

On the Gene Family-free DCJ Distance and Similarity

Fábio V. Martinez

Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Brazil

Algorithms in Comparative Genomics - Winter 2018/19

<ロト <四ト <注入 <注下 <注下 <

Introduction	DCJ-dist	DCJ-sim	Complexities	Algorithms	Experiments
Overview					

Introduction

- 2 DCJ distance under the gene family-free method
- 3 DCJ similarity under the gene family-free method
- 4 Computational complexities
- 5 Algorithms
- 6 Experiments

- Large-scale rearrangements change the number of chromosomes and/or the positions and orientations of genes (inversions, transpositions, translocations, TDRLs, fusions, fissions, ...)
- Genomes are represented as sequences of oriented DNA fragments (genes)

The double-cut-and-join (DCJ) operation

Introduction	DCJ-dist	DCJ-sim	Complexities	Algorithms	Experiments
Problem					

Classical problems: compute the DCJ distance/similarity between two given genomes

- each input genome contains one copy of each representative of a gene family (efficient algorithms)
- many copies of a gene present in input genomes (NP-hard problems)

Gene family-free approach

- studying genome rearrangements without prior family assignment
- pairwise similarities between genes
- problems are not easier than problems under gene family-based approach

The DCJ distance for the gene family-free method

Gene similarity graph $GS_{\sigma}(A, B)$

 $\sigma: A \times B \rightarrow [0,1]$ is the normalized similarity function

The DCJ distance for the gene family-free method

 $d_{\sigma}(A^M, B^M) = 2|M| - \sigma(M) - c - i/2.$

Problem DIST^{FF}_{DCJ} (A, B, σ) : Given genomes A and B and the gene similarity function σ , one can calculate the gene family-free DCJ distance between A and B:

$$\mathsf{d}_{\mathrm{DCJ}}^{\mathrm{FF}}(A,B) = \min_{M \in \mathbb{M}} \{ d_{\sigma}(A^M, B^M) \} ,$$

where \mathbb{M} is the set of all maximal matchings in $GS_{\sigma}(A, B)$.

The DCJ distance for the gene family-based method

With duplicates

ILP-based algorithms, approximation algorithms

The DCJ distance for the gene family-based method

Without duplicates

$$\mathsf{d}^{\rm FB}_{\rm DCJ}(A,B) = n - c - i/2 \, .$$

The DCJ similarity for the gene family-free method

Gene similarity graph $GS_{\sigma}(A, B)$

 $\sigma: A \times B \rightarrow [0,1]$ is the normalized similarity function

DCJ-sim

The DCJ similarity for the gene family-free method

The DCJ similarity for the gene family-free method

Let the normalized weight $\widehat{w}(C)$ of a component C of $AG_{\sigma}(A^M, B^M)$ be:

$$\widehat{w}(C) = \begin{cases} \frac{w(C)}{|C|} \,, & \text{ if } C \text{ is a cycle }, \\ \\ \frac{w(C)}{|C|+1} \,, & \text{ if } C \text{ is an odd path }, \\ \\ \\ \frac{w(C)}{|C|+2} \,, & \text{ if } C \text{ is an even path }. \end{cases}$$

Then, the wDCJ similarity is given by:

$$s_{\sigma}(A^M, B^M) = \sum_{C \in \mathcal{C}} \widehat{w}(C)$$

The DCJ similarity for the gene family-free method

Problem $SIM_{DCJ}^{FF}(A, B, \sigma)$: Given genomes A and B and their gene similarities σ , calculate their gene family-free DCJ similarity

$$\mathbf{s}_{\mathrm{DCJ}}^{\mathrm{FF}}(A,B) = \max_{M \in \mathbb{M}} \{ s_{\sigma}(A^{M}, B^{M}) \},\$$

where \mathbb{M} is the set of all maximal matchings in $GS_{\sigma}(A, B)$.

Introduction	DCJ-dist	DCJ-sim	Complexities	Algorithms	Experiments
Computa	tional co	mplovition			

AP-reduction \leq_{AP}

Image: A matrix

- 4 ∃ ≻ 4

Computational complexities

Theorem DIST $_{DCI}^{FF}$ is APX-hard and cannot be approximated with approximation ratio better than 1237/1236 = 1.0008..., unless P = NP.

Theorem SIM^{FF}_{DCI} is APX-hard and cannot be approximated with approximation ratio better than 22/21 = 1.0476..., unless P = NP.

Integer linear programs							

integer linear programs

 $G = GS_{\sigma}(A, B)$ **M**

・ロト ・ 日 ト ・ 目 ト ・

Introduction	DCJ-dist	DCJ-sim	Complexities	Algorithms	Experiments		
Integer linear programs							

 $G = GS_{\sigma}(A, B)$ **M**

・ロト ・ 日 ト ・ 目 ト ・

Introduction	DCJ-dist	DCJ-sim	Complexities	Algorithms	Experiments		
The transmission of transmission of the transmission of the transmission of the transmission of transmission of the transmission of tr							

 $G = GS_{\sigma}(A, B)$ **M**

・ロト ・ 日 ト ・ 目 ト ・

Introduction	DCJ-dist	DCJ-sim	Complexities	Algorithms	Experiments

Integer linear programs

 $G = GS_{\sigma}(A, B)$ **M**

э

æ

- 4 🗇 🕨 🔺 🖹 🕨 🤘

 Introduction
 DCJ-dist
 DCJ-sim
 Complexities
 Algorithms
 Experiments

 Integer linear program for DIST $_{DCJ}^{FF}$

 minimize
 $2\sum_{e \in E_m} x_e - \sum_{e \in E_m} w_e x_e - \sum_{1 \leq i \leq |X_A|} z_i$,

subject to $\begin{aligned} x_e &= 1\\ & \sum_{uv \in E_m \cup E_s} x_{uv} = 1\\ & \sum_{uv \in E_m \cup E_s} x_{uv} = 1\\ & x_{a^h b^h} = x_{a^t b^t}\\ & x_{a^h a^t} + x_{b^h b^t} \leq 1\\ & 0 \leq y_i \leq i\\ & y_i \leq y_i + i \cdot (1 - x_e) \end{aligned}$

 $y_i < y_i + j \cdot (1 - x_e)$

 $i \cdot z_i < y_i$

 $i \cdot z_i < y_i$

 $\forall v \in X_B$ $\forall ab \in E(G)$ $\forall ab \in E(G)$ $1 \le i \le k$ $\forall e = v_i v_j \in E(H)$ $\forall e = v_i v_j \in E(H)$ $1 \le i \le k$ $1 \le i \le |X_A|$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $\forall e \in E_a$

 $\forall u \in X_A$

Algorithms Integer linear program for $\mathrm{DIST}_{\mathrm{DCJ}}^{\mathrm{FF}}$

minimize

 $\mathbf{2}$

$$\sum_{e \in E_m} x_e - \sum_{e \in E_m} w_e x_e - \sum_{1 \leq i \leq |X_A|} z_i ,$$

subject to

$\forall \ e \in E_a$
$\forall \ u \in X_A$
$\forall \ v \in X_B$
$\forall \ ab \in E(G)$
$\forall \ ab \in E(G)$
$1 \leq i \leq k$
$\forall \ e = v_i v_j \in E(H)$
$\forall \ e = v_i v_j \in E(H)$
$1 \leq i \leq k$
$1 \le i \le X_A $

∃ ▶ ∢

IntroductionDCJ-distDCJ-simComplexitiesAlgorithmsExperimentsInteger linear program for DIST
DCJminimize $2 \sum x_e - \sum w_e x_e - \sum z_i$,

 $\sum_{e \in E_m} e \in E_m \qquad 1 \le i \le |X_A|$

subject to $\forall e \in E_a$ $x_{e} = 1$ $\sum \quad x_{uv} = 1$ $\forall u \in X_A$ $uv \in \overline{E_m} \cup E_s$ $\sum \quad x_{uv} = 1$ $\forall v \in X_B$ $uv \in E_m \cup E_s$ $\forall ab \in E(G)$ $x_{ahbh} = x_{ath}$ $\forall \ ab \in E(G)$ $x_{ahat} + x_{bhbt} \leq 1$ $0 \leq u_i \leq i$ $1 \leq i \leq k$ $y_i \le y_i + i \cdot (1 - x_e)$ $\forall e = v_i v_j \in E(H)$ $y_i < y_i + j \cdot (1 - x_e)$ $\forall e = v_i v_i \in E(H)$

 $i \cdot z_i \leq y_i$ $i \cdot z_i \leq y_i$ $1 \leq i \leq k$ $1 \leq i \leq |X_A|$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- ILP-based exact algorithm
- Heuristics
 - Maximum matching
 - Best density
 - Best length
 - Best length with weighted maximum independent set

- data set of simulated genomes generated by ALF
- datasets with different genome sizes (1000, 2000 and 3000 genes) and evolutionary rates
- each dataset with 10 genomes, totalling 45 pairwise comparisons
- CPLEX was used to solve ILP instances with maximum running time was set to 60 minutes

- data set of simulated genomes generated by ALF
 - datasets with different genome sizes (25, 50 and 1000 genes) and evolutionary rates
 - each dataset with 10 genomes, totalling 45 pairwise comparisons
 - Gurobi was used to solve ILP instances ILP with maximum running time was set to 60 minutes
 - Best density heuristic had the best performance
- real data set (human, house mouse and Norway rat)
 - ▶ 822, 953 and 863 genes, respectively
 - only heuristics
 - Best density heuristic had the best performance