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Abstract. The Genome Halving Problem is the following: Given a rear-
ranged duplicated genome, find a perfectly duplicated genome such that
the rearrangement distance between these genomes is minimal with re-
spect to a particular model of genome rearrangement. Recently, Warren
and Sankoff studied this problem under the general DCJ model where
the pre-duplicated genome contains both, linear and circular chromo-
somes. In this paper, we revisit the Genome Halving Problem for the
DCJ distance and we propose a genome model such that constraints for
linear genomes, as well as the ones for circular genomes are taken into
account. Moreover, we correct an error in the original paper.

1 Introduction

Besides genome rearrangements, another important source for genome evolution
is whole genome duplication. In the early 1970s, Susumu Ohno [13] came up
with the hypothesis that whole genome duplication has occurred in mammalian
evolution. Not without controversy, this question has been addressed several
times in the last three decades, both in the biological and in the computational
literature.

In fact, there is biological evidence for genome duplication among several
eukaryotes. An outstanding example was the duplication in the yeast genome
that was recently confirmed [12]. Even two rounds of duplication are found in
vertebrates [5]. Duplication is a particularly common event in plants [1],[10]
where most of the common crops have polyploid genomes.

The combinatorial problem, called the Genome Halving Problem, was first
introduced in [8]: Assuming that a genome is duplicated and then rearranged
over time, can we reconstruct an ancestral genome from the gene order that we
observe today? The key to the solution of this question is the structure of the
genome right after duplication: It must have been perfect, i.e. each chromosome
has existed in two identical copies. Of course, there exist many perfectly dupli-
cated genomes that could have been the ancestral genome. Therefore, we want to
reconstruct one genome such that its distance, defined as the minimum number
of rearrangements needed to transform it into the observed genome, is minimal.

Clearly, solutions to this problem depend on the underlying genome model
and also on the rearrangement operations that are allowed. The most common
genome rearrangement operations are translocations, fusions, fissions, inversions
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and block interchanges. It is remarkable that all these operations can be modelled
by a single one, called double cut and join (DCJ) operation [15]. As shown
in [4], the DCJ operation applies for genomes with a mixture of linear and
circular chromosomes. In contrast, in the Hannenhalli-Pevzner (HP) theory [11]
it is assumed that the genomes only consist of linear chromosomes and only
translocations, fusions, fissions and inversions are considered.

El-Mabrouk and Sankoff [9] solved the Genome Halving Problem under the
HP distance. Their algorithm for the reconstruction of doubled genomes is far
from being trivial and is the final result of a whole series of papers [8],[7],[6].
In addition to the well-known breakpoint graph, they introduce further graphs,
called natural graph and signature graph. Later, Alekseyev and Pevzner gave an
alternative approach based on the notion of contracted breakpoint graph [2] and
corrected in [3] an error in the El-Mabrouk-Sankoff analysis.

Very recently, Warren and Sankoff [14] studied the Genome Halving Problem
under the more general DCJ model. This generalization yields a simplified prob-
lem since some of the complicated components of the breakpoint graph, such as
hurdles and knots, can be ignored. Unfortunately, their solution still relies on
the complex concepts introduced by El-Mabrouk and Sankoff. Indeed, as we will
see in this paper, the problem can be solved by working directly on the natural
graph.

In the following, we will revisit the Genome Halving Problem under the double
cut and join operation where the ancestral genome may contain linear and cir-
cular chromosomes. Therefore, in our genome model, we take into account both,
the constraints usually required for genomes with only linear chromosomes, as
well as the ones for genomes with only circular chromosomes. Compared to the
more general model studied in [14], these requirements on the ancestral genome
increase the distance between the genomes. This yields a new proof and a simple
algorithm for reconstructing an ancestral genome. Moreover, by our results, we
will also correct an error in the Warren-Sankoff analysis.

The structure of this paper is as follows. We begin by formalizing the problem
in the next section. Then, in Section 3, we study the effect of a DCJ operation on
the natural graph. In Section 4 we present our distance formula and a linear-time
algorithm to reconstruct an ancestral genome with the minimum number of DCJ
operations. Finally, we will discuss the Warren-Sankoff formula in Section 5. The
last section summarizes our results and addresses some open questions.

2 Problem Formulation

As usual, a gene is represented by a directed identifier where the direction is
indicated by a head and a tail. These are called the extremities of the gene. The
tail of a gene a is denoted by at, and its head is denoted by ah.

An adjacency of two consecutive genes a and b can be of four different types:

{ah, bt}, {ah, bh}, {at, bt}, {at, bh}.

An extremity that is not adjacent to any other gene is called a telomere, repre-
sented by a singleton set {ah} or {at}.
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Definition 1. A duplicated genome A is a set of adjacencies and telomeres
such that the head and the tail of every gene appears exactly twice.

Thus, a duplicated genome has two identical copies of each gene that are called
paralogs and we distinguish them by a subscript, called an assignment of the
paralogs. For a gene a, we denote its copies by a1 and a2 and the paralogous
extremities by at

1, at
2 and ah

1 , ah
2 .

Example 1. Consider the following genome A1 defined on the set of genes
{a, b, c, d}:

{{dh
2}, {dt

2, a
t
2}, {ah

2 , dh
1}, {dt

1, c
h
2}, {ct

2, b
t
2}, {bh

2}, {bh
1}, {bt

1, c
t
1}, {ch

1 , at
1}, {ah

1}}

A genome can be represented as a graph, called the genome graph, with ver-
tices corresponding to the adjacencies and telomeres and edges joining the head
and the tail of each paralogous extremity. Thus, we have:

! ! ! ! ! ! ! ! ! !dh
2 dt

2 at
2 ah

2 dh
1 dt

1c
h
2 ct

2 bt
2 bh

2 bh
1 bt

1 ct
1 ch

1 at
1 ah

1

Suppose that the genome graph consists of N components C1 to CN . A chromo-
some is a set of adjacencies and telomeres that belong to the same component.
Note that, by definition, each vertex in the genome graph has degree one or
two, and thus the components of the genome graph are either linear or circular.
We call a genome linear if all its chromosomes are linear. Similarly, a genome
is circular if all its chromosomes are circular. For example, the above genome
graph is a linear genome consisting of two linear chromosomes.

For paralogous extremities, we also use the following notation: if p is an ex-
tremity, then p is its corresponding paralogous extremity. By elevating this no-
tation to sets of extremities, we can apply it to adjacencies and telomeres. For
example, for an adjacency x = {ah

1 , bt
2}, we have x = {ah

2 , bt
1}.

For a chromosome C, we define C = {x | x is an adjacency or telomere of C}.
This notation is useful to describe the different notions of a duplicated genome
that can be found in the literature, for linear genomes in [9] and for circular
genomes in [3]. By bringing this together for genomes with a mixture of linear
and circular chromosomes, we have:

Definition 2. A duplicated genome A consisting of chromosomes C1, . . . , CN is

– linear-perfectly duplicated, if for each linear chromosome Ci, we have Ci =
Cj for some j ∈ {1, . . . , N}\{i};

– circular-perfectly duplicated, if for each circular chromosome Ci, either we
have Ci = Cj for some j ∈ {1, . . . , N}\{i} or Ci = C ∪ C, where each
adjacency of Ci occurs either in C or in C, but not in both;

– perfectly duplicated, if it is linear- and circular-perfectly duplicated.

Note that this definition does not depend on the assignment of the paralogs.
Two examples of perfectly duplicated genomes are given in Fig. 1. From the



Genome Halving under DCJ Revisited 279
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Fig. 1. Two perfectly duplicated genomes

right genome in that figure, we also see that the number of chromosomes of a
perfectly duplicated genome is not necessarily even.

Alternatively to the formulation on the level of chromosomes, a perfectly
duplicated genome can also be characterized locally, as stated by the next lemma.

Lemma 1. A genome A is perfectly duplicated if and only if

– for each adjacency {u, v} in A, also {u, v} is in A and u ̸= v, and
– for each telomere {u} in A, also {u} is in A.

Now, let us consider rearrangement operations. Generally speaking, such an
operation applied to two adjacencies or telomeres of a genome disconnects the
incident edges of the genome graph, and reconnects them in one of the possible
other ways. More formally, given a graph with vertices of degree one (external
vertices) or degree two (internal vertices), we have:

Definition 3 ([4]). The double cut and join (DCJ) operation acts on two ver-
tices u and v of a graph with vertices of degree one or two in one of the following
three ways:

(a) If both u = {p, q} and v = {r, s} are internal vertices, these are replaced by
the two vertices {p, r} and {s, q} or by the two vertices {p, s} and {q, r}.

(b) If u = {p, q} is internal and v = {r} is external, these are replaced by {p, r}
and {q} or by {q, r} and {p}.

(c) If both u = {q} and v = {r} are external, these are replaced by {q, r}.

In addition, as an inverse of case (c), a single internal vertex {q, r} can be
replaced by two external vertices {q} and {r}.

Given two genomes A and B, the DCJ distance denoted by dDCJ (A, B) is the
minimum number of DCJ operations necessary to transform genome A into
genome B. Thus, we can formulate the following problem:

The Genome Halving Problem. Given a rearranged duplicated genome A,
find a perfectly duplicated genome B such that the DCJ distance between A
and B is minimal.

To solve this problem, we will construct another graph in the next section.
Again, the graph is defined on the adjacencies and telomeres of A, but this time
it represents the relation between paralogous extremities.
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3 Natural Graphs

Let us consider a duplicated genome A with n genes each present in two copies.
Assume that the two paralogs of every gene are assigned arbitrarily.

Definition 4. The natural graph NG(A) is a graph whose vertices are the ad-
jacencies and telomeres of A and, for each extremity, the two paralogous extrem-
ities are connected by an edge, i.e. two vertices u and v are connected if p ∈ u
and p ∈ v.

Observe that the total number of edges in the graph equals two times the number
of genes. The natural graph of genome A1 from Example 1 is given in Fig. 2.
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Fig. 2. Natural graph N(A1) of genome A1 of Example 1

In a natural graph, by definition, every vertex has degree one or two. Thus,
the natural graph consists only of cycles and paths.

Definition 5. A cycle (or a path) with k edges, is a k-cycle (or k-path). If k
is even, the cycle (or path) is called even, otherwise odd.

Note that an adjacency {p, p} consisting of two paralogous extremities is a 1-
cycle. The set of components of the natural graph can be partitioned into the
following four disjoint subsets:

– EC := set of even cycles
– EP := set of even paths
– OC := set of odd cycles
– OP := set of odd paths

The following lemma is an immediate consequence of Lemma 1:

Lemma 2. A genome A is perfectly duplicated if and only if all cycles in NG(A)
are 2-cycles and all paths in NG(A) are 1-paths, i.e. n = |EC| + |OP |/2.
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4 Reconstructing an Ancestral Genome

In this section, we solve the genome halving problem by applying DCJ operations
to the natural graph. This allows us to reconstruct a perfectly duplicated genome.
We will first present our distance formula in Section 4.1 and then a linear time
algorithm in Section 4.2.

4.1 Distance Formula

Consider a rearranged duplicated genome A. When a DCJ operation is applied
to genome A, it acts on the adjacencies and telomeres of genome A. The same
DCJ operation acts also on the natural graph NG(A) since the adjacencies and
telomeres of genome A are the vertices of this graph. Because the natural graph
is a union of cycles and paths, all the properties of DCJ operations apply here
as well, for instance: A DCJ operation can change the number of components
only by one, as shown in [4]. Thus, we get a lower bound on the distance:

Lemma 3. For a given genome A and any perfectly duplicated genome B over
the same set of n genes, we have that

dDCJ(A, B) ≥ n − (|EC| +
⌊

|OP |
2

⌋
).

In fact, there always exists a DCJ operation that increases either the number of
even cycles or the number of odd paths. Thus, the distance decreases and the
lower bound is strict as we see in the next theorem.

Theorem 1. Let A be a rearranged duplicated genome with n genes each present
in two copies, then the minimal distance between A and any perfectly duplicated
genome B equals

min
B

dDCJ (A, B) = n − (|EC| +
⌊

|OP |
2

⌋
)

where |EC| is the number of even cycles and |OP | is the number of odd paths in
the natural graph NG(A).

Proof. We explain how to find a sequence of DCJ operations that achieves the
lower bound of Lemma 3.

Let J , K, L and M be the total number of edges in all even cycles, even paths,
odd cycles and odd paths, respectively. Note that the number of genes equals
half of the total number of edges in NG(A), i. e. n = (J + K + L + M)/2.

Consider a connected component G of NG(A).

1. If G is an even j-cycle, we can create j
2 2-cycles with j

2 − 1 DCJ operations.
Thus, for |EC| even cycles with J edges in total, we need J

2 − |EC| DCJ
operations to create J

2 2-cycles.
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2. If G is an even k-path, we can create k
2 2-cycles with k

2 DCJ operations. Thus,
for |EP | even paths with K edges in total, we need K

2 DCJ operations to
create K

2 2-cycles.
3. If |OP | is even, then |OC| is also even.

(a) If G is an odd l-cycle, we can create l−1
2 2-cycles and one 1-cycle with

l−1
2 DCJ operations. Thus, for |OC| odd cycles with L edges in total,

we need L−|OC|
2 DCJ operations to create L−|OC|

2 2-cycles and |OC| 1-
cycles. We can choose two 1-cycles and create one 2-cycle. Since |OC| is
even, we can thus create |OC|

2 2-cycles with |OC|
2 DCJ operations. Thus,

in total we need L−|OC|
2 + |OC|

2 = L
2 DCJ operations.

(b) If G is an odd m-path, we can create m−1
2 2-cycles and one 1-path with

m−1
2 DCJ operations. Thus, for |OP | odd paths with M edges in total,

we need M−|OP |
2 DCJ operations to create M−|OP |

2 2-cycles and |OP |
1-paths.

Since L and M are even, summing up (a) and (b) gives us in total L+M
2 − |OP |

2
DCJ operations.

4. If |OP | is odd, then |OC| is also odd.
(a) If G is an odd l-cycle, we can create l−1

2 2-cycles and one 1-cycle with l−1
2

DCJ operations. Thus, for |OC| odd cycles with L edges in total, we need
L−|OC|

2 DCJ operations to create L−|OC|
2 2-cycles and |OC| 1-cycles. We

can choose two 1-cycles and create one 2-cycle. Since |OC| is odd, there
is one remaining 1-cycle that can be transformed into a 1-path by one
extra DCJ operation. Thus, in total we need L−|OC|

2 + |OC|−1
2 +1 = L+1

2
DCJ operations.

(b) If G is an odd m-path, we can create m−1
2 2-cycles and one 1-path with

m−1
2 DCJ operations. Thus, for |OP | odd paths with M edges in total,

we need M−|OP |
2 DCJ operations to create M−|OP |

2 2-cycles and |OP |
1-paths.

Since L and M are odd, summing up (a) and (b) gives us in total L+1
2 +

M−|OP |
2 = L+M

2 − |OP |−1
2 DCJ operations.

By bringing together the results, the distance formula follows. ⊓'

4.2 Algorithm

In this section, we show how the distance computation as well as an algorithm
for reconstructing an ancestral genome can be implemented in linear time. Based
on the proof of Theorem 1, our strategy for reconstructing a perfectly duplicated
genome is the following:

1. Construct the natural graph.
2. Maximize the number of even cycles and odd paths in the natural graph.
3. Reconstruct the perfectly duplicated genome from the resulting natural

graph.
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The natural graph can easily be constructed in O(n) time and O(n) space if
we store the information about the adjacencies and the telomeres in two tables.
The first table represents the vertices of the natural graph. Each of its entries
contains one or two extremities, depending whether it represents an adjacency or
a telomere. The edges can be obtained from the second table that stores for each
paralogous extremity the index of the vertex that contains it. The two tables for
genome A1 of Example 1 are given in Tables 1 and 2. Thus, the natural graph
NG(A1) has 10 vertices and 8 edges, for example one edge joining vertex 10 with
vertex 3, another edge joining vertex 9 with vertex 2, and so on.

Table 1. Table storing the adjacencies
and telomeres of genome A1. Adjacencies
have two entries, telomeres just one.

1 2 3 4 5 6 7 8 9 10
first dh

2 dt
2 ah

2 dt
1 ct

2 bh
2 bh

1 bt
1 ch

1 ah
1

second – at
2 dh

1 ch
2 bt

2 – – ct
1 at

1 –

Table 2. Table storing for each gene in
A1 the location of its head and its tail in
Table 1

a1 a2 b1 b2 c1 c2 d1 d2

head 10 3 7 6 9 4 3 1
tail 9 2 8 5 8 5 4 2

Using these tables, the connected components can be computed in linear time,
and thus the distance as given by Theorem 1.

In order to reconstruct a perfectly duplicated genome, we maximize the num-
ber of even cycles and odd paths in the natural graph. This is done by Algo-
rithm 1, following the idea used in the proof of Theorem 1. By marking each
adjacency of Table 1, Algorithm 1 can be implemented in linear time. The adja-
cencies are processed in left-to-right order and each time an unmarked adjacency
is detected, all adjacencies on its path or cycle are marked and transformed into
2-cycles and 1-paths by successively applying DCJ operations. Note that, by
applying a DCJ operation, at most 4 entries in each of the two tables have to be
updated. Eventually, all cycles are 2-cycles and all paths are 1-paths and a per-
fectly duplicated genome can be obtained as follows: By ignoring the assignment
of the paralogs, each 2-cycle consists of two adjacencies of the form {ux, vy},
where x, y ∈ {t, h}, and each 1-path connects two telomeres of the form ux,
where x ∈ {t, h}. Thus, a perfectly duplicated genome can be reconstructed by
replacing each 2-cycle by the adjacency {ux, vy} and each 1-path by the telomere
ux. So, the overall running time of the algorithm for reconstructing a perfectly
duplicated genome is linear.

5 A Note on the Warren-Sankoff Formula

In [14], Warren and Sankoff consider a more general genome model where the
ancestral genome has to be neither circular-perfectly duplicated, nor linear-
perfectly duplicated. Therefore, we will use the notion general-perfectly dupli-
cated in order to distinguish it from our definition of a perfectly duplicated
genome. More precisely, a genome is general-perfectly duplicated if and only if
for each adjacency {u, v} in A, also {u, v} is in A, and for each telomere {u} in A,
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Algorithm 1. Reconstruction of a perfectly duplicated genome
1: Construct NG(A), the natural graph of genome A
2: while there exists a k-path with k > 1 do
3: Create a 2-cycle (and a (k − 2)-path if k > 2)
4: end while
5: /* all remaining paths have length 1 */
6: while there exists a k-cycle with k > 2 do
7: Create a 2-cycle and a (k − 2)-cycle
8: end while
9: /* all remaining cycles have length 1 or 2 */

10: while there exists a 1-cycle do
11: if there exists another 1-cycle then
12: Create a 2-cycle
13: else
14: Create a 1-path
15: end if
16: end while

also {u} is in A. Observe that, in contrast to our definition, a general-perfectly
duplicated genome can have adjacencies of the type {u, u}. For example, the
following genome is general-perfectly duplicated, but not perfectly duplicated:

! ! ! ! !bh
1 bt

1 ch
1 ct

1 ct
2 ch

2b
t
2 bh

2 ! ! !!dt
2 ah

2 ah
1 dt

1dh
2 dh

1

at
2 at

1

Now, let us denote by dgeneral
DCJ (A, B) the minimum number of DCJ operations

needed to transform a rearranged duplicated genome A into a general-perfectly
duplicated genome B. By showing an upper and a lower bound, Warren and
Sankoff finally claim that

min
B

dgeneral
DCJ (A, B) = n − (|EC| + |OP | +

⌊
|OC|

2

⌋
).

As a counterexample, consider a genome with just one gene a. Assume that
the genome has two linear chromosomes, each consisting of one paralog a1 and
a2. Note that the genome is general-perfectly duplicated and the natural graph
has two paths of length one. Thus, the distance should be zero, but the above
formula gives us

n − |OP | = 1 − 2 = −1.

Even though their distance formula is formulated in terms also defined in
the natural graph, Warren and Sankoff follow a different approach. Therefore,
instead of using their techniques, we will present in the following a correction of
their result by modifying our algorithm.

As mentioned above, the difference is that a general-perfectly duplicated
genome may have adjacencies that correspond to 1-cycles in the natural graph.
Thus, we have:
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Lemma 4. A genome A is general-perfectly duplicated if and only if all cycles
in NG(A) are 2-cycles or 1-cycles, and all paths in NG(A) are 1-paths.

As a consequence of this lemma, we do not have to apply DCJ operations in
order to get rid of 1-cycles in the natural graph as in our genome model. Since
there are at most ⌈|OC|/2⌉ such DCJ operations, one can easily show that

min
B

dDCJ(A, B) = min
B

dgeneral
DCJ (A, B) +

⌈
|OC|

2

⌉
.

By this fundamental relation, one can derive the distance formula for the
general DCJ model studied by Warren and Sankoff in [14]:

Theorem 2. Let A be a rearranged duplicated genome with 2n genes, then the
minimal distance between A and any perfectly duplicated genome B equals

min
B

dgeneral
DCJ (A, B) = n − (|EC| +

|OP | + |OC|
2

)

where |EC| is the number of even cycles, |OC| the number of odd cycles and
|OP | the number of odd paths in the natural graph NG(A).

It should be mentioned that an optimal algorithm for reconstructing a general-
perfectly duplicated genome is obtained by just removing the last while-loop in
our Algorithm 1.

6 Conclusion and Open Questions

In this paper, we solve the Genome Halving Problem for the DCJ distance
under a general genome model with coexisting circular and linear chromosomes.
Surprisingly, this can be done by working directly on the natural graph — all
other graphs that are typically used in this context are bypassed. Moreover, our
approach is also able to describe alternative genome models such as the one
presented by Warren and Sankoff. Thus, our genome model represents a firm
starting point for further studies and variants of the Genome Halving Problem.

One direction is to consider a more general set of rearrangement operations,
the so-called multi-break rearrangements. By this generalization, a DCJ opera-
tion is equivalent to a 2-break operations and transpositions can be modelled by
a 3-break operation instead of two DCJ operations as in our model. Therefore,
the results of [3] can be extended to genomes with linear and circular chromo-
somes.

Finally, one can consider duplicated genomes with a higher multiplicity of
each gene. This extension yields a natural graph with vertices of degree greater
than two. It would have to be studied whether the DCJ operation can also be
used on such a graph and how to partition the connected components.
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