

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 1022–1039

COMPUTING COMMON INTERVALS OF K PERMUTATIONS,
WITH APPLICATIONS TO MODULAR DECOMPOSITION OF

GRAPHS∗

ANNE BERGERON† , CEDRIC CHAUVE‡ , FABIEN DE MONTGOLFIER§ , AND

MATHIEU RAFFINOT§

Abstract. We introduce a new approach to compute the common intervals of K permutations
based on a very simple and general notion of generators of common intervals. This formalism leads
to simple and efficient algorithms to compute the set of all common intervals of K permutations that
can contain a quadratic number of intervals, as well as a linear space basis of this set of common
intervals. Finally, we show how our results on permutations can be used for computing the modular
decomposition of graphs.

Key words. common interval, permutation, PQ-tree, modular decomposition

AMS subject classifications. 05C05, 05C62, 68R99

DOI. 10.1137/060651331

1. Introduction. The notion of common interval was introduced by Uno and
Yagiura [19] in order to model the fact that, when comparing genomes, a group of
genes can be rearranged but still remain connected. They proposed a first algorithm
that computes the set of common intervals of a permutation P with the identity
permutation in time O(n + N), where n is the length of P , and N is the number
of common intervals. However, N can be of size O(n2), thus the algorithm of Uno
and Yagiura has an O(n2) time complexity. Heber and Stoye [12] defined a subset
of size O(n) of the common intervals of K permutations, called irreducible intervals,
that forms a basis of the set of all common intervals: every common interval is a
chain overlapping irreducible intervals. They proposed an O(Kn) time algorithm
to compute the set of irreducible intervals of K permutations, based on Uno and
Yagiura’s pioneering work.

One of the drawbacks of these algorithms is that properties of Uno and Yagiura’s
algorithm are not obvious [5]. Even the authors describe their O(n+N) algorithm as
“quite complicated,” and, in practice, simpler O(n2) algorithms run faster on randomly
generated permutations [19]. On the other hand, Heber and Stoye’s algorithms rely
on a complex data structure that mimics what is known, in the theory of modular
decomposition of graphs, as the PQ-trees of strong intervals. An incentive to revisit
this problem is the central role that these PQ-trees seem to play in the field of
comparative genomics. Strong intervals can be used to identify significant groups of
genes that are conserved between genomes [13] or as guides to reconstruct evolution
scenarios [1, 10].

∗Received by the editors February 1, 2006; accepted for publication (in revised form) February 17,
2008; published electronically June 11, 2008.

http://www.siam.org/journals/sidma/22-3/65133.html
†Université du Québec à Montréal, Montréal H3C 3P8, QC, Canada (bergeron.anne@uqam.ca).
‡Simon Fraser University, Burnaby V5A 1S6, BC, Canada (cedric.chauve@sfu.ca).
§LIAFA, Université Denis Diderot - Case 7014, 2 place Jussieu, F-75251 Paris Cedex 05, France

(fm@liafa.jussieu.fr, raffinot@liafa.jussieu.fr). Most of the work was done when the fourth author
was at Poncelet Laboratory (CNRS UMI-2615), Independent University of Moscow, 11 street Bolchöı
Vlassievski, 119 002 Moscow, Russia.

1022

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1023

In order to design alternative efficient algorithms to compute common intervals,
we propose a theoretical framework for common intervals based on generating families
of intervals. For two permutations, these families can be computed by straightforward
O(n) algorithms that use only tables and stacks as data structures and that upgrade
trivially to the case of K permutations. Using these families, we compute common
intervals with simple O(n+N) and O(n) algorithms whose properties can be readily
verified. We also propose a new canonical representation of the family of common
intervals that is simpler than the PQ-trees. We then link this work to previous studies
on common intervals and show how our new representation can be transformed in
linear time into classical ones, namely PQ-trees and irreducible intervals. Conversely,
generating families can be linearly built from these representations.

Finally, we extend our approach to the classical graph problem of modular de-
composition that aims to efficiently compute a compact representation of the modules
of a graph. The first linear time algorithms that were developed [8, 15] are rather
complex, and many efforts have been put into the design of decomposition algorithms
that are efficient in practice, even if they do not run in linear time but in quasi-linear
time [9, 16].

The article is structured as follows. In section 2, we describe the notion of genera-
tors of common intervals and how to compute generators of K permutations of size n
in O(Kn) time. Section 3 explains how to generate the set of all N common intervals
in O(n+N) using a generator. Section 4 describes a new linear space basis of common
intervals, called the canonical generator. Section 5 links this new representation to
classical ones, namely strong intervals, irreducible intervals, and PQ-trees. Finally, in
section 6, we extend our results to the modular decomposition of graphs. An extended
abstract of this article appeared in [2].

2. Common intervals and generators. A permutation P on n elements is a
complete linear order on the set of integers {1, 2, . . . , n}. We denote Idn the identity
permutation (1, 2, . . . , n). An interval of a permutation P = (p1, p2, . . . , pn) is a set
of consecutive elements of permutation P . An interval of the identity permutation
will be denoted by giving the indices of its left and right bounds (i..j).

Definition 2.1. Let P = {P1, P2, . . . , PK} be a set of K permutations on n
elements. A common interval of P is a set of integers that is an interval in each
permutation of P.

The set {1, 2, . . . , n} and all singletons are always common intervals of any non-
empty set of permutations; they are called trivial intervals. In what follows, we
assume, without loss of generality, that the set P contains the identity permutation
Idn. A common interval of P can thus be denoted as an interval (i..j) of the identity
permutation.

Algorithms that identify common intervals such as those in [12, 19] use a bottom-
up approach that constructs the common intervals by extending small intervals until
they form a common interval and then form longer common intervals by taking unions
of common intervals that share elements. Here we adopt a dual approach of construct-
ing common intervals as intersections of intervals that are not necessarily common.
This had two major impacts on the rest of the theory. First, it allowed us to exploit
the symmetric properties of minima and maxima of intervals, and it provided the
natural notion of two families of intervals of size n. Moreover, by removing the need
to maintain common intervals, the design of the algorithms was much easier, and the
data structures became trivial.

Definition 2.2. Let P = {Idn, P2, . . . , PK} be a set of K permutations on n

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1024 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

elements. A generator for the common intervals of P is a pair (R,L) of vectors of
size n such that

1. R[i] ≥ i and L[j] ≤ j for all i, j ∈ {1, 2, . . . , n},
2. (i..j) is a common interval of P if and only if (i..j) = (i..R[i]) ∩ (L[j]..j).
Definition 2.2 has the following easy property that will turn out very useful in

proving results on the structure of generators.
Proposition 2.3. For any generator (R,L), (i..j) = (i..R[i]) ∩ (L[j]..j) if and

only if L[i] ≤ i ≤ j ≤ R[i].
Proof. If (i..j) = (i..R[i]) ∩ (L[j]..j), then (i..j) ⊆ (i..R[i]) and (i..j) ⊆ (L[j]..j),

which yields L[i] ≤ i ≤ j ≤ R[i]. The converse is immediate.
The following proposition shows how to construct a generator for the common

intervals of a union of sets of permutations, given generators for the common inter-
vals of each set. If X and Y are two vectors, we denote by min(X,Y) the vector
min(X[1], Y [1]), . . . ,min(X[n], Y [n]).

Proposition 2.4. Let (R1, L1) and (R2, L2) be generators for the common
intervals of two sets P1 and P2 of permutations, both containing the identity permu-
tation. The pair (min(R1, R2),max(L1, L2)) is a generator for the common intervals
of P1 ∪ P2.

Proof. Interval (i..j) is a common interval of P1∪P2 if and only if it is a common
interval of both P1 and P2, which is equivalent, by Proposition 2.3, to L1[j] ≤ i ≤
j ≤ R1[i] and L2[j] ≤ i ≤ j ≤ R2[i] and finally to max(L1[j], L2[j]) ≤ i ≤ j ≤
min(R1[i], R2[i]).

Proposition 2.4 implies that, given an O(n) algorithm for computing generators for
the common intervals of two permutations, we can easily deduce an O(Kn) algorithm
for computing a generator for the common intervals of K permutations.

Generators are far from unique, but some are easier to compute than others.
Identifying good generators is a crucial step in the design of efficient algorithms to
compute common intervals. The remainder of this section focuses on particular classes
of generators that turn out to have interesting properties with respect to computa-
tions.

Definition 2.5. Let P = (p1, . . . , pn) be a permutation on n elements. For each
element pi, we define two intervals containing pi:

IMax[pi] is the largest interval of P containing pi and whose elements are all
≥ pi;

IMin[pi] is the largest interval of P containing pi and whose elements are all ≤ pi.
And we define the following two integers:

Sup[pi] is the largest integer such that (pi..Sup[pi]) ⊆ IMax[pi];
Inf[pi] is the smallest integer such that (Inf[pi]..pi) ⊆ IMin[pi].
Remark that (pi..Sup[pi]) and (Inf[pi]..pi) are intervals of the identity permutation

but not necessarily intervals of permutation P . For example, if P = (1, 4, 7, 5, 9, 6,
2, 3, 8), we have IMax[5] = (7, 5, 9, 6) and Sup[5] = 7, and IMin[8] = (6, 2, 3, 8) and
Inf[8] = 8.

Proposition 2.6. The pair of vectors (Sup, Inf) is a generator for the common
intervals of P and Idn.

Proof. Suppose that (i..j) is a common interval of P and Idn; then Sup[i] ≥ j
and Inf[j] ≤ i since all elements in the set (i..j) are consecutive in permutation P .
Thus (i..j) = (i..Sup[i])∩ (Inf[j]..j). On the other hand, suppose that Sup[i] ≥ j and
Inf[j] ≤ i; then IMax[i] contains j and IMin[j] contains i. Since both IMax[i] and
IMin[j] are intervals of P , their intersection is an interval and is equal to (i..j).

Example. Let P = {Id8, P2} and Q = {Id8, P3} with

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1025

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Fig. 1. The top two diagrams show the generators (Sup, Inf) of the common intervals of the
set P in solid lines and of set Q in dashed lines. A line in row i of the left diagram extends from
column i to column Sup(i), and a line in row i of the right diagram extends from column Inf(i) to
column i. The bottom diagrams show a generator for the common intervals of P ∪ Q constructed
using Proposition 2.4.

Id8 = (1, 2, 3, 4, 5, 6, 7, 8), P2 = (1, 3, 2, 4, 5, 7, 6, 8), P3 = (2, 8, 3, 4, 5, 6, 1, 7).

The generators (Sup, Inf) for the common intervals of P and Q are shown in
Figure 1. This figure also shows a generator for P ∪Q.

Algorithm 1. Computing the generator (Sup, Inf).

Inf[1] ← 1, Sup[n] ← n.
For k from 1 to n, m[k] ← k, M [k] ← k.
For k from 2 to n

While m[k] − 1 is in IMin[k], m[k] ← m[m[k] − 1]
Inf[k] ← m[k]

For k from n− 1 to 1
While M [k] + 1 is in IMax[k], M [k] ← M [M [k] + 1]
Sup[k] ← M [k]

Proposition 2.7. Let P be a permutation on n elements. If the bounds of inter-
vals IMax[k] and IMin[k] are known for all k, then Algorithm 1 computes (Sup, Inf)
in O(n) time.

Proof. We first show that Algorithm 1 is correct. Suppose that, at the beginning
of the kth iteration of the second For loop, Inf[k′] = m[k′] for all k′ < k, and
m[k] ∈ IMin[k]. This is the case at the beginning of iteration k = 2, since Inf[1] = 1.
By definition, Inf[k] ≤ k, thus before entering the While loop, we have Inf[k] ≤ m[k].
If the test m[k] − 1 ∈ IMin[k] of the While loop is true, then Inf[k] ≤ m[k] − 1,
implying that Inf[k] ≤ Inf[m[k]− 1]. Since Inf[m[k]− 1] = m[m[k]− 1] by hypothesis,
the instruction in the While loop preserves the invariant Inf[k] ≤ m[k]. When the test
of the While loop becomes false, then Inf[k] is greater than m[k]−1, thus Inf[k] = m[k].
The proof of correctness for Sup is similar.

Using the inverse of permutation P , the tests in the While loops can be done in

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1026 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

constant time. The total time complexity follows from the fact that the instruction
within the While loop is executed exactly n− 1 times. Indeed, consider, at any point
of the execution of the algorithm, the collection I of intervals (m[k]..k) of the identity
permutation that are not contained in any other interval of this type. After the
initialization loop, we have n such intervals, that is, I = {(1..1), (2..2), . . . , (n..n)},
and at the completion of the algorithm, there is only one, namely (m[n]..n) = (1..n),
since Inf[n] = 1. The instruction in the While loop merges two consecutive intervals
(m[m[k] − 1]..m[k] − 1) and (m[k]..k) of I into one, since the current value of m[k]
becomes m[m[k]− 1]. Since there were n intervals to start with, there can be at most
n− 1 of these merges.

The computation of the bounds of intervals IMax[k] and IMin[k], as well as the
computation of the inverse of permutation P , are quite straightforward. As an exam-
ple, Algorithm 2 shows how to compute the left bound of IMax[pi].

Proposition 2.8. Let P = (p1, . . . , pn) be a permutation on n elements. Algo-
rithm 2 computes the left bound of all intervals IMax[pi] in O(n) time.

Proof. The time complexity of Algorithm 2 is immediate since each position
is stacked once. Its correctness relies on the fact that, at the beginning of the ith
iteration, the position j of the nearest left element such that pj < pi must be in the
stack. If it was not the case, then an element smaller than pj was found between the
positions j and i, contradicting the definition of position j.

Algorithm 2. Computing the left bound of IMax[pi] for all pi.

S is a stack of positions; s denotes the top of S.
Push 0 on S
p0 ← 0
For i from 1 to n

While pi < ps Pop the top of S
left bound of IMax[pi] ← s + 1
Push i on S

To summarize the results of this section, we have the following theorem.

Theorem 2.9. Let P = {Idn, P2, . . . , PK} be a set of K permutations on n
elements. A generator for the common intervals of P can be computed in O(Kn)
time.

3. Common intervals of K permutations in optimal time. We now turn
to the problem of generating all common intervals of K permutations in O(N) time,
where N is the number of such common intervals, given a generator satisfying the fol-
lowing property, based on the notion of commuting sets. Note that commuting families
are also known as laminar families [18] in the field of combinatorial optimization.

Definition 3.1. Two sets A and B commute if either A ⊆ B, or B ⊆ A, or A
and B are disjoint, and otherwise they overlap. A collection C of sets is commuting
if, for any pair of sets A and B in C, A and B commute. A generator (R,L) for
the common intervals of P = {Idn, P2, . . . , PK} is commuting if both the collections
{(i..R[i])}i∈(1..n) and {(L[i]..i)}i∈(1..n) are commuting. If (R,L) is a commuting gen-
erator, we define Support [i], for i > 1, to be the greatest integer j < i such that
R[i] ≤ R[j]. (Similar values can be defined for L, but we will not refer to them
explicitly.)

It turns out that generators defined in section 2 are commuting. Indeed, genera-
tors defined in Proposition 2.4 are commuting if they are constructed with generators
(R1, L1) and (R2, L2) that are commuting. This is a consequence of the fact that if

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1027

a < b and a′ < b′, then min(a, a′) < min(b, b′) and max(b, b′) > max(a, a′). For the
generator (Sup, Inf), we have the following proposition.

Proposition 3.2. The generator (Sup, Inf) for the common intervals of permu-
tations P and Idn is commuting.

Proof. Suppose that (k..Sup[k]) contains k′; we will show that it must also contain
Sup[k′]. If k′ is in (k..Sup[k]), then k′ is in IMax[k], and k′ > k; therefore, IMax[k′] ⊆
IMax[k], and the interval (k′..Sup[k′]) is included in IMax[k], thus in (k..Sup[k′]) also.
Since Sup[k] is maximal, we must have Sup[k] ≥ Sup[k′]. A similar argument holds
for Inf.

Proposition 3.3. Given a commuting generator (R,L), Algorithm 3 computes
the values Support [i], for all i > 1, in linear time.

Proof. The time complexity of Algorithm 3 is immediate. At iteration i the stack
contains the left bounds of all intervals of (j..R[j]) such that R[j] ≥ i and j < i,
sorted in decreasing size order. It is then easy to see when equality holds. Note that
Support [1] is undefined and should not be used by subsequent algorithms.

Theorem 3.4. Given a commuting generator (R,L), Algorithm 4 outputs all
common intervals of a set P of K permutations on n elements in O(n + N) time,
where N is the number of common intervals of the set P.

Proof. The time complexity of Algorithm 4 is immediate. Suppose that interval
(i..j) is identified by the algorithm. At the start of the jth iteration of the For loop,
i = j, thus j ≤ R[i]. If the test of the While loop is true, then i ≥ L[j], and (i..j) is
a common interval. If i′ = Support [i], then R[i′] ≥ R[i], thus j ≤ R[i′] at the end of
the While loop.

On the other hand, if (i..j) is a common interval of P, with i < j, then Support [j] ≥
i, since R[i] ≥ R[j]. Let i′ be the smallest integer such that i < i′ and (i′..j) is iden-
tified by Algorithm 4 as a common interval. Such an interval exists, since (j..j) is a
common interval. Finally, Support [i′] = i since Support [i′] must be greater than or
equal to i. If it is greater, then (Support [i′]..j) is a common interval, contradicting
the definition of i′.

Algorithm 3. Computing Support [i] for a commuting generator (R,L).

S is an empty stack; s denotes the top of S.
Push 1 on S
For i from 2 to n

While R[s] < i Pop the top of S
Support [i] ← s
Push i on S

Algorithm 4. Common intervals of a set P given a generator (R,L).

For j from n to 1
i ← j
While i ≥ L[j]

Output (i..j) (* Interval (i..j) is a common interval of the set P *)
i ← Support [i]

4. A new canonical representation of closed families. The set of common
intervals of a set of permutations is an example of more general families of intervals,
the closed families. Closed families can have a quadratic number of elements, but a
classical result establishes a bijection between PQ-trees with n leaves and closed fam-
ilies of Idn, thus allowing a representation of size O(n) ([3]—see also Proposition 5.3).
In this section, we develop a new canonical representation for such families, based

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1028 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

(

(
(

(

)
)

)

)

l

k k+1

j

i

Fig. 2. Two overlapping common intervals determine four more common intervals.

on the generators of the previous section. We will discuss the relations between this
representation and PQ-trees in section 5.

Definition 4.1. A closed family F of intervals of a permutation σ on n elements
is a family that contains all singletons and the interval (1..n) and that has the following
property: if (i..k) and (j..l) are in F , and i < j ≤ k < l, then (i..j − 1), (j..k),
(k + 1..l), and (i..l) belong to F .

In what follows, we will suppose, for simplicity, that the permutation σ is the
identity permutation, thus every interval of the family F is an interval of the form
(i..j). The closure properties of Definition 4.1 are well-known properties of the set of
common intervals of a set of permutations and are illustrated in Figure 2. Conversely,
it is easy to extend the definition of generators (Definition 2.2) to the more general
case of closed families, and we will refer to a generator of a closed family F as a pair
(R,L) that satisfies the conditions of Definition 2.2 with respect to the members of
F . Among all possible generators, the following one provides a representation of size
O(n) for any closed family.

Definition 4.2. A generator (R,L) for a closed family F is canonical if, for all
i ∈ (1..n), intervals (i..R[i]) and (L[i]..i) belong to F .

Proposition 4.3. Let F be a closed family. The canonical generator of F always
exists, and it is unique and commuting.

Proof. Let F be a closed family. For 1 ≤ i ≤ n, define R[i] as the largest integer
such that (i..R[i]) ∈ F , and define L[i] as the smallest integer such that (L[i]..i) ∈ F .

If an interval (i..j) ∈ F , then (i..j) ⊆ (i..R[i]), and (i..j) ⊆ (L[j]..j), thus (R,L)
is a generator. It is canonical since we picked elements of F . Suppose that there
exists a second canonical generator (R′, L′), with R 	= R′; then there exists 1 ≤ i ≤ n
such that R′[i] < R[i]. Since (i..R[i]) is in F , it should be generated by (R′, L′), but
(i..R′[i]) ∩ (L′[R[i]], R[i]) does not contain R[i]. A similar argument holds if L 	= L′.
Finally, suppose that two intervals (i..R[i]) and (j..R[j]) overlap with i < j < R[i] <
R[j]. Then (i..R[j]) is in F , which contradicts the maximality of (i..R[i]).

The following elementary property of canonical generators states that if two in-
tervals of a generator overlap, they always do it correctly, in the sense that an (L[j]..j)
interval is always at the left of an (i..R[i]) interval.

Proposition 4.4. For a canonical generator (R,L), if (i..R[i]) and (L[j]..j)
overlap, then L[j] ≤ i ≤ j ≤ R[i].

Proof. Suppose that i ≤ L[j] ≤ R[i] ≤ j; then (i..j) is in F since both (i..R[i]) and
(L[j]..j) are. Then, by definition, (i..j) = (i..R[i])∩(L[j]..j), thus (i..R[i])∪(L[j]..j) =
(i..R[i])∩(L[j]..j), implying (i..R[i]) = (L[j]..j), contrary to the assumption that these
intervals overlap.

Theorem 4.5. Given a commuting generator (R′, L′), Algorithm 5 computes the
canonical generator (R,L) of a closed family F in O(n) time.

Proof. The time complexity of Algorithm 5 follows from the fact that testing if
an interval belongs to F can be computed in O(1) time with the generator (R′, L′).
Its correctness relies on the following observation: if R[k] 	= k, then there exists an

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1029

integer k′ > k such that

(4.1) Support [k′] = k and R[k′] = R[k],

where Support [k′] is defined (Definition 3.1) as the greatest integer smaller than k′

such that R′[Support [k′]] ≥ R′[k′]. Statement (4.1) implies that, since the values of
R[k] are computed in decreasing order, the value of R[k] will be known at the start
of iteration k.

In order to prove statement (4.1), let k′ be the smallest integer such that R[k′] =
R[k]. The hypothesis R[k] 	= k, and the fact that (R,L) is a commuting generator,
imply that k′ > k. We must show that Support [k′] = k. Since (R′, L′) is a commuting
generator, and (R,L) is the canonical generator, we must have R′[k] ≥ R′[k′]. Thus,
Support [k′] ≥ k, implying that R[Support [k′]] ≤ R[k]. Since R[k] = R[k′], this would
imply R[Support [k′]] = R[k], contradicting the definition of k′.

Algorithm 5. Canonical generator (R,L) given a commuting gener-

ator (R′, L′).

The vector Support is obtained from R′ using Algorithm 3
R[1] ← n
For k from 2 to n

R[k] ← k
For k from n to 2

If (Support [k]..R[k]) ∈ F
R[Support [k]] ← max(R[k], R[Support [k]])

(* Computation of L is similar, by defining the vector Support with respect
to L′ *)

Example (continued). Let R = {Id8, P2, P3} with

Id8 = (1, 2, 3, 4, 5, 6, 7, 8), P2 = (1, 3, 2, 4, 5, 7, 6, 8), P3 = (2, 8, 3, 4, 5, 6, 1, 7).

Two generators for the common interval of R are shown in Figure 3. The second one
is canonical.

5. Tranformations of canonical representations. There exist many repre-
sentations of closed families, and this variety is useful. Indeed, some are better suited
for algorithmic purposes [12], and others yield nice graphical representations of the or-
ganization and nesting properties of a set of common intervals [3, 14]. In this section,
we present algorithms that allow the conversion between the canonical generators of
the preceding section and the classic representation using PQ-trees.

5.1. Canonical representations of closed families. Let T be a tree whose
n leaves are labeled with n different labels. The frontier of a node is the set of labels
of the leaves of the subtree rooted at this node.

Definition 5.1. Let F be a closed family. A strong interval of F is an interval
of F that commutes with each interval of F .

A proper commuting family F of subsets of a set V is a commuting family such
that V ∈ F , all the singletons are in F , and ∅ /∈ F . In particular, the strong common
intervals of K permutations form a proper commuting family. A proper commuting
family F can be represented by its inclusion tree in which the frontiers of the nodes
are in bijection with the members of the family. Its root is V and its leaves are the
singletons of F . Conversely, the frontiers of a tree with V as leaf labels define a

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1030 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Fig. 3. The top two diagrams show a generator for the common intervals of R constructed using
Proposition 2.4 (see Figure 1). The bottom diagrams shows the canonical generator constructed by
Algorithm 5.

proper commuting family. The inclusion trees on V are thus in bijection with the
proper commuting families on V .

For closed families, PQ-trees play the same role as the inclusion trees for proper
commuting families.

Definition 5.2. A PQ-tree on finite set V is a tree whose leaves are labeled
from 1 to |V | and whose internal nodes are labeled P -nodes or Q-nodes. A P -node
must have at least two children, and a Q-node must have at least three children. The
children of a P -node are unordered, and the children of a Q-node are totally ordered.

The reversal of a Q node consists in reversing the total order of its children. An
extended frontier of a PQ-tree is either the frontier of a P node, the union of frontiers
of consecutive children of a Q node, or a singleton.

Proposition 5.3 (see [3, 7]). Given a closed family F , there exists a PQ-tree
such that the intervals of the family are exactly the extended frontiers. The strong
intervals of the family are exactly the frontiers of this tree. Furthermore, the PQ-tree
is unique up to Q node reversals.

Example. Let P2 = {Id9, P4, P5, P6} with

Id9 = (1, 2, 3, 4, 5, 6, 7, 8, 9), P5 = (6, 5, 7, 8, 9, 1, 2, 3, 4),

P4 = (9, 8, 7, 5, 6, 4, 3, 2, 1), P6 = (1, 3, 2, 4, 5, 6, 9, 8, 7).

Figure 4 shows the canonical generator of the set P2 and the corresponding PQ-tree.
Compared to PQ-trees, the canonical generator of a closed family F is much

simpler since it uses only two arrays. Moreover, some operations, for example test-
ing whether an interval (i..j) belongs to the family F , are also simpler using this
representation. However, PQ-trees have the advantage of being recursive structures.

Another canonical representation, the family of irreducible intervals, was intro-
duced in [12]. The links between PQ-trees and irreducible intervals have been studied
in [13] that present linear-time algorithms for the conversion.

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1031

1

2 3

5 6 7 8 94

1 2 3 4 5 6 7 8

9

9

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8

9

9

8
7
6
5
4
3
2
1

Fig. 4. The canonical generator and the associated PQ-tree for the set of permutations P2 =
{Id9, P4, P5, P6}.

5.2. From canonical generators to strong intervals. Strong intervals of a
closed family F are associated with overlap classes: let us consider the canonical
generator (R,L) of F . The transitive closure of the overlap relation on all intervals
of R ∪ L is an equivalence relation, and its equivalence classes are henceforth called
overlap classes. We will prove, in Theorem 5.8, that once the overlap classes are
identified, the task of identifying the strong intervals is almost complete.

A trivial overlap class contains only a single interval (i..R[i]) or (L[j]..j). We
have the following lemma.

Lemma 5.4. A trivial overlap class is a strong interval of F .
Proof. Consider a trivial overlap class {(i..j)}. Either j = R[i] or L[j] = i.

Suppose that j = R[i] and that (i..j) is not strong. Then it is overlapped by an
interval (i′..j′) belonging to F but not to the generator. If i ≤ i′ ≤ j ≤ j′, then the
interval (i..j′) is in F but larger than (i..R[i]) in violation with the fact that j′ ≤ R[i]
(see Proposition 2.3). Let us then suppose i′ ≤ i ≤ j′ ≤ j. Since (L[j′]..j′) does not
overlap (i..R[i]), we have i ≤ L[j′] ≤ j′. Since i′ ≤ i ≤ L[j′], (i′..j′) is larger than
(L[j′]..j′) and thus does not belong to F . Interval (i..j) is therefore strong. The other
case is similar.

For nontrivial overlap classes, we need to explain the relations between the various
intervals that belong to the classes. Note that any nontrivial overlap class must contain
intervals of R and L since intervals of R (resp., L) do not overlap each other. Figure 5
shows a typical nontrivial class: the number of left and right intervals is the same,
left and right bounds are nicely aligned, and the left and right intervals are nested.
The following lemmas establish these properties formally and can be skipped at the
first reading.

Lemma 5.5. Let (R,L) be the canonical generator of a closed family F . We have
the following: (1) if (i..R[i]) overlaps (L[j]..j) and (L[j′]..j′), then L[j] = L[j′]; and
(2) if (L[j]..j) overlaps (i..R[i]) and (i′..R[i′]), then R[i] = R[i′].

Proof. Note that if (i..R[i]) overlaps (L[j]..j), then (i..j) belongs to F and, by
Proposition 4.4, i ≥ L[j]. The hypothesis that (i..R[i]) overlaps (L[j]..j) implies fur-

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1032 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

2

32

3

1

1

()
(

(

)

)(

)

i

j i

j i

j

R[C]

R[C]

R[C]

L[C]

L[C]
L[C]

Fig. 5. Structure of a nontrivial overlap class C with k = 3. Dashed lines represent the strong
intervals corresponding to the class.

ther that i < L[j]; otherwise we would have (L[j]..j) ⊆ (i..R[i]). A similar argument
shows that (i..R[i]) overlapping (L[j′]..j′) implies that j′ < R[i].

Now suppose L[j] 	= L[j′] and j′ > j; then L[j′] < L[j], since L is commuting.
This implies that L[j′] < L[j] < i ≤ j < j′ < R[i]. Interval (L[j′]..i − 1) belongs to
F since it is (L[j′]..j′) \ (i..R[i]). Thus (L[j′]..j) is also in F since it is the union of
overlapping (L[j′]..i− 1) and (L[j]..j). Applying Proposition 4.4 to interval (L[j′]..j)
implies that L[j′] ≥ L[j], which yields a contradiction. Therefore L[j] = L[j′].

Statement (2) is proved in a similar way.
Lemma 5.5 implies that, in a nontrivial class C, all intervals of the form (i..R[i])

share the same right bound, and all intervals of the form (L[j]..j) share the same left
bound. We will henceforth denote L[C] and R[C] these common bounds. Moreover,
the interval (L[C]..R[C]) is necessarily strong.

Lemma 5.6. Let C be a nontrivial overlap class of a closed family F . Then
(L[C]..R[C]) is a strong interval of F .

Proof. Since C is a nontrivial class, it contains at least two overlapping intervals
(L[C]..j) and (i..R[C]). The interval (L[C]..R[C]) is an interval of F since it is the union
of those two overlapping intervals. Suppose that (i..j) ∈ F overlaps (L[C]..R[C]) and
i < L[C] ≤ j < R[C]; then (L[j]..j) contains (i..j) and overlaps (L[C]..R[C]), thus it
overlaps at least one member of C, and therefore it belongs to C and L[j] = L[C].
On the other hand, if L[C] < i ≤ R[C] < j, then (i..R[i]) overlaps (L[C]..R[C]), thus
it overlaps at least one member of C. Thus no interval overlaps (L[C]..R[C]), and
therefore it is a strong interval.

Lemma 5.7. Let (R,L) be the canonical generator of a closed family F , and let
C be a nontrivial overlap class containing (i1..R[C]), . . . , (ik..R[C]) and (L[C]..j1), . . . ,
(L[C]..jl), with i1 < · · · < ik and j1 < · · · < jl. Then k = l, and for all a ∈ (1..k),
(ia..ja) is a strong interval of F .

Proof. We first show the result for k = l = 1. In this case, there are only two
intervals (i1..R[C]) and (L[C]..j1), and they overlap to form interval (i1..j1). To show
that this interval is strong, suppose that it contains more than one element and that
(i..j) overlaps it with i < i1 ≤ j < j1. Then (L[j]..j) also overlaps (i1..R[C]), and the
class must have more than two intervals. If (i..j) overlaps (i1..j1) with i1 < i ≤ j1 < j,
then we obtain a similar contradicion using interval (i..R[i]).

Now suppose that, up to index a ≥ 1, (ia..ja) is a strong interval of F , k > a if
and only if l > a, and all intervals are consecutive; that is, ib+1 = ib + 1 when b < a.
We will show that these statements are true for a + 1.

First, note that the interval (ja + 1..R[C]) always belongs to F , being the differ-
ence (ia..R[C]) \ (L[C]..ja), and since the generator is commuting, this implies that
R[ja + 1] = R[C]. If k > a, then l > a since (ia+1..R[C]) does not overlap any interval
already processed. If l > a, then (L[C]..ja+1) overlaps (ja + 1..R[C]) and both are in
C, implying that k > a and ia+1 = ja + 1, since the hypothesis that (ia..ja) is strong

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1033

implies that ia+1 > ja.

To finish the proof, we must show that (ia+1..ja+1) is strong. Suppose that
(i..j) ∈ F overlaps ia+1..ja+1) and i < ia+1 ≤ j < ja+1; then (L[j]..j) overlaps
(ia+1..R[C]), thus it overlaps at least one member of C, and therefore it belongs to C.
But ia+1 ≤ j < ja+1 and ia+1 = ja + 1 implies that ja < j < ja+1, which contradicts
the fact that the list of j indices is totally ordered.

On the other hand, if ia+1 < i ≤ ja+1 < j, then (i..R[i]) belongs to C, implying
that (L[C]..i− 1) is in F , thus (L[i− 1]..i− 1) is in C. Since we have that ia+1 − 1 <
i − 1 < ja+1, thus ja < i − 1 < ja+1, i − 1 is again out of order in the list of j
indices.

Let (R,L) be the canonical generator of a closed family F , and define the set of
traces of overlap classes as the set T of intervals containing the following:

• For each nontrivial overlap class C = {(i1..R[C]), . . . , (ik..R[C]), (L[C]..j1), . . . ,
(L[C]..jk)}

– (L[C]..R[C]),
– (ia..ja) for each 1 ≤ a ≤ k.

• (i..j) if C = {(i..j)} is trivial.

Theorem 5.8. The set T of traces of overlap classes of the canonical generator
of a closed family F is equal to the family of strong intervals of F .

Proof. The fact that all intervals of T are strong is proved in Lemmas 5.4, 5.6,
and 5.7.

Conversely, let S = (i..j) be a strong interval. If either R[i] = j or L[j] = i, then
S is in the generator and forms a trivial overlap class. Otherwise (i..R[i]) and (L[j]..j)
overlap and thus belong to an overlap class C. Using the same notation as above we
have i = ia and j = jb for some a and b. We showed in the proof of Lemma 5.7 that
we must have a ≤ b. If a < b, S is overlapped by (ib..R[C]) and thus is not strong.
Therefore a = b.

Theorem 5.8 implies that computing the strong intervals of F amounts to com-
puting T . This can be done by a classical parenthesis-matching algorithm using a
stack since we proved that the left and and right bounds of the strong intervals de-
fined by an overlap class form a balanced expression. Namely, for nontrivial classes,
the corresponding expression is

(. . . (. . .)(. . .) . . . (. . .) . . .)

and for trivial classes is (. . .).

More formally, let (R,L) be the canonical generator. Consider the 4n bounds of
intervals of the families (i..R[i]) and (L[j]..j) for i, j ∈ (1..n). Let (a1, . . . , a4n) be the
list of these 4n bounds sorted in increasing order, with the left bounds placed before
the right bounds when they are equal. For the example of Figure 3 this list is

(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8),

where i denotes a right bound. Such a list can be constructed easily by scanning the
two vectors R and L and by noting that each i ∈ (1..n) is a left bound at least once
and a right bound at least once. The following algorithm takes this sorted list as
input and outputs the strong intervals sorted by increasing left bounds.

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1034 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

Algorithm 6. Computation of the strong intervals.

S is a stack of bounds; s denotes the top of S.
For i from 1 to 4n

If ai is a left bound
Push ai on S

Else
Output (s..ai) (* Interval (s..ai) is strong *)
Pop the top of S

Proposition 5.9. Given the ordered list (a1, . . . , a4n) of the 4n bounds of a
canonical generator (R,L), Algorithm 6 computes T in O(n) time.

Proof. Algorithm 6 will correctly match left and right bounds of a balanced
expression. Since the left and right bounds of the strong intervals defined by each
overlap class are balanced, and two overlap classes are either nested or disjoint, the
list (a1, . . . , a4n) is balanced, and a correct matching of corresponding bounds will
generate all the strong intervals. Since 2n intervals are identified by Algorithm 6,
and the number of strong intervals is between n + 1 and 2n − 1, some of them may
be output several times. A suitable sorting algorithm, bucket-sort for example, will
allow the identification of duplicates in O(n) time.

5.3. From strong intervals to PQ-trees. By Proposition 5.3, the PQ-tree of
a family F can be generated from its canonical generator by first computing the set
of strong intervals of F , ordering them into a tree structure, and finally labeling them
as P or Q nodes.

Consider the example of Figure 4; Algorithm 6 produces the stack

(1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9)

and outputs the set of strong intervals

(1..1), (2..2), (3..3), (2..3), (4..4), (1..4), (1..4), (5..5), (6..6),
(5..6), (5..6), (7..7), (8..8), (9..9), (7..9), (7..9), (1..9), (1..9).

Each of these intervals corresponds to a node of the PQ-tree.
Given a proper commuting family of n ≤ m < 2n intervals, the following well-

known algorithm computes its inclusion tree. To upgrade an inclusion tree to a
PQ-tree, it is necessary to label the nodes as P or Q and to order the children of
Q-nodes. Theorem 5.10 explains how to do these last tasks.

Algorithm 7. Building the inclusion tree of a proper commuting

family F .

Bucket-sort in decreasing order the intervals of F according to their right bound
Bucket-sort in increasing order the intervals of F according to their left bound
Let I1..Im be the list of sorted intervals
F ← I1 (* I1 = V is the root *)
k ← 2
While k ≤ m

If Ik ⊂ F
Parent(Ik) ← F
F ← Ik
k ← k + 1

else
F ← Parent(F)

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1035

Let I1 = (l1..r1), . . . , Ik = (lk..rk) be the children of a Q node. For every i, Ii∪Ii+1

is an interval of the family F . Intervals Ii and Ii+1 are disjoint, thus ri + 1 = li+1

or ri+1 = li + 1. The canonical PQ-tree is the one where all Q nodes are sorted in
increasing order, i.e., ri + 1 = li+1.

Theorem 5.10. Let (R,L) be the canonical generator of a closed family F . The
canonical PQ-tree of F can be computed from (R,L) in O(n) time.

Proof. Algorithm 7 computes the inclusion tree in O(n) time. The bucket sort
is a stable linear-time sorting algorithm, thus intervals with the same left bound are
sorted by their right bounds. The overall time complexity is obviously O(n).

Given the inclusion tree of the strong intervals of a closed family F , a PQ-tree
of F can be built by labeling as P or Q the internal nodes of the inclusion tree and
by ordering the children of the Q nodes. Fortunately, Algorithm 7 directly orders the
children of every node (including the upcoming Q nodes) by increasing values of the
first bounds of their frontiers. The resulting PQ-tree is therefore the canonical one.
Thus, it is necessary only to label the nodes.

Each internal node of the inclusion tree has at least two children, since a node and
its only child would have the same frontier. Every node with two children is labeled
P . To test whether a node with at least three children is a P or Q node, it suffices to
probe its two first children: if their union is an interval of the family F , the node is
labeled Q; otherwise it is labeled P . This can be done in O(1) time per node, using
the generator.

5.4. From PQ-trees to canonical generators. Given a PQ-tree T , σ(T) is
the permutation of the leaves of T obtained by a left-to-right traversal of the tree.
We may always assume that σ(T) = Idn by renaming the leaves of T . In this section
we explain how to compute the canonical generator of the closed family represented
by T .

Let N be a node with children I1, . . . , Ik. Let li and ri be the indices of the left
and right bounds of Ii. Let imin(N) and imax(N) be the indices, respectively, of the
minimum element of N and of the maximal element of N . Computing imin and imax
can be done in O(n) by a simple bottom-up traversal of T .

Algorithm 8. Computing the canonical generator from a PQ-tree.

For each internal node N of T taken bottom-up
If N is a Q node

For i from 1 to k
L[imax(Ii)] ← imin(N)
R[imin(Ii)] ← imax(N)

Else
R[imin(I1)] ← imax(N)
L[imax(I1)] ← imin(N)
R[imin(Ik)] ← imax(N)
L[imax(Ik)] ← imin(N)
For i from 2 to k − 1

L[imax(Ii)] ← imin(Ii)
R[imin(Ii)] ← imax(Ii)

Proposition 5.11. Algorithm 8 computes the canonical generator of a closed
family in O(n) time.

Proof. The time complexity of the algorithm is obvious because the PQ-tree T
has O(n) nodes. Let us prove that the algorithm computes the canonical generator.

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1036 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

First, for all i, the value of R[i] and L[i] will be determined because, for the node N
that bears the leaf i as jth node, i = imin(Ij) and i = imax(Ij).

When R[imin(Ii)] is determined, (imin(Ii)..R[imin(Ii)]) is an interval of F be-
cause if N is a P node, then (imin(Ii)..R[imin(Ii)]) = Ii and if N is a Q node, then
(imin(Ii)..R[imin(Ii)]) is the union of all consecutive children of Q from i to k. The
other cases are similar.

Let Rt[1], . . . , Rt[i] be the values taken by the variable R[i] during the execution
of the algorithm. Since the nodes are visited bottom-up, the intervals (i..Rt[i]) are
a nested sequence of intervals. We shall now prove that this sequence ends with the
largest interval starting at i (resp., ending at j). Let us suppose that (i..Rt[i]) 	=
(i..R[i]). Then Rt[i] < R[i] since (i..Rt[i]) belongs to F . Let us suppose (i..Rt[i])
is not strong. Then it is the union of children Ia, . . . , Ib of some Q-node N . The
algorithm sets Rt[i] to the left bound of the last child of N . Since (i..R[i]) is larger, it
overlaps the strong interval N , which is impossible. Now let us suppose that (i..Rt[i])
is strong. It corresponds to a node I of the PQ-tree whose parent is N . Either (i..R[i])
contains N , or N is a Q-node and (i..R[i]) is a union of children of N . In the first
case, i = imin(N) and thus Rt[i] ≥ imax(N), a contradiction. In the second case,
Rt[i] = imax(N), which also contradicts Rt[i] < R[i] = imax(N).

We proved that the sequence of Rt[i] converges toward R[i] for all i. The case for
Lt[j] is similar.

6. Modular decomposition. Let G = (V,E) be a directed, finite, loopless
graph, with |V | = n and |E| = m. Undirected graphs may be seen as symmetrical
directed graphs in this context. A module is a subset M of V that behaves like
a single vertex: for x /∈ M either there are |M | arcs that join x to all vertices of
M , or no arc joins x to M , and conversely either there are |M | arcs that join all
vertices of M to x, or no arc joins M to x. A strong module does not overlap
any other module. There may be up to 2n modules in a graph (in the complete
graph for instance), but there are at most O(n) strong modules, and the modular
decomposition tree based on the strong modules’ inclusion tree is sufficient to represent
all modules [17]. The modular decomposition tree is indeed the PQ-tree of the family
of modules.

Modular decomposition is the first step in many graph algorithms such as graph
recognition (e.g., cographs, interval graphs, permutation graphs, and other classes of
perfect graphs; see [4] for a survey) and transitive orientation computation [15].

Linear-time decomposition algorithms have been discovered [8, 15] but remain
rather complex. Simpler algorithms work in two steps: computing a factorizing per-
mutation and then building a tree representation on it. The first step was published
in [11]. In this paper, we simplify the second step.

A factorizing permutation of a graph [6] is a permutation of the vertices of the
graph in which every strong module of the graph is a factor, that is, an interval of the
permutation. Since the strong modules are a commuting family, every graph admits
a factorizing permutation. A factorizing permutation of a graph can be computed
in linear time [11]. In the following we assume, without loss of generality, that the
vertex-set V is the set {1, . . . , n} and that the identity permutation is a factorizing
permutation of the graph.

Given an interval (u..v) of the factorizing permutation, a vertex x /∈ (u..v) is a
splitter of the interval if there are between 1 and v − u arcs going from x to (u..v),
or if there are between 1 and v − u arcs going from (u..v) to x. A right-module is
an interval (u..v) with no splitters greater than v. A left-module is an interval (u..v)

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1037

with no splitters smaller than u. An interval-module is an interval (u..v) with no
splitters. Clearly, interval-modules are modules. However, some modules are not
interval-modules, but, according to the definition of a factorizing permutation, the
strong modules of the graph are interval-modules. It is well known that modules
behave like intervals: unions, intersections, or differences of two overlapping modules
are modules. Thus we have the following proposition.

Proposition 6.1 (see [17]). The interval-modules of a factorizing permutation
of a graph G are a closed family. The strong intervals of this family are exactly the
strong modules of the graph G.

Definition 6.2. For a vertex v let R[v] be the greatest integer such that (v..R[v])
is a left-module and L[v] the smallest integer such that (L[v]..v) is a right-module.

It can be proved that, for every w ∈ (L[v]..v), (w..v) is a right-module and, for
every w < L[v], (w..v) is not a right-module. For this reason (L[v]..v) is called the
maximal right-module ending at v. In a similar way, we can define the maximal
left-module beginning at v. We have the following proposition.

Proposition 6.3. The pair (R,L) is a commuting generator of the interval-
modules’ family.

Proof. Interval (u..v) is an interval-module if and only if R[u] ≥ v and L[v] ≤
u, thus (R,L) is a generator. The family defined by R is commuting because if
(u..R[u]) overlaps (v..R[v]), and if, without loss of generality, u < v, then (u..R[v]) is
a left-module starting at u greater than the maximal left-module (u..R[u]), which is
a contradiction. A similar argument shows that L also is commuting.

In order to compute the maximal right-strong modules, we use a simplified version
of an algorithm due to Capelle and Habib [6]. The algorithm to compute the maximal
left-modules is similar.

Let us consider the maximal right-module (L[v]..v) ending at v. If L[v] > 1, then
there exists an x > v that splits (L[v] − 1..v); otherwise this right-module would not
be maximal, and x therefore splits (L[v]− 1..L[v]) but does not split (y− 1, y) for all
L[v] < y ≤ v. Based on this observation, Capelle and Habib’s algorithm proceeds in
two steps. First, for every vertex v the rightmost splitter s[v] is computed. It is the
greatest vertex, if any, that splits the pair (v − 1..v). Then a loop for v from n to 2
computes all the maximal right-modules (L[x]..x) such that v = L[x]. Computing
s[v] can be done by a simultaneous scan of the adjacency lists of v and v − 1: the
greatest element occurring in only one adjacency list is kept. This can be done in
time proportional to the size of the adjacency lists. The computation of s[v] for all v
can therefore be done in O(n + m) time, that is, linear in the size of the graph. The
second step is Algorithm 9. It clearly runs in O(n) time, and its correctness relies on
the following invariant.

Invariant. At step v, for all vertices x in the stack, (v..x) is a right-module,
and for all x > v not in the stack, L[v] > v.

Proof. The invariant is initially true. Every step maintains it: if s[v] does not
exist, then for all x in the stack (v − 1..x) is a right-module, and (v − 1..v) is also a
right-module. And if s[v] exists, (v) is the maximal right-module ending at v. For
all x < s[v], (v − 1..x) is not a right-module, and (v..x) is therefore the maximal
right-module ending at x. For all x ≥ s[v], (v − 1..x) is still a right-module, because
s[v] is the greatest of the splitters of (v − 1, v).

We thus have the following theorem.
Theorem 6.4. Given a graph G and a factorizing permutation of G, it is possible

to compute the modular decomposition tree of G in time O(n + m) and in a simple
way.

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1038 BERGERON, CHAUVE, DE MONTGOLFIER, AND RAFFINOT

Algorithm 9. Computing all maximal right-modules given s[v].

S is a stack of vertices; t denotes the top of S.
for v from n to 2

if s[v] exists
L[v] ← v
While t < s[v]

L[t] ← v
Pop the top of S

else
Push v on S

7. Conclusion. In the present work, we formalized two concepts about com-
mon intervals, namely generators and canonical representation, that proved to have
important algorithmic implications. Indeed, the combinatorial properties of these ob-
jects, and in particular the different links between them, are central in the design and
the analysis of the simple optimal algorithms for computing the common intervals
of permutations we presented. It is important to highlight that our algorithms are
really “optimal” since they are based on very elementary manipulations of stacks and
arrays. This is, we believe, a significant improvement over the existing algorithms
that are based on intricate data structures, both in terms of ease of implementation
and time efficiency and in terms of understanding the underlying concepts [12, 19].

Moreover, we showed how, transposed in the more general context of modular
decomposition of graphs, our results have a similar impact and lead to a significant
simplification of some existing algorithms. Indeed, modular decomposition algorithms
are quite complex algorithms, but using the factorizing permutation algorithm of [11]
and the right-modules identification algorithm of section 6, a generator of the interval-
modules can easily be computed in linear time; tools from section 5.2 can then be
used to compute the strong interval-modules, that are also the strong modules, and
the PQ-tree, called modular decomposition tree in this context.

REFERENCES

[1] S. Bérard, A. Bergeron, and C. Chauve, Conserved structures in evolution scenarios, in
Comparative Genomics, RECOMB 2004 International Workshop, Lect. Notes in Bioinform.
3388, Springer-Verlag, Berlin, 2004, pp. 1–15.

[2] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot, Computing common
intervals of K permutations, with applications to modular decomposition of graphs, in
Proceedings of the 13th Annual European Symposium on Algorithms (ESA), Lecture Notes
in Comput. Sci. 3669, Springer-Verlag, Berlin, 2005, pp. 779–790.

[3] S. Booth and G. Lueker, Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-trees algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[4] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM Monogr.
Discrete Math. Appl. 3, SIAM, Philadelphia, 1999.

[5] B. M. Bui Xuan, M. Habib, and C. Paul, Revisiting T. Uno and M. Yagiura’s algorithm,
in Proceedings of the 16th International Symposium on Algorithms and Computation
(ISAAC), Lecture Notes in Comput. Sci. 3827, Springer-Verlag, Berlin, 2005, pp. 146–155.

[6] C. Capelle and M. Habib, Graph decompositions and factorizing permutations, in Proceed-
ings of the Fifth Israel Symposium on Theory of Computing and Systems (ISTCS), IEEE
Computer Society, New York, 1997, pp. 132–143.

[7] M. Chein, M. Habib, and M. C. Maurer, Partitive hypergraphs, Discrete Math., 37 (1981),
pp. 35–50.

[8] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, in Proceed-
ings of the 19th International Colloquium of Trees in Algebra and Programming (CAAP),
Lecture Notes in Comput. Sci. 787, Springer-Verlag, Berlin, 1994, pp. 68–84.

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMMON INTERVALS OF PERMUTATIONS 1039

[9] E. Dahlhaus, J. Gustedt, and R. M. McConnell, Efficient and practical algorithms for
sequential modular decomposition, J. Algorithms, 41 (2001), pp. 360–387.

[10] M. Figeac and J.-S. Varré, Sorting by reversals with common intervals, in Proceedings of
the 4th International Workshop of Algorithms in Bioinformatics (WABI), Lecture Notes
in Comput. Sci. 3240, Springer-Verlag, Berlin, 2004, pp. 26–37.

[11] M. Habib, F. de Montgolfier, and C. Paul, A simple linear-time modular decomposition
algorithm for graphs, using order extension, in Proceedings of the 9th Scandinavian Work-
shop on Algorithm Theory (SWAT), Lecture Notes in Comput. Sci. 3111, Springer-Verlag,
Berlin, 2004, pp. 187–198.

[12] S. Heber and J. Stoye, Finding all common intervals of k permutations, in Proceedings of
the 12th Annual Symposium of Combinatorial Pattern Matching (CPM), Lecture Notes in
Comput. Sci. 2089, Springer-Verlag, Berlin, 2001, pp. 207–218.

[13] G. M. Landau, L. Parida, and O. Weimann, Gene proximity analysis across whole genomes
via PQ trees, J. Comput. Biol., 12 (2005), pp. 1289–1306.

[14] R. M. McConnell and F. de Montgolfier, Algebraic operations on PQ-trees and modular
decomposition trees, in Proceedings of the 31st International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), Lecture Notes in Comput. Sci. 3787, Springer-Verlag,
Berlin, 2005, pp. 421–432.

[15] R. M. McConnell and J. Spinrad, Linear-time modular decomposition and efficient transi-
tive orientation of comparability graphs, in Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1994, pp. 536–545.

[16] R. M. McConnell and J. Spinrad, Ordered vertex partitioning, Discrete Math. Theor. Com-
put. Sci., 4 (2000), pp. 45–60.

[17] R. H. Möhring and F. J. Radermacher, Substitution decomposition for discrete structures
and connections with combinatorial optimization, Ann. Discrete Math., 19 (1984), pp.
257–356.

[18] A. Schrijver, Combinatorial Optimization, Springer-Verlag, Berlin, 2003.
[19] T. Uno and M. Yagiura, Fast algorithms to enumerate all common intervals of two permu-

tations, Algorithmica, 26 (2000), pp. 290–309.

D
ow

nl
oa

de
d

05
/1

3/
16

 to
 1

28
.1

79
.2

52
.1

39
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

