
Quadratic Time Algorithms for Finding
Common Intervals in Two and More Sequences

Thomas Schmidt1 and Jens Stoye2

1 International NRW Graduate School in Bioinformatics and Genome Research,
Center of Biotechnology, Universität Bielefeld, 33594 Bielefeld, Germany

Thomas.Schmidt@CeBiTec.Uni-Bielefeld.de
2 Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany

Stoye@TechFak.Uni-Bielefeld.de

Abstract. A popular approach in comparative genomics is to locate
groups or clusters of orthologous genes in multiple genomes and to pos-
tulate functional association between the genes contained in such clus-
ters. To this end, genomes are often represented as permutations of their
genes, and common intervals, i.e. intervals containing the same set of
genes, are interpreted as gene clusters. A disadvantage of modelling
genomes as permutations is that paralogous copies of the same gene
inside one genome can not be modelled.
In this paper we consider a slightly modified model that allows paralogs,
simply by representing genomes as sequences rather than permutations of
genes. We define common intervals based on this model, and we present
a simple algorithm that finds all common intervals of two sequences in
Θ(n2) time using Θ(n2) space. Another, more complicated algorithm
runs in O(n2) time and uses only linear space. We also show how to
extend the simple algorithm to more than two genomes, and we present
results from the application of our algorithms to real data.

1 Introduction

The availability of completely sequenced genomes for an increasing number of
organisms opens up new possibilities for information retrieval by whole genome
comparison. The traditional way in genome annotation is establishing ortholo-
gous relations to well-characterized genes in other organisms on nucleic-acid or
protein level. In the field of high-level genome comparison the attention is di-
rected to gene order and content in related genomes, instead. During the course
of evolution, speciation results in the divergence of genomes that initially have
the same gene order and content. If there is no selective pressure, successive
rearrangements that are common in prokaryotic genomes will eventually lead to
a randomized gene order. Therefore the presence of a region of conserved gene
order is a source of evidence for some non-random signal that allows, e.g., the
prediction of groups of functionally associated genes [13].

Usually, two closely related prokaryotes share many gene clusters, which are
sets of genes in close proximity to each other, but not necessarily contiguous

2

nor in the same order in both genomes [9]. The existence of such gene clusters
has been explained in different ways: by functional selection [8], operon for-
mation [3,7], and other processes in evolution which affect the gene order and
content [10]. These papers show that the conservation of gene order is a source
of information for many fields in genomic research. Unfortunately, the defini-
tion of gene clusters differs as the case arises, and models are based on heuristic
algorithms which depend on very specific parameters like the size of gaps be-
tween genes. Also all of these approaches lack a statistical analysis to test the
significance if an observed gene cluster occurs just by chance. Such an analysis
was performed by Durand and Sankoff [5], who present probabilistic models to
determine the significance of gene clusters, but leave open the question how to
detect these gene clusters in two or more given genomes.

The first rigorous formulation of the concept of a gene cluster was given by
Uno and Yagiura [12]. They introduced the notion of common intervals as con-
tiguous regions in each of two permutations containing the same elements, and
gave an optimal O(n + K) time algorithm for finding all K common intervals
in two permutations of n elements. Heber and Stoye [6] extended this result to
common intervals of k ≥ 2 permutations. But the simplicity of the model makes
it unsuitable to be used on real data. Aspects like coding direction, paralogous
genes, or the size of interleaving non-coding regions are ignored. On the other
hand, model extensions quickly increase the computational complexity of algo-
rithms for detecting gene clusters. As one step of extending the model while
still staying within feasible computation time, in this paper we address the in-
tegration of paralogous genes, i.e. multiple copies of the same gene in a genome,
into the model of common intervals, implying that we work on strings instead
of permutations.

In [1], Amir et al. developed an algorithm applicable to our problem, using
an efficient coding (fingerprints) of the sub-alphabets of substrings. The time
complexity of their algorithm is O(n|Σ| log n log |Σ|) where |Σ| is the alphabet
size. In our application, though, where the number of different genes (the alpha-
bet size) is closely related to the length of the genome (we will always assume
that |Σ| ∈ Θ(n)), this becomes O(n2 log2

n). A recent algorithm, presented by
Didier in [4], solves our problem using a tree-like data structure in O(n2 log n)
time, independent of the alphabet size. This algorithm will be further discussed
in Section 5, where we show how its running time can be reduced to O(n2).

The main result of this paper is a worst-case optimal Θ(n2) time and space
algorithm based on elementary data structures that detects all common intervals
of two strings. We also sketch how this algorithm can be extended to find gene
clusters in more than two or in a subset of k� out of k genomes. The application
of these algorithms on real data presented in Section 6 shows that the incorpo-
ration of paralogous genes and regions of internal duplication is a new source of
information for research in the field of comparative genomics.

3

2 Basic Definitions

Given a string S over the finite alphabet of integers Σ := {1, ..., m}, |S| is the
length of S, S[i] refers to the ith character of S, and S[i, j] is the substring of S

that starts with the ith and ends with the jth character of S. For convenience
it will always be assumed for a string S that S[0] = S[|S| + 1] = m + 1 are
characters not occurring elsewhere in S, so that border effects can be ignored
when speaking of the left or right neighbor of a character in S. In our application
of comparative genomics, the characters from Σ represent the genes. We will refer
to S as a genome or a string interchangeably.

Definition 1 (character set). Given a string S, the character set of a sub-
string S[i, j] is defined by

CS(S[i, j]) := {S[k] | i ≤ k ≤ j} ⊂ Σ.

A character set represents the set of all genes occurring in a given interval of
a genome, where the order and the number of occurrences of paralogous copies
of a gene is irrelevant.

Definition 2 (CS-location, maximal). Given a string S over an alphabet Σ

and a subset C ⊆ Σ, the pair (i, j) is a CS-location of C in S if and only if
CS(S[i, j]) = C. A CS-location (i, j) of C in S is left-maximal if S[i − 1] /∈ C,
it is right-maximal if S[j + 1] /∈ C, and it is maximal if it is both left- and
right-maximal.

A CS-location of a subset C of Σ represents a contiguous region in a genome
that contains exactly the genes contained in C, allowing for possible multiplic-
ities. Note that C has a CS-location in S if and only if C has a maximal CS-
location in S.

Definition 3 (common CS-factor of k strings). Given a collection of k

strings S = (S1, S2, . . . , Sk) over an alphabet Σ, a subset C ⊆ Σ is a common
CS-factor of S if and only if C has a CS-location in each Sl, 1 ≤ l ≤ k.

A common CS-factor of k genomes represents a gene cluster that occurs
in each of the k genomes. This concept is similar to a common interval of k

permutations, but it allows the presence of paralogous genes in the genomes and
particularly within a gene cluster.

These definitions motivate the following two problems:

Problem 1. Given a collection of k strings S = (S1, S2, . . . , Sk), find all its com-
mon CS-factors.

Problem 2. For each common CS-factor of S, find all its maximal CS-locations
in each of the Sl, 1 ≤ l ≤ k.

Note that the solution of Problem 2 implies a solution of Problems 1. In this
paper we present algorithms that solve both of these problems in optimal time
and space.

4

3 A Simple Pairwise Algorithm

For k = 2 sequences, the best known algorithm so far solving Problems 1 and 2
requires O(n2 log n) time and linear space [4] where n is the length of the longer
of the two strings. Here we present an algorithm “Connecting Intervals” (CI)
that solves the two problems in Θ(n2) time and requires Θ(n2) space. Moreover,
we will show in the next section how this algorithm can easily be generalized to
more than two genomes.

3.1 Basic Algorithm

The input for Algorithm CI are two strings S1 and S2, each of length ≤ n, with
characters drawn from the set Σ = {1, . . . , m}, m ≤ 2n. Its output are the pairs
of CS-locations of all common CS-factors of S1 and S2. Pseudocode is given in
Algorithm 1.

In a pre-processing step, the algorithm constructs two simple data structures,
illustrated in Fig. 1. The first data structure, POS, contains for each character
c ∈ Σ a list POS[c] that holds the positions of occurrence of c in sequence
S1 in ascending order, see Fig. 1 (a). The second data structure, NUM , is
a |S1| × |S1| table where entry NUM(i, j) contains the number |CS(S1[i, j])|
of different characters in the interval S1[i, j] for each 1 ≤ i ≤ j ≤ |S1|, see
Fig. 1 (b). Clearly, POS requires linear space and can be computed in linear time
by a simple scan over S1, while NUM requires Θ(n2) space and its computation
takes Θ(n2) time.

(a) POS[1] = 2, 5 (b) NUM(i, j) :
POS[2] = 3, 7
POS[3] = 1, 4
POS[4] = empty

POS[5] = 6
POS[6] = 8

i\j 1 2 3 4 5 6 7 8
1 1 2 3 3 3 4 4 5
2 1 2 3 3 4 4 5
3 1 2 3 4 4 5
4 1 2 3 4 5
5 1 2 3 4
6 1 2 3
7 1 2
8 1

Fig. 1. Pre-processing of S1 = (3, 1, 2, 3, 1, 5, 2, 6) with Σ = {1, . . . , 6}: (a) for each
character c ∈ Σ, POS[c] holds the positions at which c occurs in S1; (b) the table
NUM holding the values |CS(S1[i, j])|.

On a high level, Algorithm CI can be described as follows (see Fig. 2): For a
fixed position i in S2, while reading the substring of S2 starting at that position,
the observed characters in S1 are marked and simultaneously maximal intervals
of marked characters are tracked. This is iterated for all start positions i of
substrings in S2.

5

(b)

(c)

(d)

(e)

(a)

S2: S1:

S2: S1:

S2: S1:

S2: S1:

S2: S1:

4 3 5 5 5 1 4 2 2 3 1 2 3 1 5 2 6

i j

4 3 5 5 5 1 4 2 2 3 1 2 3 1 5 2 6

i j

4 3 5 5 5 1 4 2 2 3 1 2 3 1 5 2 6

i j

4 3 5 5 5 1 4 2 2 2 1 6

i j

1 23 3 5

4 3 5 5 5 1 4 2 2 3 1 2 3 1 5 2 6

i j

Fig. 2. Algorithm CI at a high level: Position i = 2 of S2 is fixed as the left end of
the increasing interval [i, j]. While moving j to the right, the observed characters are
marked (underlined) in S1, and maximal intervals of marked characters are tracked
(the boxes).

The maximal intervals of marked characters in S1 are candidates for common
CS-factors with the current interval [i, j] of S2. It only needs to be tested (i) if
the character set of a candidate interval coincides with that of S2[i, j], and (ii)
if the interval S2[i, j] is a maximal CS-location of its character set.

In fact, to test (i) it suffices to compare the number of different characters
in the two intervals. We know that the maximal marked intervals in S1 contain
a subset of the characters in S2[i, j], hence if the character sets have equal size,
they must be equal. The number of different characters in S2[i, j] can be tracked
while reading the substring of S2 starting at position i. (In Algorithm 1 we use
a binary vector OCC plus a counter |OCC| that counts the number of ones in
OCC.) The number of different characters in a maximal marked interval in S1

can be read from the table NUM that was computed in the preprocessing phase.
Test (ii) is performed implicitly by the way how the value of j is incremented

and the while-loop starting in line 5 of Algorithm 1 is terminated. Clearly,
during the process of increasing j, once the interval S2[i, j] is not left-maximal
for some j ≥ i (i.e. S2[i − 1] = S2[j�] for some j� ∈ {i, . . . , j}), it will never be
left-maximal for any j�� > j. Hence it is a valid action to terminate the while
loop as soon as S2[i, j] is not left-maximal, and left-maximality is guaranteed
whenever the body of the while loop is entered. Right-maximality is explicitly
tested in line 8 of Algorithm 1. This can be done in constant time by testing if
OCC[S2[j + 1]] = false.

6

This establishes the correctness of the algorithm. For the analysis we have
to show how the marking and tracking of maximal intervals in S1 is performed.
Obviously, marking the r occurrences of character c = S2[j] in S1 is possible in
O(r) time using the list POS[c]. Further, if for each maximal interval of marked
positions in S1 the interval boundaries (start, end) are stored at the left and
right end of the interval, then it is easy to test, whenever a position p of S1 is
newly marked, if it connects to already existing intervals (ending at position p−1
or starting at position p + 1 or both), and to increase these intervals by index
p (if p connects to only one interval) or merge the two intervals (if p connects
to two intervals). All this can be done in constant time for each newly marked
position p of S1.

Algorithm 1 Connecting Intervals (CI)
1: pre-processing: build data structures POS and NUM

2: for i = 1, . . . , |S2| do
3: OCC[c]← 0 for each character c in Σ, |OCC|← 0
4: j ← i

5: while j ≤ |S2| and (i, j) is left-maximal in S2 do
6: c← S2[j]
7: OCC[c]← 1
8: while (i, j) is not right-maximal in S2 do
9: j ← j + 1

10: end while
11: for each position p in POS[c] do
12: mark position p in S1

13: find the maximal interval (start, end) of positions marked so far that con-
tains position p

14: if NUM(start, end) = |OCC| and (start, end) is maximal in S1 then
15: output the pair ((i, j), (start, end))
16: end if
17: end for
18: j ← j + 1
19: end while
20: end for

Theorem 1. Algorithm CI outputs all common CS-factors of S1 and S2, in
form of pairs of their maximal CS-locations, in Θ(n2) time using Θ(n2) space.

Proof. The for-loop starting in line 2 of Algorithm 1 is executed |S2| ≤ n

times; and in the outer while-loop together with the while-loop in line 8, j is
incremented at most |S1| ≤ n times. More difficult is the analysis of the for-loop
starting in line 11. Here, observe that due to the test for right-maximality in line
8, this for-loop is reached for each character c = S2[j] only once, and hence for
each i the body of the loop is executed at most

�
c∈Σ |POS[c]| = |S1| ≤ n times,

where |POS[c]| is the number of occurrences of character c in S1. Together with

7

the pre-processing, this yields the overall Θ(n2) time and space complexity. Due
to the fact that the number of common CS-factors can be as large as n(n+1)/2,
e.g. assume S1 = S2 = (1, 2, . . . , n), this algorithm is time-optimal in the sense
of worst case analysis. ��

This simple quadratic-time algorithm solves the problem of detecting all com-
mon CS-factors of two strings. It can also easily be extended to more than two
strings (see Section 4), and it provides a good opportunity to address variations
of the model (e.g. intervening non-coding regions, coding directions, or pseudo-
genes) while still staying within feasible computation time. The price for this
simplicity is paid in space consumption. The table NUM , which is calculated
during the pre-processing, consumes Θ(n2) space. In Section 5 we will discuss a
quadratic-time solution for Problems 1 and 2 that uses only linear space. Before
extending the algorithm, we shortly discuss the form of the output.

3.2 Generating Non-redundant Output

Algorithm CI outputs the common CS-factors by their maximal CS-locations
in S1 and S2, leading to a redundant output for paralogous gene clusters. For
example, given S1 = (1, 2, 3, 1, 2) and S2 = (1, 2, 4, 1, 2, 5, 1, 2), the algorithm
outputs the CS-locations for the common CS-factor {1, 2} in the following way:

((1, 2), (1, 2)), ((1, 2), (4, 5)), ((1, 2), (7, 8)), ((4, 5), (1, 2)), ((4, 5), (4, 5)), ((4, 5), (7, 8)).

A non-redundant output of the following form, should be preferred, though:

S1 : (1, 2), (4, 5) − S2 : (1, 2), (4, 5), (7, 8).

This output can be obtained by a modification of Algorithm CI that we only
sketch here. Two additional tables LOC1 and LOC2, each of size |S1|× |S1|, are
used to store lists of intervals.

In a first step, Algorithm CI is applied to S1 as first and second input se-
quence, yielding the paralogous gene clusters within S1. These are stored in
LOC1 such that if (i�, j�) is contained in list LOC1(i, j), then CS(S1[i�, j�]) =
CS(S1[i, j]), in the following way. Initially, all lists LOC1(i, j) are empty. When-
ever a common CS-factor with maximal CS-locations (i, j) and (i�, j�), i� �= i,
of a paralogous cluster is detected, then the CS-location (i�, j�) is appended to
the list in LOC1(i, j), and the interval (i�, j�) is marked, so that it is not being
tested again.

In the second step, Algorithm CI is applied to S1 and S2, detecting the
orthologous gene clusters between these two genomes. Whenever a common CS-
factor with maximal CS-locations (i, j) in S1 and (k, l) in S2 is found, the CS-
location (k, l) is appended to LOC2(i, j). Finally, the output for each non-empty
entry LOC2(i, j) is

S1 : (i, j), LOC1(i, j) − S2 : LOC2(i, j).

8

4 Multiple Genomes

To solve Problems 1 and 2 for any given k ≥ 2, Algorithm CI can easily be
extended to more than two strings. The general idea is that a set of characters
C ⊆ Σ is a common CS-factor of S = {S1, . . . , Sk} if and only if it is a (pairwise)
common CS-factor of one fixed sequence (w.l.o.g. S1) and all other sequences in
S. Therefore, Algorithm CI is applied to each pair of input strings (S1, Sr) with
Sr ∈ S and 1 ≤ r ≤ k. Since the first input string is always S1, the pre-processing
step has to be performed only once. The k-fold application of Algorithm CI leads
to an overall worst-case time and space complexity of O(kn2).

Unfortunately, with an increasing number of genomes, the probability to
have a conserved gene cluster in all genomes decreases rapidly. For the use on
biological data, it is hence even more interesting to find gene clusters which
appear in only a subset of at least k� out of k given genomes. Based on the
iterated use of Algorithm CI for multiple strings, its improvement to detect such
gene clusters can be done in a straightforward manner. This yields a worst-case
time complexity of O(k(1 + k − k�)n2). The space complexity is O(kn2) if non-
redundant output is written, and if only Problem 1 is to be solved, it can be
reduced to Θ(n2).

5 Saving Space

The basic algorithm for two sequences presented in Section 3 uses Θ(n2) space,
because for each interval [i, j] of S1 we store the number of different characters
in that interval in table NUM . In this section we present an algorithm that runs
in quadratic time and uses only linear space.

This algorithm is a modified version of the O(n2 log n) time algorithm by
Didier [4]. We sketch Didier’s algorithm here and in detail discuss only those
parts that need to be modified in order to obtain the improved time bound.

Similar to the main structure of Algorithm CI, Didier’s algorithm generates,
for a fixed left index i and variable right index j = i, i+1, . . . of intervals of
S2, candidate intervals (start, end) in S1, and then tests which of these candi-
dates are indeed maximal locations of common CS-factors. Didier uses a stack
algorithm for generating the candidates, but the way we generate the candidates
in Algorithm CI could be used as well. The main difference then is that Didier
stores the intervals in a hierarchical manner according to their overlap relation-
ship. Indeed, in Fig. 2, one can see this hierarchy for the boxes on the right hand
side of the figure.

The key idea in the testing phase of Didier’s algorithm is the notion of an
i-path which is defined in the following way:

Definition 4 (i-rank, left-/right-neighbor, i-distance, successor, i-path).

1. For a fixed position i in S2, associate to each character c ∈ Σ its i-rank
ri(c), i.e. the position of c in the list of different characters as they occur in
left-to-right order in the suffix of S2 starting at position i, and +∞ if c does
not occur in this list.

9

2. If k ≤ k� are positions of S1, the i-distance di(k, k�) between k and k� is the
maximum i-rank of characters occurring in the substring S1[k, k�].

3. For any position k of S1 with a finite i-rank r = ri(S1[k]), the left-neighbor
(resp. the right-neighbor) of k is the greatest position smaller (resp. the
smallest position greater) than k with i-rank r + 1, if it exists.

4. For a position k in S1 of finite i-rank, its successor is its (left or right)
neighbor with smaller i-distance. If both neighbors have infinite i-distance, k

does not have a successor.
5. The i-path of position k of S1 is the sequence of positions p = (p1, p2, . . . , pd)

of S1 such that p1 = k and pj is the successor of pj−1 for all 1 < j ≤ d.

An important observation is then the following.

Theorem 2 (Didier [4]). An interval candidate (start, end) in S1 with i-
distance di(start, end) = d is a maximal occurrence of a common CS-factor
with the interval [i, j] in S2 if and only if it contains an i-path (p1, p2, . . . , pd) of
length d.

Based on this theorem, Didier’s algorithm traverses for each position k with
S1[k] = 1 its i-path (p1, p2, . . . , pd) and, for each position pj on this path, it tests
if all the positions traversed on the path are contained in the interval (start, end)
where start is the leftmost index k� ≤ pj such that di(k�, pj) = j and end is the
rightmost index k� ≥ pj such that di(pj , k

�) = j. In order to avoid that paths
are traversed more than once, positions of S1 are marked whenever the test
has been done for the first time, and whenever a path that started at another
position k� enters a path that was already traversed before, the procedure is
stopped. For a fixed value of i, this part of the algorithm runs in linear time.
However, the algorithm suggested in [4] for finding the i-successors and hence the
i-paths takes time O(n log n) since a binary search in the sorted list of i-ranks
occurring between pj and its left- respectively right-successor is performed in
order to compute the two i-distances. Repeated for each i, this is the reason for
the O(n2 log n) overall time complexity.

However, the problem of computing the i-distances is an application of the
Range Maximum Query problem for which Bender and Farach [2] have shown
how it can be solved in constant time per query after linear time preprocessing.

Hence we can state the following theorem.

Theorem 3. All common CS-factors of two strings S1 and S2 of maximal length
n can be found in O(n2) time using Θ(n) space.

6 Experimental Results

In order to show the positive effect of our model extension (sequences instead of
permutations), we applied our algorithms to five bacterial genomes: Corynebac-
terium glutamicum, Bacillus subtilis, Bacillus halodurans, Pseudomonas aerug-
inosa, and Mesorhizobium meliloti, selected due to their varying pairwise evo-

10

lutionary distance. All five genomes are included in the COG (Clusters of Or-
thologous Groups of proteins) database [11], and we assume that two genes are
homologous (orthologous or paralogous) if they are in the same COG cluster.

For these five genomes Algorithm CI reported 3428 gene clusters3, where 197
clusters (6%) contain at least one paralogous gene, 216 clusters (6%) cover at
least one region of internal duplication, and 86 clusters (3%) belong to both
groups, see Fig. 3 (a). This results in 499 clusters (15%) containing at least one
paralogous gene or one region of internal duplication, which an algorithm based
on permutations would not be able to find.

Fig. 3. Results of Algorithm CI applied to five bacterial genomes: (a) distribution of
cluster type, (b) number of genomes where a cluster is found, (c) distribution of cluster
sizes.

Fig. 3 (b) shows that the majority (74%) of gene clusters was found only
between two genomes. However, a large portion of them (∼72%) stems from
the comparison of B. subtilis and B. halodurans as a result of their very low
evolutionary distance. Here, the prediction of functional roles from cluster con-
servation could be expected to fail, because the conservation results less from
selection than from the fact that these genomes did not have enough time to
diverge. A more detailed analysis of the gene clusters appearing in all five, or
at least four sequences revealed that they contain so-called house-keeping genes,
whose products are essential for the organism (e.g., ribosomal proteins, ABC
transporters, or transcription related proteins). We also found some clusters of
essential genes detected only very fragmentary, because the missing of just one
gene in one of the genomes is sufficient to ‘destroy’ this cluster.

The evaluation of the cluster size, see Fig. 3 (c), showed that ∼90% of the
clusters contain less than 10 genes. The gene cluster with the maximum number
of genes was a highly conserved region from B. subtilis and B. halodurans con-

3 Here, we call a common CS-factor a gene cluster if it contains at least two different
genes and has a CS-location in at least two sequences.

11

taining 27 genes. Based on these numbers, it seems to be possible to limit the
maximum length of a gene cluster to a fixed value, and thus reducing the time
complexity of Algorithm CI to O(n).

7 Discussion and Future Work

In this paper, we have presented a gene cluster model based on common intervals
that includes the notion of paralogous genes and regions of internal duplication.
We also presented Algorithm CI, which is the first quadratic time algorithm
that detects these gene clusters in two genomes, and sketched the extension of
this algorithm to be used on any given number of genomes. The evaluation on a
set of five bacterial genomes revealed that Algorithm CI finds ∼15% more gene
clusters than any algorithm working on permutations. To use gene clusters for
functional prediction, it is necessary to use genomes with a sufficient evolutionary
distance to avoid finding gene clusters that did not have enough time to diverge.
The evaluation of the cluster size provides the opportunity to reduce the time
complexity to linear by setting a fixed maximum cluster size. In future, this
reduction possibly allows to generalize the model to report also gene clusters
with a small symmetric set difference.

Acknowledgments

The authors wish to thank Gilles Didier, Mathieu Raffinot, Sven Rahmann, and
David Sankoff for helpful discussions on the topic of gene clusters.

References

1. A. Amir, A. Apostolico, G.M. Landau, and G. Satta. Efficient text fingerprinting
via parikh mapping. J. Discr. Alg., 26:1–13, 2003.

2. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings
of the 4th Latin American Symposium on Theoretical Informatics, LATIN 2000,
volume 1776 of LNCS, pages 88–94. Springer Verlag, 2000.

3. P. Bork, B. Snel, G. Lehmann, M. Suyama, T. Dandekar, W. Lathe III, and M. A.
Huynen. Comparative genome analysis: exploiting the context of genes to infer evo-
lution and predict function. In D. Sankoff and J. H. Nadeau, editors, Comparative
genomics, pages 281–294. Kluwer Academic Publishers, 2000.

4. G. Didier. Common intervals of two sequences. In Proceedings of the Third Inter-
national Workshop on Algorithms in Bioinformatics, WABI 2003, pages 17–24.

5. D. Durand and D. Sankoff. Tests for gene clustering. J. Comput. Biol., 10(3/4):453–
482, 2002.

6. S. Heber and J. Stoye. Finding all common intervals of k permutations. In Pro-
ceedings of the 12th Annual Symposium on Combinatorial Pattern Matching, CPM
2001, pages 207–218, 2001.

7. W.C. Lathe III, B. Snel, and P. Bork. Gene context conservation of a higher order
than operons. Trends Biochem. Sci., 25:474–479, 2000.

12

8. R. Overbeek, M. Fonstein, M. D’Souza, G.D. Pusch, and N. Maltsev. The use of
gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96:2896–
2901, 1999.

9. I.B. Rogozin, K.S. Makarova, J. Murvai, E. Czabarka, Y.I. Wolf, R.L. Tatusov,
L.A. Szekely, and E.V. Koonin. Connected gene neighborhoods in prokaryotic
genomes. Nucleic Acids Res., 30:2212–2223, 2002.

10. J. Tamames, G. Casari, C. Ouzounis, and A. Valencia. Conserved clusters of
functionally related genes in two bacterial genomes. J. Mol. Evol., 44:66–73, 1997.

11. R.L. Tatusov, D.A. Natale, I.V. Garkavtsev, T.A. Tatusova, U.T. Shankavaram,
B.S. Rao, B. Kiryutin, M.Y. Galperin, N.D. Fedorova, and E.V. Koonin. The
COG database: new developments in phylogenetic classification of proteins from
complete genomes. Nucleic Acids Res., 29:22–28, 2001.

12. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26:290–309, 2000.

13. I. Yanai and C. DeLisi. The society of genes: networks of functional links between
genes from comparative genomics. Genome Biol., 3:0064.1–12, 2002.

