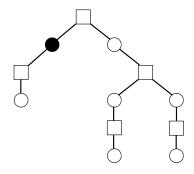
Algorithms in Comparative Genomics, Winter 2018/19 Dr. Daniel Dörr

Exercises


Exercise 03, 08.11.2018

1. In computing $srd(\pi)$, the offset for additional reversals needed to orient unoriented components can be calculated by determining the *minimum* cost of a *cover* of the component tree T_{π} . The cost t(C) of a cover C is the sum of costs of all paths, whereby a short path has cost 1 and a long path has cost 2.

Consider permutation

 $\pi^{6} = (13 - 87 - 645911 - 1310 - 1214 - 2151722182019212328242625272916),$

- (a) use the Java program InversionVisualization provided on the course website to draw $BG(\pi^6)$. The file containing π^6 can also be downloaded from the website. Using $BG(\pi^6)$, construct the component tree T_{π^6} ;
- (b) find an optimal tree cover (i.e. a cover with minimum cost) for T_{π^6} .
- 2. Consider the following component tree T:

Find a permutation π whose component tree is T.

- 3. Sort the permutation $\pi^7 = (2 5 \ 3 1 \ 4)$. Indicate all intermediate steps by drawing the overlap graph $OV(\cdot)$ and include the reversal scores as annotation to each vertex. Indicate your choice of a safe reversal by marking the corresponding vertex in $OV(\cdot)$.
- 4. The score s of a vertex-induced reversal in the overlap graph is defined as the number of oriented vertices in the resulting permutation.

Given some permutation π , let v be a vertex of $OV(\pi)$, T be the total number of oriented vertices in the overlap graph and U(v), O(v) the number of unoriented, respectively oriented vertices adjacent to v. Prove that the score of $\rho(v)$ can be computed by the following formula:

$$s(\rho(v)) = T + U(v) - O(v) - 1.$$

Discussion of solutions in tutorial on 15.11.2018