluating, Comparing and Combining Trees
	11.1 Consistency

	12 Assessing the Quality of a Reconstructed Tree
	12.1 Bootstrapping
	12.1.1 The General Idea of Bootstrapping
	12.1.2 Bootstrapping in the Phylogenetic Context
	12.1.3 Jackknifing

	12.2 Likelihood Mapping

	13 Comparing Trees
	13.1 Symmetric Distance
	13.2 Quartets Distance
	13.3 Robinson-Foulds Distance
	13.4 Tree-Edit Distances

	14 Consensus Trees
	14.1 Supertrees

	Bibliography


