3. Sorting by Signed Reversals

Literature:

Bergeron, A., Mixtacki, J., & Stoye, J. (2005). *Chapter 10: The Inversion Distance Problem.* In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny. Oxford University Press, pp. 262-290.

Tannier, E., Bergeron, A., & Sagot, M.-F. (2007). *Advances on sorting by reversals*. Discrete Applied Mathematics, Vol. 155(6-7), pp. 881–888.

Problem 2 (Sorting by Signed Reversals). Given two signed permutations π and σ , find a series of reversals ρ_1, \ldots, ρ_d , such that $\pi \circ \rho_1 \circ \cdots \circ \rho_d = \sigma$ and $srd(\pi, \sigma) = d$.

It turns out that finding an actual sorting scenario is more complicated than computing the reversal distance.

3.1. An algorithm for computing a sorting scenario

The algorithm has two steps:

- 1. Merge or cut components to transform all unoriented into oriented components.
- 2. Apply reversals of type I to break cycles into trivial cycles (adjacencies).

Step 1 can be performed in O(n) time, see Bader, Moret, and Yan (2001), whereas step 2 requires $O(n^{\frac{3}{2}})$ time by the best, known algorithm by Tannier and Sagot (2005) and Han (2006). The remainder of this chapter focuses on step 2, discussing a less sophisticated algorithm that achieves this task only in quadratic time. Its underlying strategy is to identify so-called *save reversals*.

A reversal always *acts* on two (reality) edges, but it can affect other edges. To study these effects, we need a more appropriate data structure! Meet the *overlap graph*:

Definition 10. The overlap graph $OV(\pi)$ of a permutation π is the graph whose vertices are the n + 1 desire edges (arcs) of $BG(\pi)$ and whose edges correspond to crossings between them.

Example 7. The edge-labelled breakpoint graph and the overlap graph of $\pi^1 = (0 - 2 - 3 \ 1 \ 4 \ 6 \ 5 \ 7)$ is shown in Figure 3.1.

Observation 4. Isolated vertices correspond to adjacencies of the permutation.

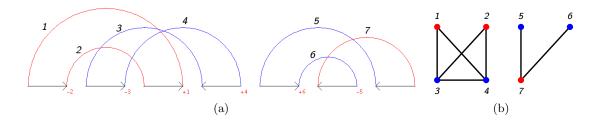


Figure 3.1.: (a) The breakpoint graph with labelled desire edges of permutation π^1 ; (b) The overlap graph of π with vertices corresponding to the edge label of its breakpoint graph.

Observation 5. A component of π is a connected component of $OV(\pi)$.

What happens to $OV(\pi)$ when we apply a reversal? To understand the intricacy of the reversal operation, it is helpful to look at vertex-induced subgraphs in $OV(\pi)$:

Definition 11 ((Vertex-) Induced Subgraph). Given a set of vertices $S \subseteq V$ of a graph G = (V, E), the S-induced subgraph of G is the graph G' = (S, E'), where $E' = \{(u, v) \in E \mid u, v \in S\}$.

Definition 12 (Local Complementation). Let G_v be the induced subgraph of a vertex v and its adjacent vertices (the neighborhood of v), the local complementation of v, denoted G/v, is the operation that complements all (i) edges and (ii) colors of vertices of subgraph G_v .

Lemma 2. For a permutation π and an oriented vertex v of the overlap graph, $OV(\pi \circ \rho(v)) = OV(\pi)/v$.

Theorem 4. If $OV(\pi)$ has no unoriented component, then it has an oriented vertex v such that $OV(\pi)/v$ has no unoriented component.

The proof (see Bergeron *et al.*) makes use of the following definition and lemma:

Definition 13. The score of a reversal is the number of oriented vertices in the resulting permutation.

The score s of a reversal can be easily computed in the overlap graph: Let v be a vertex of OV(.). Clearly the score of $\rho(v)$ is given by

$$s(\rho(v)) = T + U(v) - O(v) - 1$$
,

where T is the total number of oriented vertices in the overlap graph and U(v), O(v) are the number of unoriented, respectively oriented vertices adjacent to v.

Example 7 (continued). Figure 3.2 shows for each vertex of $OV(\pi^1)$ its corresponding reversal score.

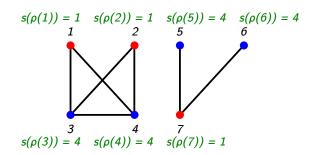


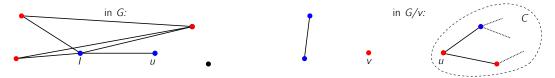
Figure 3.2.: Reversal scores corresponding to vertices of $OV(\pi^1)$.

Lemma 3. A type I reversal of maximal score does not create new unoriented components.

Proof. We now show that if an unoriented component would be created by the reversal with maximal score, then this unoriented component would contain a vertex whose corresponding reversal has an even higher score, contradicting the initial assumption.

Given an overlap graph G = (V, E) and a vertex v with $s(\rho(v))$ being maximal over all vertices in V. Assume that there is an unoriented component C in G/v. Clearly, if C is oriented in G, then, in order to become unoriented, component C must contain at least one vertex u that is connected to v in G and thus is affected by the complementation.

Observe that all unoriented vertices of G that are connected to v must also be connected to u, otherwise C would not be unoriented in G/v. Thus, $U(u) \ge U(v)$.



Following the same logic, all oriented vertices connected to u in G must also be connected to v, otherwise C would not be unoriented in G/v. Thus, $O(u) \leq O(v)$ and we have $T + U(v) - O(v) - 1 \leq T + U(u) - O(u) - 1 \Leftrightarrow s(\rho(v)) \leq s(\rho(u)).$

Now, if O(u) = O(v) and U(u) = U(v), then v's and u's induced subgraph in G are identical, hence all vertices that are no longer connected to v in G/v are also not connected to u.

In other words, for u to be part of an unoriented component of G/v entails the neighborship of an additional unoriented vertex that is not connected to v in G. But this would mean that $s(\rho(u)) > s(\rho(v))$, a contradiction!

Definition 14. A reversal with maximal score is safe.

Theorem 5. If $\rho(v)$ is a safe reversal of permutation π , then $srd(\pi \circ \rho(v)) = srd(\pi) - 1$.