Exercises – Phylogenetics

Universität Bielefeld, SS 2019 Dr. Roland Wittler, M. Sc. Tizian Schulz https://gi.cebitec.uni-bielefeld.de/Teaching/2019summer/Phylogenetik

Exercise Sheet 1 - 04.04.2019

Due: 11.04.2019

(0 Points)

Write down your name on each solution. If you have to use multiple sheets, staple them together. This "exercise" applies to every exercise list.

Task 2 Properties of trees.

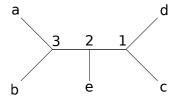
Task 1

To prove the equivalence of n statements $S_1 \Leftrightarrow S_2 \Leftrightarrow \cdots \Leftrightarrow S_n$, it is sufficient to show: $S_1 \Rightarrow S_2 \Rightarrow \cdots \Rightarrow S_n \Rightarrow S_1$. By this circular argumentation, we do not need to show *all* pairwise equivalence relations.

Let G = (V, E) be a undirected graph. Apply the above technique to prove that following statements are equivalent.

- (a) G is a tree.(Use the definition of a tree given by the lecture notes.)
- (b) Every pair of nodes $\{v_1, v_2\} \in {\binom{V}{2}}$ is connected by a unique, simple path.
- (c) G is minimally connected, i.e., for all $e \in E$: if e is removed, the resulting graph $G' = (V, E \setminus \{e\})$ is not connected.
- (d) G is connected and |E| = |V| 1.
- (e) G is acyclic and |E| = |V| 1.
- (f) G is maximally acyclic, i.e., for all $e \in \left(\binom{V}{2} \setminus E\right)$: if e is added to E, the resulting graph $G' = (V, E \cup \{e\})$ contains a cycle.

Hint: Some parts are proper for a direct proof, other parts for a proof by contradiction, and sometimes it makes sense to show $\neg(j) \Rightarrow \neg(i)$ instead of $(i) \Rightarrow (j)$.


Task 3 Rooted and unrooted trees.

(a) Consider the following tree. Add a new root at the edge {b,3}, draw the resulting tree, and give the corresponding NEWICK notation.

To make that task a little bit easier, we split the steps of the proof according to your students registration number (Matrikelnummer). Take the **last digit** of your registration number and do the two parts of the proof.

Digit	Parts of proof	
0	$(a) \Rightarrow (b),$	$(e) \Rightarrow (f)$
1	$(b)\Rightarrow(c),$	$(f) \Rightarrow (a)$
2	$(\mathbf{c}){\Rightarrow}(\mathbf{d}),$	$(a) \Rightarrow (b)$
3	$(d) \Rightarrow (e),$	$(b) \Rightarrow (c)$
4	$(e) \Rightarrow (f),$	$(c) \Rightarrow (d)$
5	$(f) \Rightarrow (a),$	$(d) \Rightarrow (e)$
6	$(a) \Rightarrow (b),$	$(e) \Rightarrow (f)$
7	$(b) \Rightarrow (c),$	$(f) \Rightarrow (a)$
8	$(c) \Rightarrow (d),$	$(a) \Rightarrow (b)$
9	$(\mathbf{d}){\Rightarrow}(\mathbf{e}),$	$(b) \Rightarrow (c)$

(2 Points)

(2 Points)