6. The Genome Halving Problem

Literature:

Mixtacki, J. (2008). *Genome Halving under DCJ Revisited*. Proceedings of COCOON 2008, LNCS 5092(Chapter 28), pp. 276–286.

Motivation: reconstruct the original gene order within a genome after a whole genome duplication followed by genome rearrangement events.

Definition 21 (Duplicated Genome). In a duplicated genome, each gene appears twice, or (in adjacency notation) each head and tail appears twice. Further,

- a paralogous extremity of p is denoted by \bar{p} ,
- a paralogous adjacency of $x = \{p, q\}$ is denoted by $\bar{x} = \{\bar{p}, \bar{q}\}$, and
- a paralogous chromosome of C is denoted by \overline{C} .

Example 9. A duplicated genome: $(\circ -d_2 a_2 -d_1 -c_2 b_2 \circ) (\circ -b_1 c_1 a_1 \circ)$

Definition 22. A genome is

- linear-perfectly duplicated, if for each linear chromosome C_i, there is also a chromosome C_j = C
 _i for some j ≠ i,
- circular-perfectly duplicated, if for each circular chromosome C_i , either there is also a chromosome $C_j = \overline{C}_i$ for some $j \neq i$, or $C_i = C \cup \overline{C}$, where each adjacency of C_i occurs either in C or in \overline{C} , but not in both,
- perfectly duplicated *if it is linear-perfectly duplicated and circular-perfectly duplicated.*

Example 10. A linear-perfectly duplicated genome: $(\circ a_1 - d_2 - c_1 b_1 \circ) (\circ a_2 - d_1 - c_2 b_2 \circ)$; a perfectly duplicated genome containing a circular-perfectly duplicated chromosome: $(a_1 d_1 a_2 d_2) (\circ c_1 b_1 \circ) (\circ c_2 b_2 \circ)$.

Lemma 5. A genome A is perfectly duplicated if and only if

- for each adjacency $\{u, v\}$ in A, also $\{\bar{u}, \bar{v}\}$ is in A and $u \neq \bar{v}$ and
- for each telomere $\{u\}$ in A, also $\{\bar{u}\}$ is in A.

Problem 5 (Genome Halving Problem). Given a (rearranged) duplicated genome A, find a perfectly duplicated genome B such that the DCJ distance between A and B is minimal.

Definition 23 (Natural Graph). The natural graph NG(A) of genome A is a graph whose vertices are the adjacencies and telomeres of A and in which each vertex containing an extremity p is connected to the vertex containing the paralogous extremity \bar{p} .

Definition 24. The set of paths and cycles of a natural graph is divided into four sets:

- EC = set of even cycles,
- EP = set of even paths,
- OC = set of odd cycles,
- OP = set of odd paths

Observation 10. A genome is perfectly duplicated if and only if $n = |EC| + \frac{|OP|}{2}$ (all cycles are 2-cycles, all paths are 1-paths)

Theorem 6. $d_{GH}(A) = \min_B dcj(A, B) = n - |EC| - \lfloor \frac{|OP|}{2} \rfloor$

Proof. (i) This is a lower bound (a DCJ can change the number of components only by 1) and (ii) there is an algorithm that achieves this lower bound, as described in Algorithm $\boxed{2}$

Algorithm 2 Greedy sorting algorithm for duplicated genomes

1: construct the natural graph

- 2: maximize the number of even cycles and odd paths in the natural graph:
 - for each k-path with k > 1, create a 2-cycle (and (k 2)-path if $k > 2) \implies$ all paths have then length 1
 - for each k-cycle with k > 2, create a 2-cycle and (k 2)-cycle \implies all cycles have then length 1 or 2
 - for each 1-cycle + 1-cycle, create a 2-cycle
 - for each 1-cycle, create a 1-path

3: reconstruct the perfectly duplicated genome from the resulting natural graph

Algorithm 2 runs in linear time and space.