
Sequence Analysis
Lecture notes

Faculty of Technology, Bielefeld University

Summer 2019

Contents

1 Overview 1
1.1 Application Areas of Sequence Analysis . 1

1.2 A Small Selection of Problems on Sequences 2

2 Basic Definitions 3

2.1 Sets and Basic Combinatorics . 3
2.2 Asymptotics . 4
2.3 Alphabets and Sequences . 5

2.4 Graph Theory . 7
2.5 Review of Elementary Probability Theory . 11

3 Metrics on Sequences 13
3.1 Problem Motivation . 13
3.2 Definition of a Metric . 14

3.3 Transformation Distances . 15
3.4 Metrics on Sequences of the Same Length . 15

3.5 Edit Distances for Sequences . 17
3.6 An Efficient Algorithm to Compute Edit Distances 19

3.7 The q-gram Distance . 22
3.8 The Maximal Matches Distance . 28
3.9 Filtering . 30

4 Pairwise Sequence Alignment 31
4.1 Definition of Alignment . 31

4.2 The Alignment Score . 33
4.3 The Alignment Graph . 34
4.4 A Universal Alignment Algorithm . 35

4.5 Alignment Types: Global, Free End Gaps, Local 36
4.6 Gap Cost Variations for Alignments . 41

i

Contents

5 Advanced Topics in Pairwise Alignment 45
5.1 Suboptimal Alignments . 45
5.2 Approximate String Matching . 47
5.3 The Forward-Backward Technique . 50
5.4 Pairwise Alignment in Linear Space . 53

6 Pairwise Alignment in Practice 57
6.1 Alignment Visualization with Dot Plots . 57
6.2 Fundamentals of Rapid Database Search Methods 58
6.3 BLAST: A fast Database Search Method . 60

7 Suffix Trees 63
7.1 Motivation . 63
7.2 An Informal Introduction to Suffix Trees . 64
7.3 A Formal Introduction to Suffix Trees . 66
7.4 Space requirements of Suffix Trees . 67
7.5 Suffix Tree Construction: The WOTD Algorithm 67
7.6 Linear-Time Suffix Tree Construction Algorithm 69
7.7 Applications of Suffix Trees . 70

7.7.1 Exact String Matching . 70
7.7.2 The Shortest Unique Substring . 71
7.7.3 Maximal Repeats . 72
7.7.4 Maximal Unique Matches . 75

8 Suffix Arrays 79
8.1 Motivation . 79
8.2 Basic Definitions . 80
8.3 Suffix Array Construction Algorithms . 81

8.3.1 Linear-Time Construction using a Suffix Tree 81
8.3.2 Direct Construction . 82
8.3.3 Construction of the rank and lcp Arrays 83

8.4 Applications of Suffix Arrays . 85

9 Burrows-Wheeler Transformation 87
9.1 Introduction . 87
9.2 Transformation and Retransformation . 87
9.3 Exact String Matching . 89
9.4 Other Applications . 91

9.4.1 Compression with Run-Length Encoding 91

10 Multiple Sequence Alignment 93
10.1 Basic Definitions . 93
10.2 Why multiple sequence comparison? . 95
10.3 Sum-of-Pairs Alignment . 96
10.4 Multiple Alignment Problem . 97
10.5 Digression: NP-completeness . 98

11 Algorithms for Sum-of-Pairs Multiple Alignment 103
11.1 A Guide to Multiple Sequence Alignment Algorithms 103

ii

Contents

11.2 An Exact Algorithm . 104

11.2.1 The Basic Algorithm . 104

11.2.2 Variations of the Basic Algorithm . 105

11.3 Carrillo and Lipman’s Search Space Reduction 106

11.4 The Center-Star Approximation . 110

11.5 Divide-and-Conquer Alignment . 111

12 Algorithms for Tree Alignments 117

12.1 The Tree Alignment . 117

12.2 Sankoff’s Algorithm . 119

12.3 Generalized Tree Alignment . 121

12.3.1 Greedy Three-Way Tree Alignment Construction 122

12.3.2 The Deferred Path Heuristic . 124

13 Whole Genome Alignment 127

13.1 Filter Algorithms . 128

13.2 General Strategy for Multiple Genome Alignment (MUMmer) 129

13.3 Multiple Genome Alignment (MUMmer 1/2 and MUMmer 3) 130

13.4 Multiple Genome Alignment with Rearrangements (MAUVE) 130

A Distances versus Similarity Measures on Sequences 131

A.1 Biologically Inspired Distances . 131

A.2 From Distance to Similarity . 133

A.3 Log-Odds Score Matrices . 137

A.4 Score and Cost Variations for Alignments . 139

B Pairwise Sequence Alignment (Extended Material) 141

B.1 The Number of Global Alignments . 141

C Pairwise Alignment in Practice (Extended Material) 145

C.1 Fast Implementations of the Smith-Waterman Algorithm 145

C.2 FASTA: An On-line Database Search Method 145

C.3 Index-based Database Search Methods . 148

C.4 Software . 150

D Alignment Statistics 153

D.1 Preliminaries . 153

D.2 Statistics of q-gram Matches and FASTA Scores 154

D.3 Statistics of Local Alignments . 156

E Basic RNA Secondary Structure Prediction 159

E.1 Introduction . 159

E.2 The Optimization Problem . 161

E.3 Context-Free Grammars . 162

E.4 The Nussinov Algorithm . 163

F Suffix Tree (Extended Material) 167

F.1 Memory Representations of Suffix Trees . 167

iii

Contents

G Advanced Topics in Pairwise Alignment (Extended Material) 171
G.1 Length-Normalized Alignment . 171

G.1.1 A Problem with Alignment Scores . 171
G.1.2 A Length-Normalized Scoring Function for Local Alignment 173
G.1.3 Finding an Optimal Normalized Alignment 173

G.2 Parametric Alignment . 178
G.2.1 Introduction to Parametric Alignment 178
G.2.2 Theory of Parametric Alignment . 179
G.2.3 Solving the Ray Search Problem . 180
G.2.4 Finding the Polygon Containing p . 183
G.2.5 Filling the Parameter Space . 184
G.2.6 Analysis and Improvements . 184
G.2.7 Parametric Alignment in Practice . 185

H Multiple Alignment in Practice: Mostly Progressive 187
H.1 Progressive Alignment . 187

H.1.1 Aligning Two Alignments . 189
H.2 Segment-Based Alignment . 190

H.2.1 Segment Identification . 191
H.2.2 Segment Selection and Assembly . 192

H.3 Software for Progressive and Segment-Based Alignment 192
H.3.1 The Program Clustal W . 192
H.3.2 T-COFFEE . 193
H.3.3 DIALIGN . 194
H.3.4 MUSCLE . 194
H.3.5 QAlign . 196

Bibliography 197

iv

Preface

At Bielefeld University, elements of sequence analysis are taught in several courses, starting
with elementary pattern matching methods in “Algorithms and Data Structures” in the
first semester. The present three-hour course “Sequence Analysis” is taught in the second
semester and is extended by a practical course in the third semester.

Prerequisites. It is assumed that the student has had some exposure to algorithms and
mathematics, as well as to elementary facts of molecular biology. The following topics are
required to understand some of the material here:

• exact string matching algorithms (e.g. the naive method, Boyer-Moore, Boyer-Moore-
Horspool, Knuth-Morris-Pratt),

• comparison-based sorting (e.g. insertion sort, mergesort, heapsort, quicksort),

• asymptotic complexity analysis (O notation).

These topics are assumed to have been covered before this course and the first two do not
appear in these notes. In Section 2.2 the O notation is briefly reviewed, more advanced
complexity topics are discussed in Section 10.5.

Advanced topics. Because the material is taught in one three-hour course, some advanced
sequence analysis techniques are not covered. These include:

• fast algorithms for approximate string matching (e.g. bit-shifting),

• advanced filtering methods for approximate string matching (e.g. gapped q-grams),

• efficient methods for concave gap cost functions in pairwise alignment,

v

Contents

• in-depth discussion of methods used in practice. How to use existing software to solve
a particular problem generally requires hands-on experience which can be conveyed
in the “Sequence Analysis Practical Course”. Some of the theory of such methods is
covered in the Appendix of these notes.

Suggested Reading

Details about the recommended textbooks can be found in the bibliography. We suggest
that students take note of the following ones.

• Gusfield (1997) published one of the first textbooks on sequence analysis. Nowadays,
some of the algorithms described therein have been replaced by better and simpler
ones. A revised edition would be very much appreciated, but it is still the fundamental
reference for sequence analysis courses.

• Another good sequence analysis book that places more emphasis on probabilistic mod-
els was written by Durbin et al. (1998).

• An even more mathematical style can be found in the book by Waterman et al. (2005).

• A more textual and less formal approach to sequence analysis is presented by Mount
(2004). This book covers a lot of ground in bioinformatics and is a useful companion
until the Master’s degree.

• For the practically inclined who want to learn about the actual tools that implement
some of the algorithms discussed in this course, the above book or the “Dummies”
book by Claverie and Notredame (2007) is recommended.

• The classic algorithms textbook of Cormen et al. (2001) should be part of every stu-
dent’s personal library. While it does not cover much of sequence analysis, it is a useful
reference to look up elementary data structures, O notation, basic probability theory.
It also contains a chapter on dynamic programming. This is one of the best books
available for computer scientists.

These lecture notes are an extended re-write of previous versions by Robert Giegerich, Ste-
fan Kurtz (now in Hamburg), Enno Ohlebusch (now in Ulm), and Jens Stoye. This version
contains more explanatory text and should be, to some degree, suitable for self study.

Sven Rahmann, July 2007

In the last years, these lecture notes were steadily improved. Besides minor corrections,
many examples have been integrated and some parts were even completely rewritten. We
want to thank Robert Giegerich for his comments and Eyla Willing for incorporating all the
changes.

Peter Husemann, Jens Stoye and Roland Wittler, September 2010

We want to thank Katharina Westerholt for writing a new chapter on the Burrows-Wheeler
Transformation.

Jens Stoye, September 2011

Until September 2012, “Sequence Analysis I” and “Sequence Analysis II” were taught as

vi

Contents

two-hour courses in the third and fourth semesters, accompanied by a two-hour practical
course in the fourth semester. With the start of the winter semester in 2012/13 and the new
study regulations, the lecture, now named “Sequence Analysis”, is a three-hour course, only
taught in the third semester, accompanied by an extended four-hours practical course in the
fourth semester. Because there is now less time for the lecture and more time for the practi-
cal course, some topics covered by the lecture before are now shifted to the practical course.
These lecture notes still include all topics, but the order is changed. Topics not discussed in
the lecture are moved to the Appendix. In some chapters, just a few sections are moved to
the Appendix, these chapters are marked as “Extended Material”. In the beginning of the
original chapters, the context of the extended material is summarized.

Linda Sundermann and Jens Stoye, October 2013

Since summer 2017 this class is being given in the 2nd semester of the Bachelor program
Bioinformatics and Genome Research at Bielefeld University. Therefore a number of small
adjustments and some simplifications were necessary and a new section on Graph Theory was
incorporated. Our thanks go to Linda Sundermann, Roland Wittler and Karsten Wüllems.

Tizian Schulz and Jens Stoye, March 2017

Several minor improvements have been made for the SS 2018 and SS 2019 versions of the
lecture notes, some of which corrected changes of the preceding larger revision. We like to
thank Michel T. Henrichs for pointing out several of these flaws.

Daniel Dörr and Jens Stoye, March 2019

vii

Contents

viii

CHAPTER 1

Overview

1.1 Application Areas of Sequence Analysis

Sequences (or texts, strings, words, etc.) over a finite alphabet are a natural way to encode
information. The following incomplete list presents some application areas of sequences of
different kinds.

• Molecular biology (the focus of this course):

Molecule Example Alphabet Length

DNA . . . AACGACGT. . . 4 nucleotides ≈ 103–109

RNA . . . AUCGGCUU. . . 4 nucleotides ≈ 102–103

Proteins . . . LISAISTNETT. . . 20 amino acids ≈ 102–103

The main idea behind biological sequence comparison is that an evolutionary relation-
ship implies structural and functional similarity, which again implies sequence similar-
ity.

• Phonetics:

English: 40 phonemes
Japanese: 113 “morae” (syllables)

• Spoken language, bird song:
discrete multidimensional data (e.g. frequency, energy) over time

• Graphics: An image is a two-dimensional “sequence” of (r, g, b)-vectors with r, g, b ∈
[0, 255] to encode color intensities for red, green and blue, of a screen pixel.

• Text processing: Texts are encoded (ASCII, Unicode) sequences of numbers.

1

1 Overview

• Information transmission: A sender sends binary digits (bits) over a (possibly noisy)
channel to a receiver.

• Internet, Web pages

1.2 A Small Selection of Problems on Sequences

The “inform” in (bio-)informatics comes from information. Google, Inc. states that its
mission is “to organize the world’s information and make it universally accessible and useful”.
Information is often stored and addressed sequentially. Therefore, to process information,
we need to be able to process sequences. Here is a small selection of problems on sequences.

1. Sequence comparison: Quantify the (dis-)similarity between two or more sequences
and point out where they are particularly similar or different.

2. Exact string matching: Find all positions in a sequence (called the text) where another
sequence (the pattern) occurs.

3. Approximate string matching: As exact string matching, but allow some differences
between the pattern and its occurrence in the text.

4. Multiple (approximate) string matching: As above, but locate all positions where any
pattern of a given pattern set occurs. Often more elegant and efficient methods than
searching for each pattern separately are available.

5. Regular expression matching: Find all positions in a text that match an expression
constructed according to specific rules.

6. Finding best approximations (dictionary search): Given a word w, find the most similar
word to w in a given set of words (the dictionary). This is useful for correcting spelling
errors.

7. Repeat discovery: Find long repeated parts of a sequence. This is useful for data
compression, but also in genome analysis.

8. Data compression: Reduce the amount of data with techniques like the sorting of all
suffixes of a given sequence.

9. The “holy grail”: Find all interesting parts of a sequence (this of course depends
on your definition of interesting); this may concern surprisingly frequent subwords,
tandem repeats, palindromes, unique subwords, etc.

10. Revision and change tracking: Compare different versions of a document, highlight
their changes, produce a “patch” that succinctly encodes commands that transform
one version into another. Version control systems like Subversion or Git are based on
efficient algorithms for such tasks.

11. Error-correcting and re-synchronizing codes: During information transmission, the
channel may be noisy, i.e., some of the bits may be changed, or sender and receiver
may get out of sync. Therefore error-correcting and synchronizing codes for bit se-
quences have been developed. Problems are the development of new codes, and efficient
encoding and decoding algorithms.

2

CHAPTER 2

Basic Definitions

Contents of this chapter: Sets of numbers. Elementary set combinatorics.
Alphabet. Sequence = string = word. Substring. Subsequence. Number of
substrings and subsequences. Asymptotic growth of functions. Landau symbols.
Logarithms. Probability vector. Uniform / Binomial / Poisson distribution.

2.1 Sets and Basic Combinatorics

Sets of numbers. The following commonly known sets of numbers are of special interest
for the topics taught in this course.

• N := {1, 2, 3, . . . } is the set of natural numbers.

• N0 := {0} ∪ N additionally includes zero.

• Z := {0, 1,−1, 2,−2, 3,−3, . . . } is the set of integers.

• R (R+
0) is the set of (nonnegative) real numbers.

The absolute value or modulus of a number x is its distance from the origin and denoted
by |x|, e.g. | − 5| = |5| = 5.

An interval is a set of consecutive numbers and written as follows:

• [a, b] := {x ∈ R : a ≤ x ≤ b} (closed interval),

• [a, b[:= {x ∈ R : a ≤ x < b} (half-open interval),

•]a, b] := {x ∈ R : a < x ≤ b} (half-open interval),

•]a, b[:= {x ∈ R : a < x < b} (open interval).

3

2 Basic Definitions

Sometimes the interval notation is used for integers, too, especially when we talk about
indices. So, for a, b ∈ Z, [a, b] may also mean the integer set {a, a+ 1, . . . , b− 1, b}.

Elementary set combinatorics. Let S be any set. Then |S| denotes the cardinality of S,
i. e., the number of elements contained in S. We symbolically write |S| :=∞ if the number
of elements is not a finite number.

With P(S) or 2S we denote the power set of S, i. e., the set of all subsets of S. For each
element of S, there are two choices if a subset is formed: it can be included or not. Thus
the number of different subsets is |P(S)| = |2S | = 2|S|.

To more specifically compute the number of k-element subsets of an n-element set, we
introduce the following notation:

• nk := n · . . . · n (ordinary power, k factors),

• n! := n · (n− 1) · (n− 2) · · · · · 2 · 1 (factorial).

When choosing k elements out of n, we have n choices for the first element, n − 1 for the
second one, and so on. To disregard the order among these k elements, we divide by the
number of possible rearrangements or permutations of k elements; by the same argument
as above these are k! many. It follows that there are n · (n− 1) · . . . · (n− k+1)/k! different
k-element subsets of an n-element set. This motivates the following definition of a binomial
coefficient:

•
(
n
k

)
:= n·(n−1)· ... ·(n−k+1)

k! = n!
(n−k)!·k! (read as “n choose k”).

2.2 Asymptotics

We will analyze several algorithms during this course. In order to formalize statements as
“the running time increases quadratically with the sequence length”, we review the asymp-
totic “big-O notation” here, also known as Landau symbols.

Let f, g : N→ R
+
0 be functions.

O(·): We write f(n) ∈ O(g(n)) or f(n) = O(g(n)), even though this is not an equality,
if there exist n0 ∈ N and c > 0 such that f(n) ≤ c · g(n) for all n ≥ n0 (i. e., for
eventually all n). In fact, O(f(n)) stands for the whole class of functions that grow
at most as fast as f(n), apart from constant factors and smaller order terms.

A function in O(nc) for some constant c ∈ N is said to be of polynomial growth; it does
not need to be a polynomial itself, e.g. n2.5 + log log n. A function in O(cn) for constants
c > 1 is said to be of exponential growth. Functions such as nlogn that are no longer
polynomial but not yet exponential are sometimes called of superpolynomial growth.
Functions such as n! or nn are of superexponential growth.

It is suggested to remember the following hierarchy of O(·)-classes and extend it as needed.

O(1) ⊂ O(logn) ⊂ O(
√
n) ⊂ O(n/logn) ⊂ O(n) ⊂ O(n logn) ⊂ O(n

√
n) ⊂ O(n2) ⊂ O(n3)

⊂ O(nlogn) ⊂ O(2n) ⊂ O(3n) ⊂ O(n!) ⊂ O(nn)

4

2.3 Alphabets and Sequences

2.3 Alphabets and Sequences

Alphabets. A finite alphabet is simply a finite set; we mainly use Σ as the symbol for an
alphabet. The elements of Σ are called characters, letters, or symbols. Here are some
examples.

• The DNA alphabet {A,C,G,T} (adenine, cytosine, guanine, thymine)

• The puRine / pYrimidine alphabet for DNA {R, Y} (R = A or G; Y = T or C)

• The protein one-letter code {A,. . . ,Z}\{B,J,O,U,X,Z}; see http://en.wikipedia.org/wiki/List_of_standard_amino_acids
for more information about the individual amino acids.

• The HydrophObe / hydroPhIle alphabet {O,I} or {H,P}

• The positive / negative charge alphabet {+, −}

• The IUPAC codes for DNA ({A, C, G, T, U, R, Y, M, K, W, S, B, D, H, V, N}) and pro-
tein ({A,. . . ,Z}\{J,O,U}) sequences (see http://www.bioinformatics.org/sms/iupac.html)

• The ASCII (American Standard Code for Information Interchange) alphabet, a 7-
bit encoding (0–127) of commonly used characters in the American language (see
http://en.wikipedia.org/wiki/ASCII).

• The alphanumeric subset of the ASCII alphabet {0,. . . ,9,A,. . . ,Z,a,. . . ,z}; encoded by
the numbers 48–57, 65–90, and 97–122, respectively.

These examples show that alphabets may have very different sizes. The alphabet size
σ := |Σ| is often an important parameter when we analyze the complexity of algorithms on
sequences.

Sequences. By concatenation (also juxtaposition) of symbols from an alphabet, we
create a sequence (also string or word). The empty sequence ε consists of no symbols.
The length of a sequence s, written as |s|, is the number of symbols in it. We identify each
symbol with a sequence of length 1.

We define Σ0 := {ε} (this is: the set consisting of the empty sequence; not the empty set ∅;
nor the empty sequence ε itself.) and Σn := {xa : x ∈ Σn−1, a ∈ Σ} for n ≥ 1. Thus Σn is the
set of words of length n over Σ; such a word s is written as s = (s1, . . . , sn) = s[1]s[2] . . . s[n].

We further define

Σ∗ :=
⋃

n≥0

Σn and Σ+ :=
⋃

n≥1

Σn

as the set of all (resp. all nonempty) sequences over Σ.

5

http://en.wikipedia.org/wiki/List_of_standard_amino_acids
http://www.bioinformatics.org/sms/iupac.html
http://en.wikipedia.org/wiki/ASCII

2 Basic Definitions

Substrings. If s = uvw for possibly empty sequences u,v,w from Σ∗, we call

• u a prefix of s,

• v a substring (subword) of s,

• w a suffix of s.

A prefix or suffix that is different from s is called proper. A substring v of s is called
right-branching if there exist symbols a 6= b such that both va and vb are substrings of
s. Let k ≥ 0. A k-tuple1 (k-mer) of s is a length-k substring of s. Similarly, for q ≥ 0, a
q-gram2 of s is a length-q substring of s.

We write s[i . . . j] := s[i]s[i+1] . . . s[j] for the substring from position i to position j, assuming
that i ≤ j. For i > j, we set s[i . . . j] := ε. We say that w ∈ Σm occurs at position i in
s ∈ Σn if s[i+ j] = w[1 + j] for all 0 ≤ j < m.

Subsequences. While a substring is a contiguous part of a sequence, a subsequence need
not be contiguous. Thus if s ∈ Σn, 1 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n, then
s[i1, i2, . . . , ik] := si1si2 . . . sik is called a subsequence of s.

Each substring is also a subsequence, but the converse is not generally true. For example,
ABB is both a subsequence and a substring (even a prefix) of ABBAB, and BBB is a
subsequence but not a substring.

Number of substrings and subsequences. Let s ∈ Σn.

A nonempty substring of s is specified by its starting position i and ending position j with
1 ≤ i ≤ j ≤ n. This gives n − k + 1 substrings of length k and 1 + 2 + · · · + n =

(
n+1
2

)
=

(n+1) ·n/2 nonempty substrings in total. We might further argue that the empty substring
occurs n + 1 times in s (before the first character and after each of the n characters), so
including the empty strings, there are

(
n+2
2

)
ways of selecting a substring.

A (possibly empty) subsequence of s is specified by any selection of positions. Thus there are
2n possibilities to specify a subsequence, which is exponential in n. There are

(
n
k

)
possibilities

to specify a subsequence of length k.

In both of the above cases, the substrings or subsequences obtained by different selections
do not need to be different. For example if s = AAA, then s[1 . . . 2] = s[2 . . . 3] = AA. It is
an interesting problem (for which this course will provide efficient methods) to compute the
number of distinct substrings or subsequences of a given s ∈ Σn. In order to appreciate these
efficient methods, the reader is invited to think about algorithms for solving these problems
before continuing!

1The origin of the word “tuple” is easy to explain: pair, triple, quadruple, quintuple, . . . , k-tuple, The
popularity of the variable k for this purpose, however, is a mystery.

2“gram” is probably related to the Greek word γραµµα (gramma), meaning letter. The origin of the variable
q for this purpose is unknown to the authors of these lecture notes.

6

2.4 Graph Theory

v1
v2

v3

v4

(a) An undirected graph.

v1

v2

v3

v4

(b) A directed graph.

v1

v2

v3

v4

(c) A directed graph with
a loop at the vertex v1.

Graphs in (a) and (b) are
loopless.

Figure 2.1: Examples of three different kinds of graphs.

2.4 Graph Theory

Graphs and networks have an important role in many different areas, such as sequence
analysis and bioinformatics in general. Metabolic networks and phylogenetic trees are just
two examples and there are many more outside of this field, like electronic circuits and
transport or communication networks. Some basics of graph theory will be introduced in
this section.

Definition 2.1 A graph is a pair G = (V,E) consisting of a set of vertices V and a set of
edges E.

The definitions of V and E vary and depend on the type of graph they build. In the following,
the most basic graph types and some associated important definitions will be explained.

Definition 2.2 An undirected graph is a pair G = (V,E), where V can be any set and
E ⊆

(
V
2

)
.

The set
(
V
2

)
refers to all subsets of size two of V , i. e., all {v, v′}, where v, v′ ∈ V and v 6= v′.

The notion of sets implies that there is no order applied – in contrast to tuples, which are
used in the following definition.

Definition 2.3 A directed graph (also called digraph) is a pair G = (V,E), where V can
be any set and E ⊆ V × V .

In directed graphs, an edge is interpreted as a link from vertex v to v′. This relation is often
written as v → v′. Often v is called the source and v′ is called the target. If there exists
an edge e = (v, v′) with v = v′, this edge is called a loop (Figure 2.1 (c)). Sometimes the
restriction v 6= v′ is assumed. A graph without loops is called loopless.

If e = {v, v′} ∈ E is an edge connecting vertices v and v′, then e is said to be incident to v
and v′. The vertices v and v′ are said to be adjacent.

Examples for undirected and directed graphs are given in Figure 2.1.

7

2 Basic Definitions

v1
v2

v3

v4

(a) Example of a simple graph G.

[(v1,v2), (v2,v3), (v3,v4)]

(b) Example of an edge list for G. The struc-
ture of G is represented as one list of all its
edges.

v1 v2 v3 v4
v1 0 1 0 0
v2 1 0 1 0
v3 0 1 0 1
v4 0 0 1 0

(c) Example of a binary adjacency matrix for
G. As G has four vertices, the matrix size
is 4× 4. Each 1 represents an edge between
the corresponding vertices in G.

v1: v2
v2: v1, v3
v3: v2, v4
v4: v3

(d) Example of an adjacency list for G. For
each vertex in G there is a list that contains
all vertices that are adjacent to it.

Figure 2.2: A simple graph and three common forms of its representation.

Weights. Graphs can be modified with weights. They can be vertex-weighted, edge-weighted
or both. Weights are specified by a weighting function WV : V → R or WE : E → R,
respectively. Weights can be used to symbolize many different numerical or even ordinal
relationships. In case of vertices, this could be a minimum score to access the corresponding
vertex. For edges, it could stand for a cost or path length to travel from one vertex to
another.

Labels. Vertices and edges can also be annotated with different kinds of labels, referred to
as labeled graph. One example for a labeled graph is the suffix tree, which will be part of
this lecture (see Chapter 7).

Representation. There are mainly three different forms to represent a graph G = (V,E).
The edge list is a list of all edges within G. The adjacency matrix is a |V | × |V | matrix
with entries indicating whether an edge exists between any pair of vertices or not. For an
unweighted graph, this matrix is binary. If the graph is weighted, the entries in the matrix
usually represent the weights of the corresponding edges. Adjacency lists are used to store,
for each vertex in V , a list of their adjacent vertices. See Figure 2.2 for examples.

Definition 2.4 A path is a sequence of n vertices (v1, . . . , vn), where vi and vi+1 are adjacent,
for all i = 1, . . . , n.

Definition 2.5 A directed path is a path (v1, . . . , vn), where vi and vi+1 are connected by
an edge vi → vi+1, for all i = 1, . . . , n.

8

2.4 Graph Theory

The length l(p) of a path p is the number of edges along its way, l(p) = n − 1. In case of
an edge-weighted graph, the weight of a path is the sum of all edge weights l(p) =

∑

i =
WE

(
(vi, vi+1)

)
.

A path p is simple if all vertices except possibly the first and the last one are distinct. This
implies that p contains no edge twice. A graph G is simple if G is undirected, contains no
loops and not more than one edge between any pair of vertices.

G contains a cycle if there exists a path in which the first and the last vertex are the same.
In that case, G is called cyclic. A graph without cycles is called acyclic.

Connectivity. Two vertices v and v′ are connected if there exists a path p that starts with
v and ends with v′. An undirected graph G = (V,E) is connected if every two vertices
v, v′ ∈ V are connected, otherwise it is called disconnected. A directed graph G = (V,E) is
weakly connected if its underlying undirected variant is connected. It is strongly connected
if for every two vertices {v, v′} there exists a directed path from v to v′ and from v′ to v.

Definition 2.6 For an undirected graph, the degree of a vertex v is the number of edges
that are incident to v. For a directed graph one distinguishes the in-degree and the out-
degree, which determines the number of incoming and outgoing edges, i. e., edges that have
v as target or as source, respectively.

An example for this is given in Figure 2.1. In the undirected graph, node v1 and v4 have a
degree of 1, while node v2 and v3 have a degree of 2. In the directed graph, the in-degree of
node v1 equals 0, while the in-degree of v2, v3 and v4 equals 1 and the out-degree of v1, v2
and v3 equals 1, while the out-degree of v4 equals 0.

Definition 2.7 A vertex in a directed graph is balanced if its in-degree equals its out-degree.

Definition 2.8 A directed graph is balanced if one of the following properties is true:

1. All except two vertices are balanced. One of the unbalanced vertices, called the initial
vertex or source, has one more outgoing edge than incoming edges. The other one,
called the final vertex or sink, has one more incoming edge than outgoing edges.

2. All vertices are balanced. In this case, source and sink must be the same vertex, but
it can be chosen arbitrarily.

Definition 2.9 An Eulerian path in a graph G = (V,E) is a path that uses every edge in
E exactly once, according to its multiplicity.

A fundamental theorem of graph theory says that an Eulerian path exists if and only if the
graph is connected and balanced. In the first case above, the path must start in the initial
vertex and end in the final vertex. In the second case, the path can start anywhere but must
end in the same vertex where it started, a so called Eulerian circle.

9

2 Basic Definitions

Trees. A tree is a connected, acyclic, undirected graph. Each vertex with a degree of one
is called a leaf (terminal node). All other nodes are called internal nodes. A tree can either
be rooted or unrooted. An unrooted tree is a tree as defined above. An unrooted tree with
degree two or three for all internal nodes is called a binary tree, and it is called multifurcating
otherwise. A rooted tree is a tree in which one of the vertices is distinguished from the others
and called the root. Rooting a tree induces a hierarchical relationships of the nodes and
creates a directed graph, since rooting implies a direction for each edge (by definition always
pointing away from the root). The terms parent, child, sibling, ancestor, descendant are then
defined in the obvious way. Rooting a tree also changes the notion of the degree of a node:
The degree of a node in a rooted tree refers to the out-degree of that node according to the
above described directed graph. Then, a leaf is defined as a node of (out-)degree zero. A
rooted tree with (out-)degree one or two for all internal nodes is called a binary tree, and it is
called multifurcating otherwise. Each edge divides (splits) a tree into connected components.
Given a node v other than the root in a rooted tree, the subtree rooted at v is the remaining
tree after deleting the edge that ends at v and the component containing the root. (The
subtree rooted at the root is the complete, original tree.) The depth of node v in a rooted
tree is the length of the (unique) simple path from the root to v. The depth of a tree T is
the maximum depth of all of T ’s nodes. The width of a tree T is the maximal number of
nodes in T with the same depth.

v1

v2

v3 v4 v5

(a) A rooted binary tree.

v1

v2

v3

v4

(b) An unrooted binary tree.

v1

v2

v3 v4 v5v6

(c) A rooted multifurcating tree.

v1

v2

v3

v4

v5

v�

(d) An unrooted multifurcating tree.

Figure 2.3: Examples of four different kinds of trees.

Multigraphs. A multigraph (Figure 2.4 (a)) is a graph that can have multiple edges, also
called parallel edges, that connect the same two vertices. Edges in directed multigraphs must
have the same source and target vertex to be called parallel.

Hypergraphs. A hypergraph (Figure 2.4 (b)) is a graph in which an edge can connect any
number of vertices instead of just two. Such edges are called hyperedges.

10

2.5 Review of Elementary Probability Theory

Bipartite graph. A bipartite graph (Figure 2.4 (c)) is a graph whose vertices can be par-
titioned into two disjoint sets U and V (often written as G = (U ∪ V,E)) such that there
exist only edges between vertices of different sets, i. e., no edge connects vertices within the
same set. More formally this means: For all e ∈ E it holds that |e∩U | = |e∩ V | = 1. If the
two sets have equal cardinality, i. e. |U | = |V |, then this bipartite graph is called balanced.

v1

v2

v3

v4

(a) A directed, unweighted
multigraph. Two edges ex-
ist between vertices v2 and
v3 that also point in the
same direction.

v1

v2

v3

v4

e1

e2

(b) An undirected, un-
weighted hypergraph
with two hyperedges (e1
and e2). e1 contains the
vertices v1, v2 and v3,
while e2 contains v2 and
v4.

U

V

(c) A bipartite graph G =
(U ∪ V,G) with vertices
partitioned into the two
sets U and V .

Figure 2.4: Examples of three different kinds of graphs.

2.5 Review of Elementary Probability Theory

A little understanding about probabilities is required to follow the subsequent chapters. A
probability vector is a (row) vector with nonnegative entries whose sum equals 1. A
matrix of several probability vectors on top of each other is called a stochastic matrix
(naturally, its rows sum to 1). Relative frequencies can often be interpreted as probabilities.

Often, we will associate a probability or frequency with every letter in an alphabet Σ =
{a1, . . . , aσ} by specifying a probability vector p = (p1, . . . , pσ). If p1 = · · · = pσ = 1/σ, we
speak of the uniform distribution on Σ. Letter frequencies allow us to define a notion of
random text or independent and identically distributed (i.i.d.) text, where each
letter ak appears according to its frequency pk at any text position, independently of the
other positions. Then, for a fixed length q, the probability that a random word X of length
q equals a given x = x1 . . . xq, is

P(X = x) =

q
∏

i=1

pk(xi),

where k(c) is the index k of the letter c such that c = ak ∈ Σ. In particular, for the uniform
distribution, we have that P(X = x) = 1/σq for all words x ∈ Σq.

How many times do we see a given word x of length q as a substring of a random text T of
length n + q − 1? That depends on T , of course; so we can only make a statement about

11

2 Basic Definitions

expected values and probabilities. At each starting position i = 1, . . . , n, the probability
that the next q letters equal x is given by px := P(X = x) as computed above. Let us call
this a success. The expected number of successes is then n · px.
But what is precisely the probability to have exactly s successes? This is a surprisingly hard
question, because successes at consecutive positions in the text are not independent: If x
starts at position 17, it cannot also start at position 18 (unless it is the q-fold repetition of
the same letter). However, if the word length is q = 1 (i. e., x is a single letter), we can
make a stronger statement. Then the words starting at consecutive positions do not overlap
and successes become independent of each other. Each text with s successes (each with
probability px) also has n − s non-successes (each with probability 1 − px). Therefore each
such text has probability psx · (1− px)

n−s. There are
(
n
s

)
possibilities to choose the s out of

n positions where the successes occur. Therefore, if S denotes the random variable counting
successes, we have

P(S = s) =

(
n

s

)

· psx · (1− px)
n−s

for s ∈ {0, 1, . . . , n}, and P(S = s) = 0 otherwise. This distribution is known as the
Binomial distribution with parameters n and px. As said above, it specifies probabilities
for the number s of successes in n independent trials, where each success has the same
probability px.

When n is very large and p is very small, but their product (the expected number of successes)
is np = λ > 0, the above probability can be approximated by

P(S = s) ≈ e−λ · λs

s!
,

as a transition to the limit (n→∞, p→ 0, np→ λ) shows. (You may try to prove this as an
exercise.) This distribution is called the Poisson distribution with parameter λ which is
the expected value as well as the variance. It is often a good approximation when we count
the (random) number of certain rare events.

Example 2.10 Let s, t ∈ Σn and |Σ| = σ. In the i.i.d. model, what is the probability that s
and t contain a particular character a the same number of times?

The probability that a is contained k times in s is
(
n
k

)
·
(
1
σ

)k ·
(
1− 1

σ

)n−k
. The same applies

to t. Thus the probability that both s and t contain a exactly k times is the square of the
above expression. Since k is arbitrary between 0 and n, we have to sum the probabilities

over all k. Thus the answer is
∑n

k=0

((
n
k

)
· 1
σk ·

(
1− 1

σ

)n−k
)2

. �

12

CHAPTER 3

Metrics on Sequences

Contents of this chapter: Metric. Transformation distances. p-distance. Ham-
ming distance. Edit distances. Edit sequence. Invariance properties of edit dis-
tances. Efficient computation (dynamic programming) of edit distances. Optimal
edit sequences. q-gram profile. q-gram distance. Ranking function. Unranking
function. Efficient ranking of q-grams. De Bruijn graph. Maximal matches
distance. Partition of a sequence. Left-to-right-partition. Filter.

3.1 Problem Motivation

The trivial method to compare two sequences is to compare them character by character:
u and v are equal if and only if |u| = |v| and ui = vi for all i ∈ [1, |u|]. However, many
problems are more subtle than simply deciding whether two sequences are equal or not.
Some examples are

• searching for a name of which the spelling is not exactly known,

• finding diffracted forms of a word,

• accounting for typing errors,

• tolerating error prone experimental measurements,

• allowing for ambiguities in the genetic code; for example, GCU, GCC, GCA, and GCG
all code for alanine,

• looking for a protein sequence with known biological function that is similar to a given
protein sequence with unknown function.

13

3 Metrics on Sequences

Therefore, we would like to define a notion of distance between sequences that takes the
value zero if and only if the sequences are equal and otherwise gives a quantification of their
differences. This quantity may depend very much on the application! The first step is thus
to compile some properties that every distance should satisfy.

3.2 Definition of a Metric

In mathematical terms, a distance function is often called a metric, but also simply dis-
tance. Given any set X , a metric on X is a function d : X ×X → R that assigns a number
(their distance) to any pair (x, y) of elements of X and satisfies the following properties:

d(x, y) = 0 if and only if x = y (identity of indiscernibles), (3.1)

d(x, y) = d(y, x) for all x and y (symmetry), (3.2)

d(x, y) ≤ d(x, z) + d(z, y) for all x, y and z (triangle inequality). (3.3)

From (3.1)–(3.3), it follows that

d(x, y) ≥ 0 for all x and y (nonnegativity). (3.4)

The pair (X , d) is called a metric space.

If (3.2)–(3.4) hold and also d(x, x) = 0 for all x, but there are x 6= y with d(x, y) = 0, we call
d a pseudo-metric. A pseudo-metric on X can be turned into a true metric on a different
set X ′, where each set of elements with distance zero from each other is contracted into a
single element.

While a pseudo-metric is something weaker (more general) than a metric, there are also
more special variants of metrics. An interesting one is an ultra-metric which satisfies (3.1),
(3.2), and the following stronger version of the triangle inequality:

d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y and z (ultrametric triangle inequality).

It is particularly important in phylogenetics.

A visual comparison of the triangle inequality and the ultrametric triangle inequality is
shown in example 3.1.

(a) Triangle inequality (b) Ultrametric triangle inequality

Figure 3.1: Examples for the triangle inequality and the ultrametric triangle inequality.

14

3.3 Transformation Distances

3.3 Transformation Distances

A transformation distance d(x, y) on a set X is always defined as the minimum number of
allowed operations needed to transform one element x into another y. The allowed operations
characterize the distance. Of course, they must be defined in such a way that the metric
properties are satisfied.

Care has to be taken that the allowed operations imply the symmetry condition of the
defined metric. The triangle inequality is never a problem since the distance is defined as
the minimum number of operations required (be sure to understand this!).

Depending on the metric space X and the allowed operations, a transformation distance may
be easy or hard to compute.

3.4 Metrics on Sequences of the Same Length

Take X = R
n and consider two points x = (x1, . . . , xn) and y = (y1, . . . , yn) (note that

points in n-dimensional space are also sequences of length n over the infinite alphabet R).
The following functions are metrics.

d1(x, y) :=
n∑

i=1

|xi − yi| (Manhattan distance)

d2(x, y) :=
√∑

n
i=1 |xi − yi|2 (Euclidean distance)

d∞(x, y) := max
i=1,...,n

|xi − yi| (maximum metric)

dH(x, y) :=
n∑

i=1

1{xi 6=yi} (Hamming distance)

Example 3.1 Consider the location of the points A, B, and C in Figure 3.2, with
A = (1, 1), B = (5, 3) and C = (1, 3). They have the following distances.

Manhattan distance: d1(A,B) = |1− 5|+ |1− 3| = 4 + 2 = 6

Euclidean distance: d2(A,B) =
√

|1− 5|2 + |1− 3|2 =
√
42 + 22 =

√
20

Maximum metric: d∞(A,B) = max {|1− 5|, |1− 3|} = max {4, 2} = 4
Hamming distance: dH(A,B) = 2 because the coordinates differ in two dimensions.

dH(A,C) = 1; the coordinates differ only in one dimension.

15

3 Metrics on Sequences

(a) Manhattan distance (b) Euclidean distance

(c) Maximum metric (d) Hamming distance

Figure 3.2: Examples of different metrics.

It is instructive to visualize (Figure 3.3) the set of points x = (x1, x2) ∈ R
2 that have

distance 1 from the origin for each of the above metrics.

(a) Manhattan distance (b) Euclidean distance

(c) Maximum metric (d) Hamming distance

Figure 3.3: Points with distance 1 for different metrics.

More generally, for every real number p ≥ 1, the p-metric on R
n (also called Minkowski

Distance) is defined by

dp(x, y) =
(n∑

i=1

|xi − yi|p
)1/p

.

We can derive the previous distances as a special case of the Minkowski Distance:

16

3.5 Edit Distances for Sequences

• p = 0 : Hamming distance

• p = 1 : Manhattan distance

• p = 2 : Euclidean distance

• p→∞ : maximum metric

For biological sequence data, the only distance in this section that makes general sense is
the Hamming distance (there is no notion of difference or maximum between nucleotides).

Example 3.2 Given is an alphabet Σ of size σ. Consider a graph whose vertices are all
strings in Σn, the so-called sequence graph of dimension n. Two vertices are connected by
an edge if and only if the Hamming Distance between them is 1. How many edges does the
graph contain?

There are exactly n(σ − 1) strings at Hamming distance 1 of any given string (n positions
times (σ− 1) choices of differing characters). Thus there are n(σ− 1) edges incident to each
vertex. Obviously there are σn vertices. Since an edge is connected to two vertices, there
are σn · n · (σ − 1)/2 edges altogether.

The distances in this section only make sense for sequences of the same length. The distances
we consider next are also defined for sequences of different lengths.

3.5 Edit Distances for Sequences

Let Σ be a finite alphabet. Edit distances are a general class of distances on Σ∗, defined
by edit operations. The distance is defined as the minimum number of edit operations
needed to re-write a source sequence x ∈ Σ∗ into a target sequence y ∈ Σ∗.

The edit operations that we consider are

• C: copy the next character from x to y,

• Sc for each c ∈ Σ: substitute the next character from x by c in y,

• Ic: insert c at the current position in y,

• D: delete the next character from x (i.e., skip over it),

• F: flip the next two characters in x while copying.

The insert and delete operations are sometimes collectively called indel operations.

The following table lists some edit distances along with their operations and their associated
standard costs. (The standard costs are also called unit costs.) If a cost is infinite, the
operation is not permitted.

Name C Sc Ic D F

Hamming distance dH 0 1 ∞ ∞ ∞
LCS distance dLCS 0 ∞ 1 1 ∞
Edit distance d 0 1 1 1 ∞
Edit+Flip distance dF 0 1 1 1 1

17

3 Metrics on Sequences

Each distance definition must allow copying at zero cost to ensure d(x, x) = 0 for all x. All
other operations receive a non-negative cost. Here are some subtle points to note:

• Previously, the Hamming distance dH(x, y) was undefined if |x| 6= |y|. With this
definition, we could define it as ∞. This distinction is irrelevant in practice.

• The LCS distance (longest common subsequence distance) does not allow substitutions.
However, since each substitution can be simulated by one deletion and one insertion,
we don’t need to assign infinite cost. Any cost ≥ 2 will lead to the same distance
value. The name stems from the fact that dLCS(x, y) = |x|+ |y| − 2 ·LCS(x, y), where
LCS(x, y) denotes the length of a longest common subsequence of x and y.

• The edit distance should be more precisely called unit cost standard edit distance. It
is the most important one in practice and should be carefully remembered. The flips
are comparatively unimportant in practice.

We now formally define how x ∈ Σ∗ is transformed into a different sequence by an edit
sequence, i.e., a sequence over the edit alphabet E(Σ) := {C, Sc, Ic, D, F} (or an appropriate
subset of it, depending on which of the above distances we use). Thus we define the edit
function E : Σ∗ × E∗ → Σ∗ inductively by

E(ε, ε) := ε

E(ax, C e) := a E(x, e) (a ∈ Σ, x ∈ Σ∗, e ∈ E∗)
E(ax, Sc e) := c E(x, e) (a, c ∈ Σ, x ∈ Σ∗, e ∈ E∗)
E(x, Ic e) := c E(x, e) (c ∈ Σ, x ∈ Σ∗, e ∈ E∗)
E(ax, D e) := E(x, e) (a ∈ Σ, x ∈ Σ∗, e ∈ E∗)
E(abx, F e) := ba E(x, e) (a, b ∈ Σ, x ∈ Σ∗, e ∈ E∗)

For the remaining arguments, E is undefined, i.e., E(x, ε) is undefined for x 6= ε since there
are no edit operations specified. Similarly, E(ε, e) is undefined if e 6= ε and e1 /∈ {Ic : c ∈ Σ},
because there is no symbol that the first edit operation e1 could operate on.

This definition can be translated immediately in a Haskell program. As an example, we
compute

E(AAB, IBCSBD) = B E(AAB, CSBD)

= BA E(AB, SBD)

= BAB E(B, D)

= BAB E(ε, ε)

= BAB.

We define the cost cost(e) of an edit sequence e ∈ E∗ as the sum of the costs of the individual
operations according to the table above. We can now formally define the edit distance for
a set of edit operations E as

dE(x, y) := min{cost(e) : e ∈ E∗, E(x, e) = y}.

Theorem 3.3 Each of the four distance variations according to the table above (Hamming
distance, LCS distance, Edit distance, Edit+Flip distance) defines a metric.

18

3.6 An Efficient Algorithm to Compute Edit Distances

Proof. We need to verify that all conditions of a metric are satisfied. The identity of
indiscernibles is easy. The triangle inequality is also trivial because the distance is defined
as the minimum cost. We need to make sure that symmetry holds, however. This can be
seen by considering an optimal edit sequence e with E(x, e) = y. We shall show that there
exists an edit sequence f with cost(f) = cost(e) such that E(y, f) = x.

To obtain f with the desired properties, we replace in e each D by an appropriate Ic and
vice versa. Substitutions Sc remain substitutions, but we need to replace the substituted
character from y by the correct character from x. Copies C remain copies and flips F remain
flips (in the model where they are allowed). The edit sequence f constructed in this way
obviously satisfies cost(f) = cost(e) and E(y, f) = x. This shows that d(y, x) ≤ d(x, y).

To prove equality, we apply the argument twice and obtain d(x, y) ≤ d(y, x) ≤ d(x, y). Since
the first and last term are equal, all inequalities must in fact be equalities, proving the
symmetry property. 2

Invariance properties of the edit distance. We note that the edit distance is invariant
under sequence reversal and bijective maps of the alphabet (“renaming the symbols”):

Theorem 3.4 Let d denote any variant of the above edit distances; Let π : Σ → Σ′ be a
bijective map between alphabets (if Σ′ = Σ, then π is a permutation of Σ). We extend π to
strings over Σ by changing each symbol separately. Then

1. d(x, y) = d(←−x ,←−y), and

2. d(x, y) = d(π(x), π(y)).

With ←−s := s[n]s[n− 1] . . . s[1] we denote the reversal of s.

Proof. Left as an exercise. Hint: Consider optimal edit sequences. 2

This theorem immediately implies that two DNA sequences have the same distance as their
reversed complements.

3.6 An Efficient Algorithm to Compute Edit Distances

While it is easy to find some e ∈ E∗ that transforms a given x ∈ Σ∗ into a given y ∈ Σ∗,
it may not be obvious to find the minimum cost edit sequence. However, since x and y
are processed from left to right, the following dynamic programming approach appears
promising.

We define a (|x|+ 1)× (|y|+ 1) matrix D, called the edit matrix, by

D(i, j) := d(x[1 . . . i], y[1 . . . j]) for 0 ≤ i ≤ |x|, 0 ≤ j ≤ |y|.

We are obviously looking for D(|x|, |y|) = d(x, y). We shall point out how the distance of
short prefixes can be used to compute the distance of longer prefixes; for concreteness we
focus on the standard unit cost edit distance (with substitution, insertion and deletion cost 1;
flips are not permitted).

19

3 Metrics on Sequences

If i = 0, we are transforming x[1 . . . 0] = ε into y[1 . . . j]. This is only possible with j
insertions, which cost j. Thus D(0, j) = j for 0 ≤ j ≤ |y|. Similarly D(i, 0) = i for
0 ≤ i ≤ |x|. The interesting question is how to obtain the values D(i, j) for the remaining
pairs of (i, j).

Theorem 3.5 For 1 ≤ i ≤ |x|, 1 ≤ j ≤ |y|,

D(i, j) = min

D(i− 1, j − 1) + 1{x[i]6=y[j]},

D(i− 1, j) + 1,

D(i, j − 1) + 1.

Proof. The proof is by induction on i + j. The basis is given by the initialization. We
may thus assume that the theorem correctly computes D(i − 1, j − 1) = min{cost(e) :
E(x[1 . . . i − 1], e) = y[1 . . . j − 1]}, so let eտ be an optimal edit sequence for this case.
Similarly, let e↑ be optimal for D(i−1, j) = min{cost(e) : E(x[1 . . . i−1], e) = y[1 . . . j]} and
e← be optimal for D(i, j − 1) = min{cost(e) : E(x[1 . . . i], e) = y[1 . . . j − 1]}.

We obtain three candidates for edit sequences to transform x[1 . . . i] into y[1 . . . j] as follows:
(1) We extend eտ either by C if x[i] = y[j] or by Sy[j] if x[i] 6= y[j]; the former leaves the cost
unchanged, the latter increases the cost by 1. (2) We extend e↑ by D, increasing the cost by
1. (3) We extend e← by Iy[j], increasing the cost by 1.

Recall that D(i, j) is defined as the minimum cost of an edit sequence transforming x[1 . . . i]
into y[1 . . . j]. Since we can pick the best of the three candidates, we have shown that an
inequality ≤ holds in the theorem.

It remains to be shown that there can be no other edit sequence with lower cost. Assume
such an edit sequence e∗ exists and consider its last operation o and its prefix e′ such that
e∗ = e′o. If o = D, then e′ is an edit sequence transforming x[1 . . . i − 1] into y[1 . . . j]
with cost(e∗) = cost(e′) + 1 < D(i − 1, j) + 1 by assumption; thus cost(e′) < D(i − 1, j),
a contradiction, since D(i − 1, j) is the optimal cost by inductive assumption. The other
options for o lead to similar contradictions: In each case, we would have seen a better value
already at a previous element of D. Therefore, such an e∗ cannot exist. 2

It is important to understand that the above proof consists of two parts. The first part shows
that, naturally, by appropriate extension of the corresponding edit sequences, D(i, j) is at
most the minimum of three values. The second part shows that the optimal edit sequence
for D(i, j) is always one of those three possibilities.

Together with the initialization, Theorem 3.5 can be translated immediately into an algo-
rithm to compute the edit distance. Some care must be taken, though:

• One might get the idea to implement a recursive function D that first checks for a
boundary case and returns the appropriate value, or otherwise calls D recursively with
smaller arguments. This is highly inefficient! Intermediate results would be computed
again and again many times. For example, to computeD(6, 6), we needD(5, 5), D(5, 6)
and D(6, 5), but to compute D(5, 6), we also need D(5, 5).

• It is thus much better to fill the matrix iteratively, either row by row, or column by
column, or diagonal by diagonal where i + j is constant. This is called a pull-type

20

3.6 An Efficient Algorithm to Compute Edit Distances

or backward dynamic programming algorithm. To obtain the value of D(i, j), it
pulls the information from previously computed cells.

Example 3.6 Let x = BCACD and y = DBADAD. We compute the edit matrixD as follows:

y ǫ D B A D A D
x 0 1 2 3 4 5 6

ǫ 0 0 1 2 3 4 5 6
B 1 1 1 1 2 3 4 5
C 2 2 2 2 2 3 4 5
A 3 3 3 3 2 3 3 4
C 4 4 4 4 3 3 4 4
D 5 5 4 5 4 3 4 4

Hence the edit distance of x and y is d(x, y) = D(5, 6) = 4. �

Let us analyze the time and space complexity of the pull-type algorithm. Assuming |x| = m
and |y| = n, we need to compute (m+1)·(n+1) values, and each computation takes constant
time; thus the running time is O(mn). The space complexity also appears to be O(mn) since
we apparently need to store the matrix D. However, it is sufficient to keep, for instance in a
column-wise computation, just the last column, or in a row-wise computation, just the last
row, in order to calculate the next one; thus the space complexity is O(m+ n).

Reconstructing the optimal edit sequence. The above statement about the space com-
plexity is true if we are only interested in the distance value. Often, however, we also would
like to know the optimal edit sequence. We essentially get it for free by the above algorithm,
but we need to remember which one of the three cases was chosen in each cell of the matrix;
therefore the space complexity increases to O(mn). Clearly, instead of storing the operations
they can also be recomputed, if just the edit matrix D is stored.

To find an optimal edit sequence, let us define another matrix E of the same dimensions as
D. We compute E while computing D, such that E(i, j) contains the last edit operation of
an optimal edit sequence that transforms x[1 . . . i] into y[1 . . . j]. This information is available
whenever we make a decision for one of the three predecessors to compute D(i, j). In fact,
there may be several optimal possibilities for E(i, j). We can use an array of three bits (for
edit distance) to store any combination out of the following seven possibilities:

{{C/Sc}, {D}, {Ic}, {C/Sc, D}, {C/Sc, Ic}, {D, Ic}, {C/Sc, D, Ic}}
From E, an optimal edit sequence e can be constructed backwards by backtracing (not to
be confused with backtracking on the following page) where we use the stored operations as
a trace which we follow through the matrix E. Clearly e ends with one of the operations
stored in E(m,n), so we have determined the last character o of e. Depending on its value,
we continue as follows.

• If o = C or o = Sc for some c ∈ Σ, continue with E(m− 1, n− 1).

• If o = D, continue with E(m− 1, n).

• if o = Ic for some c ∈ Σ, continue with E(m,n− 1).

21

3 Metrics on Sequences

We repeat this process until we arrive at E(0, 0). Note that in the first row we always move
left, and in the first column we always move up.

Note that there are divide and conquer algorithms that can determine an optimal edit
sequence in O(m + n) space and O(mn) time, using a distance-only algorithm as a sub-
procedure. These algorithms (e.g. the Hirschberg technique discussed in Section 5.4),
are very important, since space, not time, is often the limiting factor when comparing long
sequences.

If we want to obtain all optimal edit sequences, we systematically have to take different
branches in the E-matrix whenever there are several possibilities. This can be done efficiently
by a technique called backtracking (finds systematically all solutions, not to be confused
with backtracing on the previous page): We push the coordinates of each branching E-entry
(along with information about which branch we took and the length of the partial edit
sequence) onto a stack during backtracing. When we reach E(0, 0), we have completed an
optimal edit sequence and report it. Then we go back to the last branching point by popping
its coordinates from the stack, remove the appropriate prefix from the edit sequence, and
construct a new one by taking the next branch (pushing the new information back onto the
stack) if there is still one that we have not taken. If not, we backtrack further. As soon as
the stack is empty, the backtracking ends.

Problem 3.7 (Edit Sequence Problem) Enumerate all optimal edit sequences (with respect
to standard unit cost edit distance) of two sequences x ∈ Σm and y ∈ Σn.

Theorem 3.8 The edit sequence problem can be solved in O(mn + z) time, where z is the
total length of all optimal edit sequences of x and y.

Example 3.9 Let x = BCACD and y = DBADAD. We have seen (Example 3.6) that the
standard unit cost edit distance between x and y is d(x, y) = 4. There are 7 edit sequences
transforming x into y with this cost. Can you find them all? �

Variations. The algorithms in this section have focused on the standard unit cost edit
distance. However, the different edit distance variations from the previous section are easily
handled as well; this is a good exercise.

3.7 The q-gram Distance

Edit distances emphasize the correct order of the characters in a string. If, however, a large
block of a text is moved somewhere else (e.g. two paragraphs of a text are exchanged),
the edit distance will be high, although from a certain standpoint, the texts are still quite
similar. An appropriate notion of distance can be defined in several ways. Here we introduce
the q-gram distance dq, which is actually a pseudo-metric: There exist strings x 6= y with
dq(x, y) = 0.

Definition 3.10 Let x ∈ Σn, let σ := |Σ|, and choose q ∈ [1, n]. The occurrence count of
a q-gram z ∈ Σq in x is the number

N(x, z) := |{i ∈ [1, n− q + 1] : x[i . . . (i+ q − 1)] = z}|.

22

3.7 The q-gram Distance

The q-gram profile of x is a σq-element vector pq(x) := (pq(x)z)z∈Σq , indexed by all q-
grams, defined by pq(x)z := N(x, z).

The q-gram distance of x ∈ Σn and y ∈ Σm is defined for 1 ≤ q ≤ min{n,m} as

dq(x, y) :=
∑

z∈Σq

|pq(x)z − pq(y)z|.

Example 3.11 Consider Σ = {a,b}, x = abaa, y = abab, z = aaba, and q = 2. Using
lexicographic order (aa, ab, ba, bb) among the q-grams, we have p2(x) = (1, 1, 1, 0), p2(y) =
(0, 2, 1, 0), p2(z) = (1, 1, 1, 0), so d2(x, y) = 2 and d2(x, z) = 0 although x 6= z. �

Theorem 3.12 The q-gram distance dq is a pseudo-metric.

Proof. It fulfills nonnegativity, symmetry and the triangle inequality (exercise). 2

Choice of q. In principle, we could use any q ∈ [1,min{m,n}] to compare two strings of
length m and n. In practice, some choices are more reasonable than others.

For example, for q = 1, we merely add the differences of the single letter counts. If m and n
are large, there are many (even very differently looking) strings with the same letter counts,
which would all have distance zero from each other.

If on the other hand q = n ≤ m, and n ≈ m, the distance dq between the strings is always
close to m− n, which does not give us a good resolution either. Also, the q-gram profile of
both strings is extremely sparse in these cases. We thus ask for a value of q such that each
q-gram occurs about once (or c ≥ 1 times) on average.

Assuming a uniform random distribution of letters, the probability that a fixed q-gram z
starts at a fixed position i ∈ [1, n−q+1] is 1/σq. The expected number of occurrences of z in
the text is thus (n−q+1)/σq. The condition that this number equals c leads to the condition
(n+1)/c = q/c+σq, or approximately n/c = σq, since 1/c and q/c are comparatively small.
Thus setting

q :=

⌊
log(n)− log(c)

log(σ)

⌋

ensures an expected occurrence count ≥ c of each q-gram.

Relation to the edit distance. There is only a weak connection between unit cost edit
distance d and q-gram distance dq. Recall that we can have a high edit distance even though
dq(x, y) = 0 due to the property of the q-gram distance that there may exist x and y, with
x 6= y and dq(x, y) = 0. On the other hand, a single edit operation destroys up to q q-grams.
Generally, one can show the following relationship.

Theorem 3.13 Let d denote the standard unit cost edit distance. Then

dq(x, y)

2q
≤ d(x, y).

23

3 Metrics on Sequences

Proof. Each edit operation locally affects up to q q-grams. Each changed q-gram can cause a
change of up to 2 in dq, as the occurrence count of one q-gram decreases, the other increases.
Therefore each edit operation can lead to an increase of 2q of the q-gram distance in the worst
case (e.g. consider AAAAAAAAAAA vs. AABAABAABAA with edit distance 3, q = 3, and,
as can be verified, d3 = 18). 2

Practical computation. If the q-gram profile of a string x ∈ Σn is dense (i.e., if it does
not contain mostly zeros), it makes sense to implement it as an array p[0 . . . (σq − 1)], where
p[i] counts the number of occurrences of the i-th q-gram in some arbitrary but fixed (e. g.
lexicographic) order.

Definition 3.14 For a finite set X , a bijective function r : X → {0, . . . , |X | − 1} is called
ranking function, an algorithm that implements it is called ranking algorithm. The
inverse of a ranking function is an unranking function, its implementation an unranking
algorithm.

Of course, we are interested in an efficient (un-)ranking algorithm for the set of all q-grams
over Σ. A classical one is to first define a ranking function rΣ on the characters and then
extend it to a ranking function r on the q-grams by interpreting them as base-σ numbers.
There are two possibilities to number the positions of a q-gram: From q to 1 falling or from 1
to q rising, as shown in the Example 3.15.

Example 3.15 Two different possibilities to rank the q-gram z = ATACG:
(with q=5, Σ= {A,C,G,T}; σ=4, using rΣ(A) = 0, rΣ(C)=1, rΣ(G)=2, and rΣ(T)=3)
(a) Falling ranking

r(ATACG) = rΣ(z[1]) · σ4

︸ ︷︷ ︸

0·44

+ rΣ(z[2]) · σ3

︸ ︷︷ ︸

3·43

+ rΣ(z[3]) · σ2

︸ ︷︷ ︸

0·42

+ rΣ(z[4]) · σ1

︸ ︷︷ ︸

1·41

+ rΣ(z[5]) · σ0

︸ ︷︷ ︸

2·40

= 0 + 192 + 0 + 4 + 2 = 198

(b) Rising ranking

r(ATACG) = rΣ(z[1]) · σ0

︸ ︷︷ ︸

0·40

+ rΣ(z[2]) · σ1

︸ ︷︷ ︸

3·41

+ rΣ(z[3]) · σ2

︸ ︷︷ ︸

0·42

+ rΣ(z[4]) · σ3

︸ ︷︷ ︸

1·43

+ rΣ(z[5]) · σ4

︸ ︷︷ ︸

2·44

= 0 + 12 + 0 + 64 + 512 = 588

�

The first numbering of positions in (a) corresponds naturally to the ordering of positional
number systems; in the decimal number 23, the first 2 has positional value (weight) 101=10
whereas the 3 has the lower weight of 100=1. For texts, however, the second numbering in
(b) is more natural since we expect lower position numbers on the left side of higher position
numbers.

In general, we see that z ∈ Σq has rank

(a): r(z) =

q
∑

i=1

rΣ
(
z[i]
)
· σq−i, (b): r(z) =

q
∑

i=1

rΣ
(
z[i]
)
· σi−1.

24

3.7 The q-gram Distance

Whichever numbering system we use, we have to do it consistently.

For each of the two ways to rank a q-gram, there is a corresponding unranking method. Both
methods work with integer division and remainder. The one for the falling ranking function
uses a dynamic divisor and determines the characters of the q-gram based on the integer
results, the other one for the rising ranking function uses a fixed divisor and determines the
characters based on the remainder.

Example 3.16 Unranking the rank values 198 and 588 from Example 3.15.
(with q=5, Σ= {A,C,G,T}; σ=4, using rΣ(A) = 0, rΣ(C)=1, rΣ(G)=2, and rΣ(T)=3)
(a) Unranking for falling ranking function

198

44
= 0, R 198 → A

198

43
= 3, R 6 → T

6

42
= 0, R 6 → A

6

41
= 1, R 2 → C

2

40
= 2, R 0 → G

(b) Unranking for rising ranking function

588

4
= 147, R 0 → A

147

4
= 36, R 3 → T

36

4
= 9, R 0 → A

9

4
= 2, R 1 → C

2

4
= 0, R 2 → G

�

Both methods need q iterations and reconstruct the q-gram from the first position to the
last. Each iteration takes a starting value x and determines the corresponding character of
the q-gram while updating x for the next iteration. The starting value for the first iteration
is the rank v of the q-gram. In the ith iteration in the unranking method (a), for 1 ≤ i ≤ q,
the starting value x is divided by σq−i. The integer result c of the division determines the
decoded character as described by rΣ of the used ranking function. The remainder x′ of the
division serves as starting value for the next iteration.

(a)
x

σq−i
= c, R x′

In unranking method (b), the starting value x is always divided by σ. Here, the remainder c
of the integer division decodes the corresponding character and the integer result x′ is the
starting value for the next iteration.

(b)
x

σ
= x′, R c

25

3 Metrics on Sequences

Efficiency. Obviously, for z ∈ Σq, the ranking function r(z) can be computed in O(q) time.
Both, the falling and the rising, ranking functions have the advantage that when a window
of length q is shifted along a text, the rank of the q-gram can be updated in O(1) time:

Assume that t = azb with a ∈ Σ, z ∈ Σq−1, and b ∈ Σ. The first q-gram is az, whereas zb
is the updated one. Now we can define an update system for each of the ranking systems
above. For the falling ranking function we compute:

r(zb) = (j mod σq−1) · σ + rΣ(b), where j := r(az),

and for the rising ranking function:

r(zb) =
⌊ j

σ

⌋

+ f(b), where f(b) := rΣ(b) · σq−1.

If we take a more detailed look at both systems now, we can see that the second way is
possibly more efficient (as it avoids the modulo operation and only uses integer division) if f
is implemented as a lookup table f : Σ→ N0. If σ = 2k for some k ∈ N, multiplications and
divisions can be implemented by bit shifting operators, e.g. in the second system, r(zb) =
(j >> k) + f(b).

It is easy to see, that the q-gram corresponding to a ranking value can be obtained in O(q)
time for both unranking methods.

Now, to compute dq(x, y) for x ∈ Σm and y ∈ Σn,

1. initialize pq[0 . . . (σ
q − 1)] with zeros,

2. for each i ∈ [1,m− q + 1], increment pq[r(x[i..(i+ q − 1)])],

3. for each i ∈ [1, n− q + 1], decrement pq[r(y[i..(i+ q − 1)])],

4. initialize d := 0,

5. for each j ∈ [0, (σq − 1)], increment d by |pq[j]|.
This procedure obviously takes O(σq +m+ n) time. If m ≤ n and q is as suggested above,
this is O(n) time overall.

If q is comparatively large, it does not make sense to maintain a full array. Instead, we
maintain a data structure that contains only the nonzero entries of pq. If q = O(log(m+n)),
we can still achieve O(m+ n) time using hashing.

Words with the same q-gram profile. Given x ∈ Σm and 1 ≤ q ≤ m, can we determine
whether there are any y 6= x with dq(x, y) = 0, and if there are, how many? For q = 1, the
problem is trivial; any permutation of the symbols gives such a y. So we shall assume that
q ≥ 2. An elegant answer can be found by constructing the Balanced De Bruijn subgraph
B(x, q − 1) for x and q.

Definition 3.17 Given x ∈ Σm and 2 ≤ q ≤ m, the De Bruijn Subgraph B(x, q) for x
and q is a directed graph defined as follows:

• The vertices are all q-grams of x.

26

3.7 The q-gram Distance

• The edges correspond to the (q+1)-grams of x: For each (q+1)-gram azb, which is a
substring of x, with a ∈ Σ, z ∈ Σq−1, b ∈ Σ, we draw an edge from the q-gram vertex
az to the q-gram vertex zb. If the same q-gram occurs multiple times in x, the same
edge also occurs multiple times in the graph.

Since B(x, q − 1) is constructed from overlapping q-grams, the graph is connected and bal-
anced.

Since B(x, q − 1) is balanced, it contains an Eulerian path, corresponding to the word x.
However, it might contain more than one Eulerian path. The following observation, which
follows directly from the construction of B(x, q − 1), is crucial.

Observation 3.18 There is a one-to-one correspondence between Eulerian paths in B(x, q−
1) and words with the same q-gram profile as x.

Thus, in other words y 6= x with the same q-gram profile as x exist if and only if there
is another Eulerian path through B(x, q − 1). Since such a path uses the same edges in a
different order, a necessary condition is that B(x, q − 1) contains a cycle.

Theorem 3.19 The number of Eulerian paths in B(x, q − 1) equals the number of words y
with dq(x, y) = 0. If B(x, q − 1) contains no cycle, then there cannot exist a y 6= x with
dq(x, y) = 0.

Note that B(x, q−1) may contain one or more cycles, but still admit only one Eulerian path.
We give some examples.

Example 3.20

1. Consider x = GATTACA and q = 4. The graph B(x, q − 1) is shown in Figure 3.4
(left). We see that it contains no cycle, and therefore only one Eulerian path. There
are no other words with the same q-gram profile.

2. Consider y = GATTATTACA and q = 4. The graph B(y, q−1) is shown in Figure 3.4
(center). We see that it contains a cycle, but still only one Eulerian path. There are
no other words with the same q-gram profile.

3. Consider z = GATTATTAATTACA and q = 4. The graph B(z, q − 1) is shown in
Figure 3.4 (right). We see that it contains cycles and more than one Eulerian path.
Another word with the same q-gram profile is z′ = GATTAATTATTACA.

�

Figure 3.4: The three balanced De Bruijn Subgraphs B(x, 3), B(y, 3) and B(z, 3).

27

3 Metrics on Sequences

One can write a computer program that constructs B(x, q−1), identifies the initial and final
vertices (if they exist), and systematically enumerates all Eulerian paths in B(x, q−1) using
backtracking.

3.8 The Maximal Matches Distance

Another notion of distance that admits large block movements is the maximal matches
distance. It is based on the idea that we can cover a sequence x with substrings of another
sequence (and vice versa) that are interspersed with single characters.

Definition 3.21 A partition of x ∈ Σm with respect to y ∈ Σn is a sequence P =
(z1, b1, . . . , zℓ, bℓ, zℓ+1) for some ℓ ≥ 0 that satisfies the following conditions:

1. x = z1b1z2b2 . . . zℓbℓzℓ+1.

2. Each zl is a (possibly empty) substring of y for 1 ≤ l ≤ ℓ+ 1.

3. Each bl is a single character for 1 ≤ l ≤ ℓ.

The size of a partition P as above is |P | := ℓ. Note: If x is a substring of y, there exists
the trivial partition P = (x) of size 0.

Example 3.22 Let x = cbaabdcb and y = abcba. The following sequences are parti-
tions of x with respect to y, where we have marked the single characters in boldface:
P1 = (cba,a, b,d, cb) with |P1| = 2, P2 = (cba,a, b,d, c,b, ǫ) with |P2| = 3 and P3 =
(cb,a, ab,d, cb) of size |P3| = 2. �

Definition 3.23 The maximal matches distance to x from y is defined as

δ(x‖y) := min{|P | : P is a partition of x with respect to y}.

Obviously δ is not symmetric: δ(x‖y) = 0 is equivalent to x being a substring of y. Therefore
the maximal matches distance is not a metric and the name distance is misleading. We
can turn δ into a metric by using an appropriate symmetric function f(·, ·), i.e., defining
d||(x, y) := f

(
δ(x‖y), δ(y‖x)

)
. Care needs to be taken to satisfy the triangle inequality when

choosing f .

Theorem 3.24 The following function is a metric on Σ∗.

d||(x, y) := log
(
δ(x‖y) + 1

)
+ log

(
δ(y‖x) + 1

)
.

Proof. Symmetry and identity of indiscernibles are easily checked; we now check the triangle
inequality. Let x, y, u ∈ Σ∗. The number of substrings from u needed to cover x is δ(x‖u)+1.
We further need δ(u‖y) + 1 substrings from y to cover u. This means that we can cover x
with at most (δ(x‖u) + 1) · (δ(u‖y) + 1) substrings from y, i.e.,

δ(x‖y) + 1 ≤ (δ(x‖u) + 1) · (δ(u‖y) + 1) and (by the same argumentation)

δ(y‖x) + 1 ≤ (δ(y‖u) + 1) · (δ(u‖x) + 1).

28

3.8 The Maximal Matches Distance

Taking the logarithm of the product of these two inequalities, we obtain

log(δ(x‖y) + 1) + log(δ(y‖x) + 1)

≤ log(δ(x‖u) + 1) + log(δ(u‖y) + 1) + log(δ(y‖u) + 1) + log(δ(u‖x) + 1),

which is the triangle inequality d||(x, y) ≤ d||(x, u) + d||(u, y). 2

Relation to the edit distance. An important property of the maximal matches distance is
that it bounds the edit distance from below.

Theorem 3.25 Let d be the unit cost edit distance. Then

max{δ(x‖y), δ(y‖x)} ≤ d(x, y).

Proof. Consider a minimum-cost edit sequence e transforming x into y. Each run of copy
operations in e corresponds to a substring of x that is exactly covered by a substring of y
and can thus be used as part of a partition. It follows that there exists a partition (both
of x with respect to y and of y with respect to x) whose size is bounded by the number of
non-copy operations in e; this number is by definition equal to the edit distance. 2

Efficient computation. The next question is how to find a minimum size partition of x
with respect to y among all the partitions. Fortunately, this turns out to be easy: A greedy
strategy does the job. We start covering x at the first position by a match of maximal
length k such that z1 := x[1 . . . k] is a substring of y, but z1b1 = x[1 . . . (k + 1)] is not a
substring of y. We apply the same strategy to the remainder of x, x[(k + 2) . . .m].

Definition 3.26 The left-to-right partition Plr(x, y) = (z1, b1, . . . , zℓ, bℓ, zℓ+1) of x with
respect to y is the partition defined by the condition that for all l ∈ [1, ℓ], zlbl is not a
substring of y. Similarly, we can define the right-to-left partition.

Definition 3.27 The right-to-left partition Prl(x, y) = (z0, b1, z1, . . . , zℓ−1, bℓ, zℓ) of x with
respect to y is the partition defined by the condition that for all l ∈ [1, ℓ], blzl is not a substring
of y.

Theorem 3.28 The left-to-right partition is a partition of minimal length, i.e.,

|Plr(x, y)| = min{|P | : P is a partition of x with respect to y} = δ(x‖y).

The same is true for the right-to-left partition, which means:

|Plr(x, y)| = |Prl(x, y)| = δ(x‖y).

Proof. If x is a substring of y, then the optimal partition is the left-to-right partition and
has size zero. So assume that x is not a substring of y and any partition has size ≥ 1.

First, we prove the following (obvious) statement: If the optimal partition for a string x′

(with respect to y) has size ℓ, and if x = px′ contains x′ as a suffix, then the optimal partition

29

3 Metrics on Sequences

for x cannot have size smaller than ℓ. If it did, we could restrict that smaller partition to
the suffix x′, and would thus obtain a smaller partition for x′.

Now we show that the above statement proves the theorem: A partition P = (z1, b1, . . .)
decomposes x = z1b1x

′, where z1 is a substring of y, b1 is the first separating single character,
and x′ is the remaining suffix of x. The size of such a partition is at least one plus the size
of an optimal partition of x′. Since the left-to-right partition induces the shortest suffix x′,
by the above statement, its optimal partition is never larger than all partitions of longer
suffixes.

The statement for the right-to-left partition follows since it is equal to
←−
Plr(
←−x ,←−y). 2

It remains to discuss how (and how fast) we can compute the size of a left-to-right partition.
We will see later that the longest common substring z that starts at a given position i in
x and occurs somewhere in y can be found in O(|z|) time using an appropriate index data
structure of y that ideally can be constructed in O(|y|) time (e.g. a suffix tree of y, defined
in Chapter 7). Since the substrings cover x, we obtain the following result.

Theorem 3.29 The maximal matches distance δ(x‖y) of a sequence x ∈ Σm with respect to
another sequence y ∈ Σn can be computed in O(m+ n) time (using a suffix tree of y).

3.9 Filtering

The comparison of sequences is an important operation applied in several fields, such as
molecular biology, speech recognition, computer science, and coding theory. The most im-
portant model for sequence comparison is the model of (standard unit cost) edit distance.
However, when comparing biological sequences, the edit distance computation is often too
time-consuming. A fortunate coincidence is that the maximal matches distance and the q-
gram distance of two sequences can both be computed in time proportional to the sum of the
lengths of the two sequences (“linear time”) and provide lower bounds for the edit distance.
These results imply that we can use the q-gram distance or the maximal matches distance
as a filter: Assume that our task is to check whether d(x, y) ≤ t, e.g. as a condition for a
database search. Before we start the edit distance computation, we compute (for suitable q)
the q-gram distance and the maximal matches distances. If we find that dq(x, y)/(2q) > t for
any q, or δ(x‖y) > t or δ(y‖x) > t, then we can decide quickly and correctly that d(x, y) > t
without actually computing d(x, y), because these distances provide lower bounds. If none
of the above values exceeds t, we compute the edit distance. The distinguishing feature of a
filter is that it makes no errors.

On the other hand, one can develop heuristics that approximate the edit distance and are
efficiently computable. Good heuristics will be close to the true result with high probability;
hence the error made by using them is small most of the time.

30

CHAPTER 4

Pairwise Sequence Alignment

Contents of this chapter: Alignment. Alignment alphabet. Alignment score.
Alignment graph. Global alignment. Local alignment. Linear gap costs. Affine
gap costs.
Further contents in the appendix (Chapter B): Number of Alignments.

4.1 Definition of Alignment

An edit sequence e ∈ E∗ describes in detail how a sequence x can be transformed into another
sequence y, but it is hard to visualize the exact relationship between single characters of x and
y when looking at e. An equivalent description that is more visually useful is an alignment of
x and y. We restrict our considerations to the operations of copying, substituting, inserting,
and deleting characters.

We first give an example: Take x = AAB and e = IBCSBD; then E(x, e) = BAB =: y. Where
does the first B in y come from? It has been inserted, so it is not related to the first A in x.
The A in y is a copy of the first A from x. The last B in y has been created by substituting
the second A in x by B. Finally, the last B in x has no corresponding character in y, since
it was deleted. We write these relationships as follows.

– A A B
B A B –

We see that an alignment consists of (vertical) pairs of symbols from Σ, representing copies or
substitutions, or pairs of a symbol from Σ and a gap character (–), indicating an insertion
or deletion. Note that a pair of gap characters is not possible. Formally, the alignment
alphabet for Σ is defined as

A ≡ A(Σ) := (Σ ∪ {–})2 \ {
(
–
–

)
}.

31

4 Pairwise Sequence Alignment

More informal an alignment can be seen as a matrix of characters from Σ∪ {–}, where the
column

(
–
–

)
is forbidden. In this matrix the i-th row represents the i-th sequence, if the

included gaps are omitted. Each column of the matrix (alignment) corresponds to one of
the alignment operations. If one of the characters of a column is a gap character, it is called
an indel column. A column of the form

(
a
a

)
for a ∈ Σ is called a match column (or copy

column if we want to stick to the edit sequence terminology). Consequently, a column of the
form

(
a
b

)
for a 6= b is called a mismatch column (substitution column).

There is an obvious one-to-one relationship between edit sequences that transform x into
y and alignments of x and y. The edit operation C corresponds to

(
a
a

)
, Sa,b to

(
a
b

)
for all

a, b ∈ Σ, with a 6= b, Ia resembles
(
–
a

)
and Da resembles

(
a
–

)
for all a ∈ Σ.

Definition 4.1 Let Cn =
(cn,1
cn,2

)
∈ A be an alignment column. The projection to the first

row π{1} and projection to the second row π{2} are defined as the function A → Σ∪{ε}
with

π{1}(Cn) :=

{

cn,1 if cn,1 6= –

ε if cn,1 = –
π{2}(Cn) :=

{

cn,2 if cn,2 6= –

ε if cn,2 = –

Further, let A = (C1C2 · · ·Cn) be an alignment. The projection to the first row π{1}
and projection to the second row π{2} are then the following

π{1}(A) := π{1}(C1)π{1}(C2) · · ·π{1}(Cn) π{2}(A) := π{2}(C1)π{2}(C2) · · ·π{2}(Cn)

In other words, the first (second) projection simply reads the first (second) row of an align-
ment, omitting all gap characters.

Definition 4.2 Let x, y ∈ Σ∗. A global alignment of x and y is a sequence A ∈ A∗ of
alignment columns with π{1}(A) = x and π{2}(A) = y.

Observation 4.3 Let x ∈ Σm, y ∈ Σn, and let A be an alignment of x and y. Let e be the
edit sequence corresponding to A. Then

max{m,n} ≤ |A| = |e| ≤ m+ n.

Proof. The equality |A| = |e| follows from the equivalence of edit sequences and alignments.
Since each edit operation (alignment column) consumes at least one character from x or
y and the column

(
–
–

)
is forbidden, their number is bounded by m + n. The maximum

is reached if only insertions and deletions (indel columns) are used. On the other hand,
m = |x| = |π1(A)| ≤ |A| since the projection is never longer than the alignment. Similarly
n ≤ |A|, so that |A| ≥ max{m,n}. The boundary case is reached if the maximum number of
copy and substitution operations (match/mismatch columns) and only the minimum number
max{m,n} −min{m,n} of indels is used. 2

The above observation applies to alignments based on match/mismatch and indel columns
(copy/substitution and insertion/deletion operations). If additionally flips are allowed, we
have to extend the alignment alphabet such that columns may also contain flipped pairs of
letters (“flip columns”): A ⊃ {

(
ab
ba

)
: a, b ∈ Σ, a 6= b}.

32

4.2 The Alignment Score

Definition 4.4 For the edit distance model, the cost of an alignment column is defined
as the cost of the corresponding edit operation. More precisely: The match columns have a
cost of 0 (like the edit copy operation), whereas the mismatch and indel columns have a cost
of 1 (like the edit substitute and indel operations), when using unit costs. The cost of an

alignment A ∈ A∗ is defined as the sum of its columns’ cost, i.e., cost(A) =
∑|A|

i=1 cost(Ai).

Definition 4.5 The alignment cost of two sequences x, y ∈ Σ∗ is defined as d(x, y) :=
min{cost(A) : A ∈ A∗, π{1}(A) = x, π{2}(A) = y}. The cost-minimizing alignments are
Aopt(x, y) := {A ∈ A∗ : π{1}(A) = x, π{2}(A) = y, cost(A) = d(x, y)}.

Note the following subtle point: alignment cost of two sequences should not be confused
with the cost of a particular alignment of those sequences!

Problem 4.6 (Alignment Problem) For two given strings x, y ∈ Σ∗ and a given cost func-
tion, find the alignment cost of x and y and one or all optimal alignment(s).

4.2 The Alignment Score

So far, we only considered cost models, e.g. the unit cost, to measure the distance between
two sequences. As long as we are interested in a global comparison, that makes sense. But
when we are interested in a local comparison to learn about the least different parts of two
sequences, we get a problem. A distance can only punish differences, not reward similarities,
since it can never drop below zero. Note that the empty sequence ε is a (trivial) substring
of every sequence and d(ε, ε) = 0; so this (probably completely uninteresting) common part
is always among the best possible ones.

The problem of finding the least different parts of two sequences is more easily formulated
in terms of similarity than in terms of dissimilarity or distance. That means that we assign
a positive similarity value (or score) to each pair that consists of a copy of the same letter
and a negative score to each mismatched pair (corresponding to a substitution operation),
and also to insertions and deletions.

Definition 4.7 Given x, y ∈ Σ∗ and an edit alphabet E with the score function score(e) ∈ R

for each edit operation e ∈ E∗ the edit score s(x, y) is defined as

s(x, y) := max{score(e) : e ∈ E∗, E(x, e) = y}.

Similarly to the cost of an alignment, the score of an alignment can be defined.

Definition 4.8 Until we define more complex gap scoring models and give a sensible sim-
ilarity function, the score of an alignment column C ∈ A is defined as the score of
the corresponding edit operation, so the gap score score(

(
–
a

)
) = score(

(
a
–

)
) is negative

and often has the same value for all a ∈ Σ. Its absolute value is also called gap cost.
The score of an alignment A ∈ A∗ is defined as the sum of its columns’ scores, i.e.,

score(A) =
∑|A|

i=1 score(Ai).

Definition 4.9 The alignment score of two sequences x, y ∈ Σ∗ is defined as s(x, y) :=
max{score(A) : A ∈ A∗, π{1}(A) = x, π{2}(A) = y}. The score-maximizing alignments
are Aopt(x, y) := {A ∈ A∗ : π{1}(A) = x, π{2}(A) = y, score(A) = s(x, y)}.

33

4 Pairwise Sequence Alignment

4.3 The Alignment Graph

So far, we can describe the relation among two biological sequences with edit sequences and
alignments. This section introduces a third way: as paths in a particular graph called the
alignment graph.

Definition 4.10 The (global) alignment graph of two strings x ∈ Σm and y ∈ Σn is a
directed acyclic edge-labeled and edge-weighted graph G(x, y) := (V,E, λ, w) with

• vertex set V := {(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {vS , vE},

• edge set E ⊆ V × V (edges are written in the form u→ v) with:

– “horizontal” edges (i, j)→ (i, j + 1) for all 0 ≤ i ≤ m and 0 ≤ j < n,

– “vertical” edges (i, j)→ (i+ 1, j) for all 0 ≤ i < m and 0 ≤ j ≤ n,

– “diagonal” edges (i, j)→ (i+ 1, j + 1) for all 0 ≤ i < m and 0 ≤ j < n,

– an “initialization” edge vS → (0, 0) and a “finalization” edge (m,n)→ vE ,

• edge labels λ : E → A∗ assigning zero, one, or several alignment columns to each edge
as follows:

– λ((i, j)→ (i, j + 1)) :=
(–
y[j+1]

)
,

– λ((i, j)→ (i+ 1, j)) :=
(
x[i+1]

–

)
,

– λ((i, j)→ (i+ 1, j + 1)) :=
(x[i+1]
y[j+1]

)
,

– λ(vS → (0, 0)) := ε, and λ((m,n)→ vE) := ε.

Note that presently, each edge within the rectangular vertex matrix is labeled with
exactly one alignment column.

• edge weight function w : E → R assigning a score or cost to each edge. It is defined
as the score or cost of the respective label (alignment column): w(e) := score(λ(e)) or
w(e) := cost(λ(e)), where score(ε) = cost(ε) := 0.

Example 4.11 For unit cost edit distance, the cost weights are w(e) = 1 for vertical and
horizontal edges, w(e) = 1{x[i+1]6=y[j+1]} for the diagonal edge, and w(e) = 0 for the edges
from vS and to vE . �

Definition 4.12 A path in a graph is a sequence of vertices p = (v0, . . . , vK) such that
(vk−1 → vk) ∈ E for all k ∈ [1,K]. The length of p is |p| := K. The weight of a
path (score or cost, depending on the setting) is the sum of its edge weights, i.e., w(p) :=
∑|p|

k=1 w(vk−1 → vk).

Observation 4.13 Each global alignment A of x and y corresponds to a path p(A) from vS
to vE in the global alignment graph G(x, y). The alignment that corresponds to p is simply
the concatenation of the labels on the path’s edges. Furthermore, score(A) = w(p(A)) or
cost(A) = w(p(A)), depending on the setting.

34

4.4 A Universal Alignment Algorithm

In particular, a maximum weight path from vS to vE corresponds to a score-maximizing
alignment of x and y.

In more detail, there is a one-to-one correspondence between alignments of x[i′ . . . i] with
y[j′ . . . j] and paths from (i′ − 1, j′ − 1) to (i, j). Also, there is a one-to-one correspondence
between a vertex v = (i, j) in an alignment graph and the position (i, j) in the corresponding
alignment matrix (Section 3.6).

Figure 4.1: Global alignment graph for a sequence of length 3 and one of length 4. Edge
weights and labels have been omitted. The initial vertex vS is shown at the top left corner;
the final vertex vE is shown at the bottom right corner.

�

A

A C

G

() ()

()

()

()

()

() ()

() ()

() ()

() ()

A

A

A

A

A
A A

()

()

A

C

C

C

C

C

GG G
G

S

E

A

G
A

Figure 4.2: Global alignment graph for sequences x = AG and y = AC. Edge weights have
been omitted. The initial vertex vS is shown at the top left corner; the final vertex vE is
shown at the bottom right corner.

4.4 A Universal Alignment Algorithm

The correspondence between paths in G(x, y) and alignments implies that the global align-
ment problem (i.e., to find one or all optimal alignment/s) for x, y ∈ Σ∗ is equivalent to
finding a maximum weight path from vS to vE in G(x, y).

Since the number of paths is equal to the number of alignments and therefore grows super-
exponentially (see Appendix B), it is impossible to enumerate them all. We therefore use the
same idea as in Theorem 3.5 and apply dynamic programming. The following presentation is
given in a score context. In a cost context, we minimize costs instead of maximizing scores.
The principle remains unchanged, of course.

35

4 Pairwise Sequence Alignment

Algorithm 4.14 (Universal Alignment Algorithm) In G(x, y), we define vertex values S :
V → R as follows: We set

S(v) :=

0 if v = vS ,

max
(u→v)∈E

{S(u) + w
(
(u→ v)

)
} if v 6= vS .

(4.1)

Since G(x, y) is acyclic, S is well-defined, and we can arrange the computation in such an
order that by the time we arrive at any vertex v, we have already computed S(u) for all
predecessors needed in the maximum for S(v). A possible order is: vS first (the only vertex
with no incoming edges), then row-wise through the rectangular vertex array, and finally vE
(the only vertex with no outgoing edges).

What is the interpretation of the value S(v)? The following theorem gives the answer.

Theorem 4.15 For the global alignment graph G(x, y), S(v) is the maximum weight of any
path from vS to v. Therefore, if v = (i, j), it is equal to the maximum alignment score of
x[1 . . . i] and y[1 . . . j]. It follows that the alignment score of x and y can be read off at vE ,
since its only predecessor is (|x|, |y|):

s(x, y) = S
(
(|x|, |y|)

)
= S(vE).

Proof. This is exactly the same argument as in the proof of Theorem 3.5, except that we
are now maximizing scores instead of minimizing costs. 2

Definition 4.16 For each edge e = (u→ v) ∈ E, by definition S(v) ≥ S(u) + w(e). We say
that e is a maximizing edge if S(v) = S(u) + w(e) and that a path p is a maximizing
path if it consists only of maximizing edges. (In a cost context, we define a minimizing
edge and a minimizing path similarly, thus S(v) ≤ S(u) + w(e).)

Backtracing. How do we find the optimal paths? As previously for the computation of the
edit sequence, by tracing back.

When computing S(v), we take note which of the incoming edges are maximizing edges. After
arriving at vE , we trace back a maximizing path to vS . If at some vertex we have to make a
choice between several maximizing edges, we remember this branching point on a stack and
first follow one choice. Later we use backtracking to come back and systematically explore
the other choice(s). Thus, we can systematically enumerate all maximizing paths and hence
construct all optimal alignments. (In a cost context, we only consider minimizing edges and
trace back a minimizing path.) This procedure is entirely similar to the one described in
Section 3.6. It takes O(|A|) time to reconstruct an alignment A.

4.5 Alignment Types: Global, Free End Gaps, Local

A remarkable feature of our graph-based formulation of the global alignment problem is
that we can now consider different variations of the alignment problem without changing
Algorithm 4.14. In this sense, it is a Universal Alignment Algorithm. We do change the
structure of the graph, though! For each variation, four things should be specified:

36

4.5 Alignment Types: Global, Free End Gaps, Local

1. the structure of the alignment graph G = G(x, y),

2. the interpretation of the vertex values S(v),

3. an argument of proof that the given interpretation is correct with respect to the graph
structure and the Universal Alignment Algorithm 4.14, and

4. an explicit representation of Equation (4.1), accounting for the graph structure.

Global alignment. Global alignment is what we have discussed so far: Both sequences must
be aligned from start to end. Often, the gap score is the same for all characters, say −γ
with gap cost γ > 0. We can write the universal algorithm explicitly for global alignment,
and it is a good exercise to do it: Vertex (0, 0) has only one incoming edge from vS , and
vertices (i, 0) and (0, j) for i, j ≥ 1 have one incoming edge from (i − 1, 0) and (0, j − 1),
respectively. Vertices (i, j) for i ≥ 1 and j ≥ 1 have three incoming edges. Therefore we
obtain the algorithm shown in Equation (4.2), known as the global alignment algorithm
or Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). It is important to
understand that for our definition of G(x, y), the recurrence in Equation (4.2) is exactly
equivalent to Equation (4.1) in the Universal Alignment Algorithm (see 4.14). Also note
that it is essentially the same algorithm as the one in Theorem 3.5.

S(v) =

0 if v = vS

S(vS) if v = (0, 0)

S
(
(i− 1, 0)

)
− γ if v = (i, 0) for 1 ≤ i ≤ |x|,

S
(
(0, j − 1)

)
− γ if v = (0, j) for 1 ≤ j ≤ |y|,

max

S
(
(i− 1, j − 1)

)
+ score(x[i], y[j]),

S
(
(i− 1, j)

)
− γ,

S
(
(i, j − 1)

)
− γ

if v = (i, j) for

{

1 ≤ i ≤ |x|,
1 ≤ j ≤ |y|

}

,

S
(
(|x|, |y|)

)
if v = vE .

(4.2)

The initial case is trivial, from now on it will be omitted.

Semi global alignment. If one sequence, say x, is short and we are interested in the best
match of x within y, we can modify global alignment in such a way that the whole of x is
required to be aligned to any part of y. This is also referred to as approximate string
matching. This type of alignment is global in the short sequence and local in the long
sequence. We need the following edges in addition to those needed for a global alignment
(they are a subset of those needed for free end gap alignment, see Figure 4.3):

• initialization edges vS → (0, j) with weight zero and empty label for 1 ≤ j ≤ |y| (i.e.,
to the 0-th row),

• finalization edges (|x|, j) → vE with weight zero and empty label for 1 ≤ j ≤ |y| (i.e.,
from the last row).

37

4 Pairwise Sequence Alignment

S(v) =

0 if v = vS

S
(
(i− 1, 0)

)
− γ if v = (i, 0) for 1 ≤ i ≤ |x|,

S(vS) if v = (0, j) for 0 ≤ j ≤ |y|,

max

S
(
(i− 1, j − 1)

)
+ score(x[i], y[j]),

S
(
(i− 1, j)

)
− γ,

S
(
(i, j − 1)

)
− γ

if v = (i, j) for

{

1 ≤ i ≤ |x|,
1 ≤ j ≤ |y|

}

,

max
0≤j≤|y|

{
S
(
(|x|, j)

)}
if v = vE .

(4.3)

The recurrence for the semi global alignment is given in equation (4.3). Later in Section 5.2
we come back to this problem, where we present Sellers’ algorithm and an improvement for
this problem.

Figure 4.3: Alignment graph for the approximate string matching of a sequence of length 3
and one of length 4. The initial vertex vS is shown at the top left corner; the final vertex
vE is shown at the bottom right corner.

Free end gap alignment. If we expect that one sequence is (except for a few differences)
essentially a substring of the other, or that x = x′z and y = zy′, so that x and y have a long
overlap z (but are otherwise unrelated), a global alignment makes little sense, since it would
forcibly match equal symbols even in the regions where we do not expect any similarity. The
culprit is the high cost to pay for gaps at either end of either sequence. We can remove those
costs by changing the graph structure as follows (see Figure 4.4): In addition to the edges
present in the global alignment graph, we add

• initialization edges vS → (i, 0) and vS → (0, j) with weight zero and empty label for
1 ≤ i ≤ |x|, 1 ≤ j ≤ |y|,

• finalization edges (i, |y|)→ vE and (|x|, j)→ vE with weight zero and empty label for
1 ≤ i ≤ |x|, 1 ≤ j ≤ |y|.

This allows to start an alignment at the beginning of either sequence; it can start at any
character in the other sequence with zero penalty. Similarly, the alignment ends at the end of
either sequence. By this construction, S

(
(i, j)

)
can be interpreted as the maximum score of

38

4.5 Alignment Types: Global, Free End Gaps, Local

a global alignment of either x[1 . . . i] with y[j′ . . . j] for any j′ ≤ j or of x[i′ . . . i] for any i′ ≤ i
with y[1 . . . j]. Explicitly, the free end gap alignment algorithm looks as in Equation (4.4).

S(v) =

0 if v = vS

S(vS) if v = (i, 0) for 0 ≤ i ≤ |x|,
S(vS) if v = (0, j) for 0 ≤ j ≤ |y|,

max

S
(
(i− 1, j − 1)

)
+ score(x[i], y[j]),

S
(
(i− 1, j)

)
− γ,

S
(
(i, j − 1)

)
− γ

if v = (i, j) for

{

1 ≤ i ≤ |x|,
1 ≤ j ≤ |y|

}

,

max
0≤i≤|x|
0≤j≤|y|

{
S
(
(i, |y|)

)
, S
(
(|x|, j)

)}
if v = vE .

(4.4)

Again, it is important to understand that the recurrence is equivalent to Equation (4.1). Free
end gap alignment is very important for genome assembly, i.e., when whole genomes are
assembled from short sequenced DNA fragments: One has to determine how the fragments
overlap, taking into account possible sequencing errors.

Figure 4.4: Free end gap alignment graph for a sequence of length 3 against one of length 4.
The initial vertex vS is shown at the top left corner; the final vertex vE is shown at the
bottom right corner.

Local alignment. Often, two proteins are not globally similar and also do not overlap at
either end. Instead, they may share one highly similar region (e.g. a conserved domain)
anywhere inside the sequences. In this case, it makes sense to look for the highest scoring
pair of substrings of x and y. This is referred to as an optimal local alignment of x and y.
As a local alignment can start and end anywhere, the following edges must be added to the
global alignment graph (we do not show a figure, it would be too crowded):

• initialization edges vS → (i, j) for all 0 ≤ i ≤ |x| and 0 ≤ j ≤ |y|,
• finalization edges (i, j)→ vE for all 0 ≤ i ≤ |x| and 0 ≤ j ≤ |y|.

Now S
(
(i, j)

)
is the maximum score attainable by aligning substrings x[i′ . . . i] with y[j′ . . . j]

for any 0 ≤ i′ ≤ i and 0 ≤ j′ ≤ j. To get the best score of an alignment that ends anywhere,
the finalization edges maximize over all ending positions. Explicitly written, we obtain the

39

4 Pairwise Sequence Alignment

local alignment algorithm shown in Equation (4.5), also known as the Smith-Waterman
algorithm (Smith and Waterman, 1981). It is one of the most fundamental algorithms in
computational biology. Because of its importance, it deserves a few remarks.

S(v) =

0 if v = vS

S(vS) if v = (i, 0) for 0 ≤ i ≤ |x|,
S(vS) if v = (0, j) for 0 ≤ j ≤ |y|,

max

S(vS),

S
(
(i− 1, j − 1)

)
+ score(x[i], y[j]),

S
(
(i− 1, j)

)
− γ,

S
(
(i, j − 1)

)
− γ

if v = (i, j) for

{

1 ≤ i ≤ |x|,
1 ≤ j ≤ |y|

}

,

max
0≤i≤|x|
0≤j≤|y|

{
S
(
(i, j)

)}
if v = vE .

(4.5)

• Prior to the work of Smith and Waterman (1981), the notion of the “best” matching
region of two sequences, was not uniquely defined, and often computed by heuristics
whose output was taken as the definition of “best”. Now we have a clear definition
(take any pair of substrings, compute an optimal global alignment for each pair, then
take the pair with the highest score). Note that the time complexity of this algorithm
is still O(mn) for sequences of lengths m and n, much better than in fact globally
aligning each of the O(m2n2) pairs of substrings in O(mn) time for a total time of
O(m3n3).

• Since the empty sequences are candidates for substrings and receive a global alignment
score of zero, the local alignment score of any two sequences is always nonnegative.

• Two random sequences should have no similar region. Of course, even a single iden-
tical symbol will make a positive contribution to the score. Therefore small positive
scores are meaningless. Also, the average score in a random model should be negative;
otherwise we would obtain large positive scores with high probability for random se-
quences, which makes it hard to distinguish random similarities from true evolutionary
relationships. We investigate these issues further in Appendix D.

• Even though the O(mn) running time appears reasonable at first sight, it can become
a high bottleneck in large-scale sequence comparison. Therefore, often a filter or
a heuristic is used. Several practical sequence comparison tools are presented in
Chapter 6.

• The O(mn) space requirement for S and the backtracing pointers is an even more
severe limitation. As mentioned previously, linear-space methods exist (they incur a
small time penalty, approximately a factor of two, see Section 5.4 for details) and are
widely used in practice.

• The Smith-Waterman notion of local similarity has a serious flaw: it does not dis-
card poorly conserved intermediate segments. The Smith-Waterman algorithm finds
the local alignment with maximal score, but it is unable to find local alignment with
maximum degree of similarity (e.g. maximal percent of matches). As a result, local

40

4.6 Gap Cost Variations for Alignments

alignment sometimes produces a mosaic of well-conserved fragments artificially con-
nected by poorly-conserved or even unrelated fragments. Arslan et al. (2001) proposed
an algorithm based on fractional programming with O(mn logm) running time on two
sequences of lengths m ≥ n that reports the regions with maximum degree of simi-
larity. In practice, this so-called length-normalized local alignment is only 3–5
times slower than the standard Smith-Waterman algorithm. We will discuss it in
Appendix G.1.

The local alignment only makes sense for measuring with a score function. If you use a cost
function the empty alignment would be always the best.

4.6 Gap Cost Variations for Alignments

General gap costs. So far, a gap of length d in any sequence receives a score of −d · γ,
where γ > 0 is the gap cost (assuming that it is not character-specific or position-specific).
Therefore it does not matter whether we interpret a run of d consecutive gap characters as
one long gap or as d gaps of length 1. This is the case of linear gap costs. In general a
function g : R→ R is linear if g(k + l) = g(k) + g(l) and g(λx) = λg(x).

When indels occur, they often concern more than a single character. Therefore we need more
flexibility for specifying gap costs. The most general (not character- or position-specific) case
allows a general gap cost function g : N→ R

+
0 , where we pay g(l) for a gap of length l. We

always set g(0) = 0, and frequently, in practice, we demand that gap costs are subadditive,
i.e., g(k+ l) ≤ g(k) + g(l) for all k, l ≥ 0. In this way, we penalize longer gaps relatively less
than shorter gaps.

In protein coding regions, however, the following gap cost function may be reasonable; note
that it is not subadditive:

g(ℓ) :=

{

ℓ/3 if ℓ mod 3 = 0,

ℓ+ 2 otherwise.

For the increased generality, we have to pay a price: a significant increase in the number
of edges in the alignment graph and in the time complexity of the algorithm. The changes
apply to all of the above variations (global, free end gap, semi global, and local alignment).
To the appropriate G(x, y) we add

• horizontal edges (i, j′) → (i, j) for all 0 ≤ i ≤ |x| and all pairs 0 ≤ j′ < j ≤ |y| with
respective weights g(j − j′) and labels

(–– ... ––
y[j′+1...j]

)
,

• vertical edges (i′, j) → (i, j) for all 0 ≤ j ≤ |y| and all pairs 0 ≤ i′ < i ≤ |x| with
respective weights g(i− i′) and labels

(
x[i′+1...i]
–– ... ––

)
.

Since each vertex has now O(m + n) predecessors, the running time of Algorithm 4.14
increases to cubic (O(mn(m+ n)) for sequences of lengths m and n). In Equation (4.6) we
show explicitly the Smith-Waterman algorithm with general gap costs g : N→ R

+
0 .

41

4 Pairwise Sequence Alignment

S(v) =

0 if v = (i, 0) for 0 ≤ i ≤ |x|,
0 if v = (0, j) for 0 ≤ j ≤ |y|,

max

0,

S
(
(i− 1, j − 1)

)
+ score(x[i], y[j]),

max0≤i′<i

{
S
(
(i′, j)

)
− g(i− i′)

}
,

max0≤j′<j

{
S
(
(i, j′)

)
− g(j − j′)

}

if v = (i, j) for

{

1 ≤ i ≤ |x|,
1 ≤ j ≤ |y|

}

,

max
0≤i≤|x|
0≤j≤|y|

{
S
(
(i, j)

)}
if v = vE .

(4.6)

Although this starts to look intimidating, remember that this formula is still nothing else
than Equation (4.1). General gap costs are useful, but the price in time complexity is usually
too expensive to be paid. Fortunately, two special cases (but still more general than linear
gap costs) allow more efficient algorithms: affine gap costs, to be discussed next, and concave
gap costs, an advanced topic not considered in these notes.

Affine gap costs. Affine gap costs are important and widely used in practice. A gap cost
function g : N → R

+
0 is called an affine gap cost function if g(l) = d + (l − 1) · e, where

d > 0 is called the gap open cost and 0 < e ≤ d is called the gap extension cost. The
gap open cost is paid once for every consecutive run of gaps, namely at the first (opening)
gap. Each additional gap character then costs only e. Of course, this case can be treated in
the framework of general gap costs. We shall see, however, that a quadratic-time algorithm
(O(mn) time) exists; the idea is due to Gotoh (1982). We explain it for global alignment;
the required modifications for the other alignment types are easy.

Recall that S
(
(i, j)

)
is the alignment score for the two prefixes x[1 . . . i] and y[1 . . . j]. In

general, such a prefix alignment can end with a match/mismatch, a deletion, or an insertion.
In the indel case, either the gap is of length ℓ = 1, in which case its cost is g(1) = d, or its
length is ℓ > 1, in which case its cost can recursively be computed as g(ℓ) = g(ℓ− 1) + e.

The main idea is to additionally keep track of (i.e., to tabulate) the state of the last alignment
column. In order to put this idea into an algorithm, we define the following additional two
matrices:

V
(
(i, j)

)
:= max

{

score(A)

∣
∣
∣
∣

A is an alignment of the prefixes x[1 . . . i] and y[1 . . . j]
that ends with a gap character in y

}

,

H
(
(i, j)

)
:= max

{

score(A)

∣
∣
∣
∣

A is an alignment of the prefixes x[1 . . . i] and y[1 . . . j]
that ends with a gap character in x

}

.

Then

S
(
(i, j)

)
= max

{
S
(
(i− 1, j − 1)

)
+ score(x[i], y[j]), V

(
(i, j)

)
, H
(
(i, j)

)}
,

which gives us a method to compute the alignment matrix S, given the matrices V and H. It
remains to explain how V and H can be computed efficiently. Consider the case of V

(
(i, j)

)
:

A gap of length ℓ ending at position (i, j) is either a gap of length ℓ = 1, in which case we

42

4.6 Gap Cost Variations for Alignments

can easily compute V
(
(i, j)

)
as V

(
(i, j)

)
= S

(
(i− 1, j)

)
− d. Or, it is a gap of length ℓ > 1,

in which case it is an extension of the best scoring vertical gap ending at position (i− 1, j),
V
(
(i, j)

)
= V

(
(i− 1, j)

)
− e. Together, we see that for 1 ≤ i ≤ m and 0 ≤ j ≤ n,

V
(
(i, j)

)
= max

{
S
(
(i− 1, j)

)
− d, V

(
(i− 1, j)

)
− e
}
.

Similarly, for horizontal gaps we obtain for 0 ≤ i ≤ m and 1 ≤ j ≤ n,

H
(
(i, j)

)
= max

{
S
(
(i, j − 1)

)
− d, H

(
(i, j − 1)

)
− e
}
.

The border elements of V and H are initialized in such a way that they do not contribute
to the maximum in the first row or column:

V
(
(0, j)

)
= H

(
(i, 0)

)
= −∞, for 0 ≤ i ≤ m and 0 ≤ j ≤ n.

S is initialized as follows:

S
(
(0, 0)

)
= 0, S

(
(i, 0)

)
= V

(
(i, 0)

)
, S
(
(0, j)

)
= H

(
(0, j)

)
, for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

An analysis of this algorithm reveals that it uses O(mn) time and space. Hidden in the
O-notation is a larger constant factor compared to the case of linear gap costs. Note that, if
only the optimal score is required, only two adjacent columns (or rows) from the matrices V ,
H, and S are needed. For backtracing, only the matrix S (or a matrix of back-pointers) is
needed; so V andH never need to be kept in memory entirely. Thus the memory requirement
for pairwise alignment with affine gap costs is even in practice not much worse than for linear
gap costs.

The above affine gap cost formulas can also be derived as a special case of the Universal
Alignment Algorithm 4.14. However, we need three copies of the rectangular vertex array,
corresponding to S, V , and H.

Example 4.17 Given amino acid stringsWW andWNDW and the following scoring scheme,
find the optimal global alignment. For affine gap costs: Gap open cost of d = 11, gap ex-
tension cost of e = 1 and the substitution scores are taken from the BLOSUM62 matrix
(score(W,W) = 11, score(W,N) = −4, score(W,D) = −4).
Figure 4.5 shows the three matrices S, V and H used by the Gotoh algorithm to calculate
a global alignment with affine gap costs.

�

43

4 Pairwise Sequence Alignment

S ǫ W N D W

ǫ 0 −11 −12 −13 −14
W −11 11 0 −1 −2
W −12 0 7 −4 10

V ǫ W N D W

ǫ −∞ −∞ −∞ −∞ −∞
W −11 −22 −23 −24 −25
W −12 0 −11 −12 −13

H ǫ W N D W

ǫ −∞ −11 −12 −13 −14
W −∞ −22 0 −1 −2
W −∞ −23 −11 −4 −5

Figure 4.5: The three matrices S, V and H that are used to calculate a global alignment with
affine gap costs with the Gotoh algorithm. The score-maximizing path is marked with gray
backgound color and bold numbers. If a value of the maximizing path of S originated from
V or H, these cells are marked as well.

44

CHAPTER 5

Advanced Topics in Pairwise Alignment

Contents of this chapter: Suboptimal alignments, approximate string match-
ing, Sellers’ algorithm, Ukkonen’s cutoff improvement, forward-backward tech-
nique, pairwise alignment in linear space, Hirschberg.
Further contents in the appendix (Chapter G): Length-normalized align-
ment, shadow effect, mosaic effect, optimal normalized alignment score, para-
metric alignment, ray search problem.

5.1 Suboptimal Alignments

Often it is desirable not only to find one or all optimal alignments of two sequences, but also
to find suboptimal alignments, i.e., alignments that score (slightly) below the optimal
alignment score. This is especially relevant in a local alignment context where several sim-
ilar regions might exist and be of biological interest, while the Smith-Waterman Algorithm
reports only a single (optimal) one. Also, above we have already argued that in some cases
a length-normalized alignment score may be more appropriate, giving us another reason to
look at more than a single optimal alignment.

A simple way to find suboptimal local alignments could be to report first the alignment
(obtained by backtracing) corresponding to the highest score in the local alignment graph,
then the alignment corresponding to the second highest score, and so on. This approach has
two disadvantages, though:

1. Redundancy: Many of the local alignments reported by this procedure will be largely
overlapping, differing only by the precise placement of single gaps, single mismatches
or the exact end characters of the alignments. An illustration is given in Figure 5.1.

45

5 Advanced Topics in Pairwise Alignment

2. Shadowing effect: Some high scoring alignments will be invisible in this procedure if an
even higher scoring alignment is very close by, for example if the two alignments cross
each other in the edit graph, where always the higher scoring prefix will be chosen. An
illustration is given in Figure 5.2.

In order to circumvent these disadvantages, Waterman and Eggert (1987) gave a more sen-
sible definition of suboptimal local alignments.

Figure 5.1: Illustration of the redundancy
effect. Numbers indicate the score at po-
sitions next to them. Altogether there
are five (sub-)optimal alignments, which
share large parts of their structures.

Figure 5.2: Illustration of the shadowing
effect. Numbers indicate the score at
positions next to them. The black pre-
fix overshadows the grey, i.e., alignments
with a black prefix will always be pre-
ferred. Although alignments with a grey
prefix are still very good.

Definition 5.1 An alignment is a nonoverlapping suboptimal local alignment if it has
no match or mismatch in common with any higher-scoring (sub)optimal local alignment.
(Two alignments A and A′ have a match or mismatch in common (they overlap) if there is
at least one pair of positions (i, j) such that x[i] is aligned with y[j] both in A and in A′.)

Algorithmically, nonoverlapping alignments can be computed as follows: First the Smith-
Waterman algorithm is run as usual, returning an optimal local alignment. Then, the ma-
trix S is computed again, but any match or mismatch from the reported optimal alignment
is forbidden, i.e., in the alignment graph the corresponding edges are removed. In terms of
computing the alignment matrix, in the maximization for these cells only two cases, namely
insertion and deletion, are allowed.

This could be done by re-computing the whole matrix, but it is easy to see that it suffices
to compute only that part of the matrix from the starting point of the first alignment to the
bottom-right of the matrix. Moreover, whenever in a particular row or column the entries
in the re-computation do not change compared to the entries in the original matrix, the
computation along this row or column can be stopped. Waterman and Eggert suggest to
alternate the computation of one row and one column at a time, each one until the new value
coincides with the old value.

This procedure can be repeated for the third-best nonoverlapping local alignment, and so
on.

46

5.2 Approximate String Matching

If we assume the usual type of similarity function with expected negative score of a random
symbol pair so that large parts of the alignment matrix are filled with zeros, then the part
of the matrix that needs to be re-computed is not much larger than the alignment itself.

Then, to compute the K best nonoverlapping suboptimal local alignments, the algorithm
takes an expected time of O(mn +

∑K
k=1 L2

k), where Lk is the length of the k-th reported
alignment. In the worst case this is O(mnK), but typically much less in practice.

Huang and Miller (1991) showed that the Waterman-Eggert algorithm can also be imple-
mented for affine gap costs and in linear space.

5.2 Approximate String Matching

We have already discussed a variant of the Universal Alignment Algorithm that can be used
to find a best (highest-scoring) approximate match of a (short) pattern x ∈ Σm within a
(long) text y ∈ Σn (semi global alignment). Often, we are interested in all matches above a
certain score (or below a certain cost) threshold. A simple modification makes this possible:
We simply disregard the final vertex vE and look at the last row of the S-matrix.

In this section, we come back to the cost-based formulation (and a D-matrix). We assume
that a sensible cost function cost : A → R

+
0 is given such that all indel costs have the same

value γ > 0.

Definition 5.2 Given a pattern x ∈ Σm, a text y ∈ Σn, a sensible cost function cost : A →
R
+
0 with cost(

(
–
a

)
) = cost(

(
a
–

)
) = γ > 0 for all a ∈ Σ, and a threshold k ≥ 0, then the

approximate string matching problem consists of finding all text substrings y′, where
y′ is substring of y, such that d(x, y′) ≤ k, where d(·, ·) denotes edit distance with respect to
the given cost function.

In fact, it suffices to discover the ending positions j of the substrings y′ because we can
always reconstruct the whole substring and its starting position by backtracing.

For a change in style, this time we present an explicit formulation of an algorithm that solves
the problem not as a recurrence, but in pseudo-code notation. Algorithm 5.1 is known as
Sellers’ algorithm (Sellers, 1980). Of course, it corresponds to the Universal Alignment
Algorithm 4.14 variant discussed in the previous section for approximate string matching,
except that we do not look at the final vertex vE to find the best match, but look at all the
vertices in the last row to identify all matches with D(m, j) ≤ k for 0 ≤ j ≤ n.

Looking closely at Algorithm 5.1, we see that each iteration j = 1 . . . n transforms the
previous column D(·, j − 1) of the edit matrix into the current column D(·, j), based on
character y[j]. We can formalize this as follows.

Definition 5.3 (The NextColumn Function) For a fixed pattern x of length m ≥ 0, de-

fine function NextColumn :
(
R
+
0

)m+1×Σ→
(
R
+
0

)m+1
, (d, a) 7→ d+, where d = (d0, . . . , dm)

and d+ = (d+0 , . . . , d
+
m) are column vectors, as follows:

d+0 := 0;

d+i := min
{
di−1 + cost(x[i], a), di + γ, d+i−1 + γ

}
for i ≥ 1.

47

5 Advanced Topics in Pairwise Alignment

Algorithm 5.1 Sellers’ algorithm for a general cost function. D(i, j) is the minimum cost
to align x[1 . . . i] to y[j′ . . . j] for any j′ ≤ j.

Input: pattern x ∈ Σm, text y ∈ Σn, threshold k ∈ N0,
cost function cost with indel cost γ > 0, defining an edit distance d(·, ·)

Output: ending positions j such that d(x, y′) ≤ k,
where y′ := y[j′ . . . j] for some j′ ≤ j

1: � Initialize 0-th column of the edit matrix D:
2: for i← 0 . . .m do
3: D(i, 0)← i · γ
4: � Proceed column-by-column:
5: for j ← 1 . . . n do
6: D(0, j)← 0
7: for i← 1 . . .m do
8: D(i, j)← min{D(i− 1, j − 1)+ cost(x[i], y[j]), D(i, j − 1)+ γ, D(i− 1, j) + γ}
9: if D(m, j) ≤ k then

10: report (j,D(m, j)) � report match ending at column j and its cost

Let Dj := (D(i, j))0≤i≤m denote the j-th column of D for 0 ≤ j ≤ n. Then Sellers’
algorithm effectively consists of repeatedly computing Dj ← NextColumn(Dj−1, y[j]) for
each j = 1 . . . n.

Some remarks about Sellers’ algorithm:

1. Since we only report end positions and costs, there is no need to store back pointers
and the entire edit matrix D in Algorithm 5.1. The current and the previous column
suffice. This decreases the memory requirement to O(m), where m is the (short)
pattern length.

2. If we have a very good match with costs ≪ k at position j, the neighboring positions
may also match with cost ≤ k. To avoid this redundancy, it makes sense to post-process
the output and only look for runs of local minima. Without formally defining it,
if k = 3 and the respective costs at positions j − 2, . . . , j + 2 were (3, 2, 1, 1, 2), all of
these positions would be reported. We are only interested in the locally minimal value
1, which occurs as a run of length 2. So it would make sense to report the run interval
and the minimum cost as ([j, j + 1], 1).

3. Note that in fact we do not need to know the exact value of D(m, j) as long as we can
be sure that it exceeds k and therefore will not be reported.

The last observation leads to a considerable improvement of Sellers’ algorithm: If we know
that in column j all values after a certain row i∗j exceed k, we do not need to compute
them (e.g. we could assume that they are all equal to ∞ or k + 1). The following definition
captures this formally.

Definition 5.4 The last essential index i∗ (for threshold k) of a vector d ∈ R
m+1 is

defined as i∗(d) := max{i : di ≤ k}. Two vectors d, d′ ∈ R
m+1 are k-equivalent if and only

if i∗(d) = i∗(d′) and di = d′i for all i ≤ i∗(d). We write this as d ≡k d′.

48

5.2 Approximate String Matching

Thus the last essential index i∗j of column Dj is i∗j := i∗(Dj) = max{i : D(i, j) ≤ k}. From
the definition it is clear that we cannot miss any k-approximate matches if we replace a
column of the edit matrix by any k-equivalent vector (e.g. by not computing the cells below
the last essential index and assuming a value of k + 1).

The last essential index i∗0 of the 0-th column is easily found, because the scores increase
monotonically from 0 to m · γ. The other columns, however, are not necessarily mono-
tone! Therefore, as we move column-by-column through the matrix, repeatedly invoking the
NextColumn function, we have to make sure that we can efficiently find the last essential
index of the current column, given the previous column. The following lemma is the key.

Lemma 5.5 The property of k-equivalence is preserved by the NextColumn function. In
other words: Let d, d′ ∈ N

m+1
0 . If d ≡k d′, then NextColumn(d, a) ≡k NextColumn(d′, a)

for all a ∈ Σ.

Proof. Let e := NextColumn(d, a) and e′ := NextColumn(d′, a). By induction on i, we
show that ei ≤ k or e′i ≤ k implies ei = e′i. Since e0 = e′0 = 0, this certainly holds for i = 0.

Now we show that the statement holds for each i > 0, assuming that it holds for i − 1.
First, assume that ei ≤ k. We shall show that ei = e′i from the recurrence ei = min{di−1 +
cost(x[i], a), di + γ, ei−1 + γ}.

Since both cost(x[i], a) ≥ 0 and γ ≥ 0, we know that the minimizing predecessor (be it di−1,
di, or ei−1) can be at most k. Therefore it must equal its value in the k-equivalent vector
(non-equal entries are by definition larger than k). Therefore we obtain the same minimum
when we compute e′i = min{d′i−1 + cost(x[i], a), d′i + γ, e′i−1 + γ}, and hence ei = e′i.

Similarly, we show that e′i ≤ k implies e′i = ei. 2

How can we use the above fact to our advantage? Consider the effects of the d-entries
below the last essential index on the next column. Since di > k for all i > i∗ and costs are
nonnegative, these cells provide candidate values > k for ei for i > i∗ + 1. Therefore, the
only chance that such ei remain bounded by k is vertically, i.e., if ei = ei−1 + γ. As soon as
ei > k for some i > i∗ + 1, we know that the last essential index of e occurs before that i.
Algorithm 5.2 shows the details.

Example 5.6 Cutoff-variant of Sellers’ Algorithm: Let S = AABB, T = BABAABABB and
k = 1. The following table shows which values are computed considering unit cost. The last
essential index in each column is encircled. The k-approximate matches are underlined in
the last row.

T
S ǫ B A B A A B A B B

ǫ 0 0 0 0 0 0 0 0 0 0
A ➀ ➀ 0 1 0 0 1 0 1 1
A 2 ➀ 1 ➀ 0 1 1 1 2
B ➀ 2 ➀ 0 1 1 1
B 2 ➀ ➀ ➀ ➀

Four exemplary alignments, one ending at each position in T , are shown below.

49

5 Advanced Topics in Pairwise Alignment

Algorithm 5.2 Improved cutoff-variant of Sellers’ algorithm, maintaining the last essential
index i∗j of each column

Input: pattern x ∈ Σm, text y ∈ Σn, threshold k ∈ N0,
cost function cost with indel cost γ > 0, defining an edit distance d(·, ·)

Output: ending positions j such that d(x, y′) ≤ k,
where y′ := y[j′ . . . j] for some j′ ≤ j

1: � Initialize 0-th column of the edit matrix D:
2: i∗0 ← ⌊k/γ⌋
3: for i← 0 . . . i∗0 do
4: D(i, 0)← i · γ
5: � Proceed column-by-column:
6: for j ← 1 . . . n do
7: D(0, j)← 0
8: i+ ← min{m, i∗j−1 + 1}
9: for i← 1 . . . i+ do

10: D(i, j)← min{D(i− 1, j − 1)+ cost(x[i], y[j]), D(i, j − 1)+ γ, D(i− 1, j) + γ}
11: if D(i+, j) < k then
12: i∗j ← min{m, i+ + ⌊(k −D(i+, j))/γ⌋}
13: for i← (i+ + 1) . . . i∗j do
14: D(i, j)← D(i− 1, j) + γ
15: else
16: i∗j ← max{i ∈ [0, i+ − 1] : D(i, j) ≤ k}
17: if i∗j = m then
18: report (j,D(m, j)) � report match ending at column j and its cost

I: II: III: IV:

S: AABB S: AABB S: AAB–B S: AABB
T: AAB– T: AABA T: AABAB T: BABB

�

Sometimes, because it was first published in Ukkonen (1985), this algorithm is referred to
as Ukkonen’s cutoff algorithm, although it is more common to use this name if the cost
function is standard unit cost. In that case, even further optimizations are possible, but we
do not discuss the details here.

5.3 The Forward-Backward Technique

The following problem frequently arises as a sub-problem of more advanced alignment meth-
ods, that is why we discuss it beforehand in detail:

Problem 5.7 (Advanced Alignment Problem) Given two sequences s and t of lengths m
and n, respectively, find their optimal global alignment under the condition that the align-
ment path passes through a given node (i0, j0) of the alignment graph.

50

5.3 The Forward-Backward Technique

This is not a new problem at all! In fact, we can decompose it into two standard global
alignment problems: Aligning the prefixes s[1 . . . i0] and t[1 . . . j0], and aligning the suffixes
s[i0 + 1 . . .m] and t[j0 + 1 . . . n].

A little more interesting is the case when we need to solve this problem for every point (i, j)
simultaneously.

Fortunately, we can use the “forward-backward” technique. In addition to the usual align-
ment graph with alignment costs D(i, j) (which record the minimally attainable cost for a
prefix alignment), we additionally define the reverse alignment graph: We exchange
initial and final vertex and reverse the direction of all edges. Effectively, we are thus
globally aligning the reversed sequences. Hence, the associated alignment cost matrix
Drev = Drev(i, j) records the maximally attainable scores for the suffix alignments. By
defining:

T (i, j) := D(i, j) +Drev(i, j),

we obtain the minimally attainable total cost of all paths that go through (i, j). Clearly
matrices D, Drev, and T thus can be computed in O(mn) time.

For every (i, j), we can now obtain the additional cost C(i, j) for passing through (i, j),
compared to staying on an optimal alignment path. By definition, if (i, j) is on the path of
an optimal alignment, this value is zero, otherwise it is positive; see Figure 5.3.

Figure 5.3: An additional cost matrix. Entry C(i, j) contains the additional cost of the best
possible alignment that passes through vertex (i, j) of the alignment graph.

Definition 5.8 Given two sequences s and t of lengths m and n, respectively, their addi-
tional cost matrix C = (C(i, j))0≤i≤m,0≤j≤n is defined by

C(i, j) = min

D(A++B)

∣
∣
∣
∣
∣
∣
∣
∣

A is an alignment of the prefixes
s[1 . . . i] and t[1 . . . j]

B is an alignment of the suffixes
s[i+ 1 . . .m] and t[j + 1 . . . n]

− d(s, t)

where “++” denotes concatenation of alignments. The score loss matrix is defined similarly
in terms of maximal score.

For any additive alignment cost, where cost(A ++B) = cost(A) + cost(B), we have that
C(i, j) = T (i, j)− d(s, t).

51

5 Advanced Topics in Pairwise Alignment

Note that T (0, 0) = T (m,n) is the optimal global alignment cost d(s, t) (since every path, in
particular the optimal one, passes through (0, 0)), and so T (i, j) ≥ T (0, 0) for all (i, j). The
quantity T (i, j) − T (0, 0) thus is equal to the additional cost of vertex (i, j) in comparison
to the optimal path. In similarity terms, the signs are reversed and T (0, 0) − T (i, j) is the
score loss of going through node (i, j) in comparison to the optimal path.

Thus the additional cost matrix (or score loss matrix) can be computed in O(mn) time, too.

Example 5.9 Consider the sequences s = CT and t = AGT . For unit cost, the edit matrix
D and reverse edit matrix Drev, which is drawn in reverse direction, are:

D:

ǫ A G T

ǫ 0 1 2 3
C 1 1 2 3
T 2 2 2 2

Drev:

A G T ǫ

C 2 1 1 2
T 2 1 0 1
ǫ 3 2 1 0

This results in the following additional cost matrix:

C:

ǫ A G T

ǫ 0 0 1 3
C 1 0 0 2
T 3 2 1 0

We see that the paths of the two optimal alignments Aopt
1 =

(
− C T
A G T

)

and Aopt
2 =

(
C − T
A G T

)

correspond to the 0-entries in C. �

Affine gap costs. For affine gap costs (see Section 4.6) the computation of the total or
additional cost matrix is slightly more difficult: Here, the cost of a concatenated alignment
is not always the sum of the costs of the individual alignments because gaps might be merged,
so that the gap initiation penalty that is imposed twice in the two separate alignments must
be counted only once in the concatenated alignment.

However, since the efficient computation of affine gap costs uses the two history matrices V
and H (as defined in Section 4.6), and we know that by definition the costs stored in these
matrices refer to those alignments that end with gaps, the additional cost matrix for affine
gap costs can also be computed in quadratic time if the history matrices V and H and their
reverse counterparts V rev and Hrev are given:

T (i, j) = min

D(i, j) +Drev(i, j)
V (i, j) + V rev(i, j)− gapinit
H(i, j) +Hrev(i, j)− gapinit

.

52

5.4 Pairwise Alignment in Linear Space

Applications. The forward-backward technique is used, for example, in the following prob-
lems:

• linear-space alignment (Hirschberg technique, see also Section 5.4),

• discovering regions of slightly sub-optimal alignments (those cells where the score gap,
resp. additional cost remains below a small tolerance parameter),

• computing regions for the Carrillo-Lipman heuristic for multiple sequence alignment
(see Section 11.3),

• finding cut-points for divide-and-conquer multiple alignment (see Section 11.5).

5.4 Pairwise Alignment in Linear Space

In Chapter 4 we have seen that the optimal alignment score of two sequences s and t of
lengths m and n, respectively, as well as an optimal alignment can be computed in O(mn)
time and O(mn) space.

Even though the O(mn) time required to compute an optimal global or local alignment
is sometimes frowned upon, it is not the main bottleneck in sequence analysis. The main
bottleneck so far is the O(mn) space requirement. Think of a matrix of traceback-pointers
for two bacterial genomes of 5 million nucleotides each. That matrix contains 25 ·1012 entries
and would thus need 25 Terabytes of memory, an impossibility in the year 2010. Fortunately,
there is a solution (that is, a different one than waiting another 20 years for huge amounts
of cheap memory).

We have already seen that the score by itself can easily be computed in O(m + n) space,
since we only need to store the sequences and one row or column of the edit matrix at a
time. However, if we also want to output an optimal alignment, the whole edit matrix or a
related matrix containing back-pointers is required for the backtracing phase.

In this section we present an algorithm that allows to compute an optimal global alignment
in linear space. We discuss the case of local alignment below. Our presentation is for the
simple case of homogeneous linear gap costs g(ℓ) = ℓ · γ, where γ is the cost for a single
gap character. However, it can be generalized for affine gap costs with some additional
complications.

The algorithm works in a divide-and-conquer manner, where in each recursion the edit
matrix S = (S(i, j)) is divided into an upper half and a lower half at its middle row m′ =
⌈m/2⌉. Next, the “forward-backward” technique is used. The upper half is computed in a
forward manner, as usual, and the lower one in a backward manner. At index m′ both halves
intersect, which makes it possible to compute the additional costs C(m′, j) for this row m′.
An optimal alignment passes row m′ at some column n′ if and only if C(m′, n′) = 0.

The procedure is called recursively, once for the upper left “quarter”, and once for the lower
right “quarter” of the edit graph. The recursion is continued until only one row remains, in
which case the problem can easily be solved directly. See Figure 5.4 for an illustration.

53

5 Advanced Topics in Pairwise Alignment

Figure 5.4: Illustration of linear-space alignment.

Complexity analysis. The space complexity is in O(m + n) since all matrix computations
can be performed row-wise using memory for two adjacent rows at most, and the final
alignment has at most m+ n columns.

A central question is, how much do we have to “pay” in terms of running time to obtain
the linear space complexity? Fortunately, the answer is: Only approximately a constant
factor of 2. In the original (quadratic-space) algorithm, each cell of the edit matrix S is
computed once. In the linear-space version, some cells are computed several times during
the recursions.

The amount of cells computed in the first pass is mn, in the second pass it is only half of
the matrix, in the third pass it’s a quarter of the matrix and so on, for a total of mn · (1 +
1/2 + 1/4 + . . .) ≤ 2mn cells (geometric series). Thus, the asymptotic time complexity is
still O(mn).

Example 5.10 Given strings s = CACG and t = GAG, Figure 5.5 shows how alignment in
linear space works. Note that just the black numbers need to be calculated. The grey ones
are only for comparison to Section 5.3 to provide an easier comprehension.

The recursion ends in four base cases resulting in the overall alignment

(
CACG

GA-G

)

. Note that

if a cut position n′ is found (indicated by a circle in additional cost matrix C), the sequences
are cut in two after this position, such that the left side of t′ contains the circled character
and the right side does not. �

Affine and general gap costs. The presented technique integrates well with affine gap
costs, but again, the devil is in the details. We need to remember whether a continuing
horizontal or vertical gap passes through the optimal midpoint of the alignment and use this
information during the recursive calls appropriately.

Combining the Hirschberg technique (forward computation of the upper half, backward
computation of the lower half) with affine gap costs is slightly more complicated. The
details were first given by Myers and Miller (1988).

54

5.4 Pairwise Alignment in Linear Space

Figure 5.5: Example of linear-space alignment.

General gap costs cannot be handled in linear space. We cannot even compute just the
alignment score in linear space since we always need to refer back to all cells to the left and
above of the current one.

Local alignment. We have described how to compute an optimal global alignment in linear
space. What about local alignments?

Note that a local alignment is in fact a global alignment of the two best-aligning substrings
of s and t. So once we know the start- and endpoints of these substrings, we can use the
above global alignment procedure.

It is easy to find the endpoints: They are given by the entry with the highest score in the
(forward) local alignment matrix. To find the start points, we have two options:

(a) We use the reversal technique: The start points are just the endpoints of the optimal
local alignment of the reversed strings. This technique is simple, but may become

55

5 Advanced Topics in Pairwise Alignment

problematic if there are several equally high-scoring local alignments.

(b) We use the back-pointer technique: Whenever a new local alignment is started (by
choosing the zero-option in the local alignment recurrence), we keep a back pointer to
the cell containing the zero in all cells in which an optimal local alignment that starts
in that zero cell ends.

Suboptimal alignments. In practice, we are often interested in several, say K good align-
ments instead of a single optimal one as discussed in Section 5.1. Can this also be done
in linear space? Essentially, we need to remember the K highest entries in the edit matrix
and once we have found an optimal alignment we store a list or hash-table to remember
its path and subsequently take care that the diagonal edges of this path cannot be used
anymore when we re-compute the next (now optimal) alignment. This requires additional
space proportional to the total lengths of all discovered alignments, which is linear for a
constant number of alignments.

56

CHAPTER 6

Pairwise Alignment in Practice

Contents of this chapter: Dot Plots, rapid database search methods, sequence
database, short exact matches, q-gram (index), BLAST: on-line database search
method.
Further contents in the appendix (Chapter C): Fast Smith-Waterman,
FASTA: on-line database search method, hot spots, diagonal runs, index-based
database search methods (BLAT, SWIFT, QUASAR), software propositions.

6.1 Alignment Visualization with Dot Plots

We begin with a visual method for (small scale) sequence comparison that is very popular
with biologists. The most simple way of comparing two sequences x ∈ Σm and y ∈ Σn is the
dot plot: The two sequences are drawn along the horizontal respectively vertical axis of a
coordinate system, and positions (i, j) with identical characters x[i] = y[j] are marked by a
dot. Its time and memory requirements are O(mn).

By visual inspection of such a dot plot, one can already observe a number of details about
similar and dissimilar regions of x and y. For example, a diagonal stretch of dots refers to a
common substring of the two strings, like SCENCE in Figure 6.1, upper part.

A disadvantage of dot plots is that they do not give a quantitative measure how similar
the two sequences are. This is, of course, what the concept of sequence alignment provides.
Dot plots are still important in practice since the human eye is not easily replaced by more
abstract numeric quantities.

Another disadvantage of the basic dot plot, especially for DNA with its small alphabet size,
is the cluttering because of scattered short “random” matches. Note that, even on random
strings, the probability that a dot appears at any position, is 1/|Σ| = 1/4 for DNA. So a
quarter of all positions in a dot plot are black, which makes it hard to see the interesting

57

6 Pairwise Alignment in Practice

similarities. Therefore the dotplot is usually filtered, e.g. by removing all dots that are
not part of a consecutive match of length ≥ q, where q is a user-adjustable parameter (see
Figure 6.1, lower part).

F L U O R E S C E N C E I S E S S E N T I A L

R

E

M

I

N

I

S

C

E

N

C

E

r

r r r r r

r r

r r

r r

r r r r

r r

r r r r r

r r

r r

r r r r r

F L U O R E S C E N C E I S E S S E N T I A L

R

E

M

I

N

I

S

C

E

N

C

E

r r r r

r r

r r

r

r r

r r

r r r

r unfiltered filtered (q = 2) filtered (q = 3)

Figure 6.1: Upper part: Unfiltered dot plot. Lower part: Filtered dot plot with different
filters applied. Here the filter keeps only those positions (i, j), that are part of a common
substring of length ≥ q.

6.2 Fundamentals of Rapid Database Search Methods

In practice, pairwise alignment algorithms are used for two related, but still conceptually
different purposes, and it is important to keep the different goals in mind.

1. True pairwise alignment: Given sequences x, y ∈ Σ∗ that we already know or suspect
to be similar, report all similar regions and show the corresponding (even suboptimal)
alignments.

2. Large-scale database search: Given a query x ∈ Σ∗ and a family (database) Y of
subjects, find out (quickly) which y ∈ Y share at least one sufficiently similar region
with x and report those y along with the similarity score (e.g. the alignment score).
The alignment itself is of little interest in this case; suboptimal alignments are of even
less interest.

58

6.2 Fundamentals of Rapid Database Search Methods

Definition 6.1 For our purposes, a sequence database Y = (y1, y2, . . . , yL) is an ordered
collection of sequences (sometimes we view Y simply as the set {y1, y2, . . . , yL}). We write
N :=

∑

y∈Y

|y| for the total length of the database.

The remainder of this chapter presents methods used in practice mainly for large-scale
database search. Database search methods focus on speed and often sacrifice some accu-
racy to speed up similarity estimation. For the accurate alignment of a few sequences, the
quadratic-time algorithms of the previous chapter are usually considered to produce the
best-possible result (also called the gold standard).

Using short exact matches. Almost all methods make use of the following simple obser-
vation, the so-called q-gram Lemma:

Lemma 6.2 Given a local alignment of length ℓ with at most e errors (mismatches or indels),
the aligned regions of the two strings contain at least T (ℓ, q, e) := ℓ+1− q · (e+1) common
q-grams.

In order to find exact matches of length q between query and database quickly, we first create
a q-gram index I, either for the query x or for the database Y .

Definition 6.3 A q-gram index for x ∈ Σm is a map I : Σq → P({1, . . . ,m− q + 1}) such
that I(z) = {i1(z), i2(z), . . . }, where i1(z) < i2(z) < . . . are the starting positions of the
q-gram z in x and |I(z)| is the occurrence count of z in x (cf. Definition 3.10).

A straightforward (but inefficient!) O(|Σ|q + qm) method to create a q-gram index (e.g. in
Java) would be to use a HashMap<String,ArrayList<Integer>>, initialize each ArrayList

to an empty list for each q-gram, slide a q-window across x and add each position to the
appropriate list. The following code snippet assumes that string indexing starts at 1 and
that x.substring(i,j) returns x[i . . . j − 1].

for(i=1; i<=m-q+1; i++)

I.get(x.substring(i,i+q)).add(i);

A more low-level and efficient O(|Σ|q+m) method is to use two integer arrays first[0..|Σ|q]
and pos[0..m− q + 1] and the q-gram ranking function from Section 3.7 such that all start-
ing positions of q-gram z with rank r are consecutively stored in pos, starting at position
first[r] and ending at position first[r+1]-1. These can be constructed with a simple
two-pass algorithm that scans x from left to right twice. In the first pass it counts the
number of occurrences of each q-gram and creates first. In the second pass it inserts the
q-gram starting positions at the appropriate spots in pos. Since the ranking function up-
date takes constant time instead of O(q) time, this version is more efficient (and also avoids
object-oriented overhead).

59

6 Pairwise Alignment in Practice

Index-based searching. There are two basic approaches to index-based database searching.

1. In the first (so-called pattern-index) approach, the database (of size N) is completely
examined for every query (of size m). Each query, however, can be pre-processed as
soon as it becomes known. This means that the running time of such a method is at
least Θ(N+m) for each query, even if no similar sequences are found. This is in practice
much faster than O(mN) time for a full alignment, and it allows that the database
changes after each query (e.g. new sequences might be added). FASTA (Section C.2)
and BLAST (Section 6.3) are well-known database search programs that work in this
way.

2. The second (text-index) approach preprocesses (indexes) the database before a num-
ber of queries are posed, assuming that the database changes only rarely because
indexing takes time: Even if indexing time is only linear in the database size, the con-
stant factor is usually quite high. On the other hand the index allows to immediately
identify only those regions of the database that contain potentially similar sequences.
If these do not exist, the time spent for each query can become as small as Θ(m). Ex-
amples of text-index based database search methods are BLAT and SWIFT, discussed
in more detail in Section C.3.

The following table shows time complexities for pattern-index and text-index database
searching if no similar regions are found. If there are such regions, they have to be ex-
amined, of course, which adds to the time complexities of the methods. However, the goal
is to spend as little time as possible when there are no interesting similarities.

Method Preprocessing Querying Total 1 query Total k queries

Pattern-index O(m) O(N) O(N +m) O(k(N +m))
Text-index O(N) O(m) O(N +m) O(N + k ·m)

It is clear that text indexing pays off as soon as the number of queries k on the same database
becomes reasonably large.

6.3 BLAST: A fast Database Search Method

BLAST1 (Altschul et al., 1990) is perhaps the most popular program to perform sequence
database searches. Here we describe the program for protein sequences (BLASTP). We
mainly consider an older version that was used until about 1998 (BLAST 1.4). The newer
version (BLAST 2.0 and later) is discussed at the end of this section.

BLAST 1.4. The main idea of protein BLAST is to first find high-scoring q-gram hits,
so-called BLAST hits, and then extend them.

Definition 6.4 For a given q ∈ N and k ≥ 0, a BLAST hit of x ∈ Σm and y ∈ Σn is a pair
(i, j) such that score(x[i . . . i+ q − 1], y[j . . . j + q − 1]) ≥ k.

1Basic local alignment search tool

60

6.3 BLAST: A fast Database Search Method

To find BLAST hits, we proceed as follows: We create a list Nk(x) of all q-grams in Σq that
score highly if aligned without gaps to any q-gram in x and note the corresponding positions
in x.

Definition 6.5 The k-neighborhood Nk(x) of x ∈ Σm is defined as

Nk(x) := {(z, i) : z ∈ Σq, 1 ≤ i ≤ m− q + 1, score(z, x[i . . . i+ q − 1]) ≥ k}.

The k-neighborhood can be represented similar to a q-gram index: For each z ∈ Σq, we store
the set Pk(z) of positions i such that (z, i) ∈ Nk(x).

The size of this index grows exponentially with q and 1/k, so these parameters should be se-
lected carefully. For the PAM250 score matrix, q = 4 and k = 17 have been used successfully
(further information about score matrices can be found in the appendix in Chapter A).

Once the index has been created, for each database sequence y ∈ Y the following steps are
executed.

1. Find BLAST hits: Scan y from left to right with a q-window, updating the current
q-gram rank in constant time. For each position j, the hits are {(i, j) : i ∈ Pk(y[j . . . j+
q − 1])}. This takes O(|y|+ h) time, where h is the number of hits.

2. Each hit (i, j) is scored (say, it has score X) and extended without gaps along the
diagonal to the upper left and separately to the lower right, hoping to collect additional
matching characters that increase the score. Each extension continues until too many
mismatches accumulate and the score drops below M −∆X, where M is the maximal
score reached so far and ∆X is a user-specified drop-off parameter. This is the reason
why this extension method is called X-drop algorithm. The maximally scoring part
of both extensions is retained. The pair of sequences around the hit delivered by
this extension is called a maximum segment pair (MSP). For any such MSP, a
significance score is computed. If this is better than a pre-defined significance threshold,
then the MSP is reported.

3. MSPs on different diagonals are combined, and a combined significance threshold is
computed.

BLAST 2.0. In later versions of BLAST (BLAST 2.0 or Gapped BLAST see Altschul et al.
(1997)), a different and much more time-efficient method is used. As before, hits are searched
but with reduced values for k and q. This results in more hits. However, BLAST 2.0 looks
for pairs of hits on the same diagonal within some maximal distance. The mid point between
two hits on a diagonal is then used as the starting point for the left-extension and the right-
extension method described above. Usually only a few regions are extended, which makes
the method much faster. Practice shows that the two-hit approach is similar w.r.t. sensitivity
than the one-hit approach.

61

6 Pairwise Alignment in Practice

62

CHAPTER 7

Suffix Trees

Contents of this chapter: Suffix trees, (enhanced) suffix arrays, nested suf-
fixes, common prefixes, Σ-tree, Σ+-tree, trie, generalized suffix trees, construc-
tion (WOTD, Ukkonen), applications (exact string matching, shortest unique
substring, Maximal Unique Matches (MUM), Maximal Repeats).
Further contents in the appendix (Chapter F): Memory representation of
suffix trees.

7.1 Motivation

The amount of sequence information in today’s databases is growing rapidly. This is es-
pecially true for the domain of genomics: Past, current and future projects to sequence
large genomes (e.g. human, mouse, rice) produce terabytes of sequence data, mainly DNA
sequences and protein sequences. To make use of these sequences, larger and larger instances
of string processing problems have to be solved.

While the sequence databases are growing rapidly, the sequence data they already contain
does not change much over time. Consequently, indexing methods are applicable. These
methods preprocess the sequences in order to answer queries much faster than methods
that work sequentially. Apart from the size of the string processing problems in genomics,
their diversity is also remarkable. For example, to assemble the Genome of Drosophila
melanogaster, a multitude of string processing problems involving exact and approximate
pattern matching tasks had to be solved. These problems are often complicated by additional
constraints about uniqueness, containment, or repetitiveness of sequences.

A suffix tree is a data structure suited to solve such problems. In this chapter, we introduce
the concept of suffix trees, show their most important properties, and take a look at some
applications of biological relevance.

63

7 Suffix Trees

Subsequently, in Chapter 8, we shall introduce the data structures suffix array and en-
hanced suffix array, which share many of the properties of suffix trees, but have a smaller
memory footprint and perform better in practice.

7.2 An Informal Introduction to Suffix Trees

Let us consider a string s ∈ Σn. Think of s as a database of concatenated sequences (e.g. all
sequences from UniProt), or a genome, etc.

In order to answer substring queries about s, e.g. to enumerate all substrings of s that
satisfy certain properties, it is helpful to have an index of all substrings of s. We already
know that there can be up to O(n2) distinct substrings of s, i.e., too many to represent them
all explicitly with a reasonable amount of memory. We need an implicit representation.

Each substring of s is a prefix of a suffix of s, and s has only n suffixes, so we can consider
an index consisting of all suffixes of s.

We append a unique character $ ∈ Σ (called a sentinel1) to the end of s, so that no suffix
is a prefix of another suffix. For example, if s = cabca, the suffixes of cabca$ are

$, a$, ca$, bca$, abca$, cabca$.

This list has n + 1 = Θ(n) elements, but its total size is still Θ(n2) because there are n/2
suffixes of length ≥ n/2.

It is a central idea behind suffix trees to identify common prefixes of suffixes, which
is achieved by lexicographically sorting the suffixes. This naturally leads to a rooted tree
structure, as shown in Figure 7.1.

143256

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c

 a

a

Figure 7.1: Suffix trees of cabca (left) and of cabca$ (right). In the left tree, the hollow circles
indicate suffixes that are also prefixes of other suffixes (nested suffixes). In the right tree,
the leaves have been annotated with the starting positions of the suffixes.

Note the effect of appending the sentinel $: In the tree for cabca$, every leaf corresponds
to one suffix. Without the sentinel, some suffixes can end in the middle of an edge or at an
internal node. To be precise, these would be exactly those suffixes that are a prefix of another

1It guards the end of the string. Often we assume that it is lexicographically smaller than any character in
the alphabet.

64

7.2 An Informal Introduction to Suffix Trees

Figure 7.2: The suffix tree of CABACBCBACABCABCACBC$.

suffix; we call them nested suffixes. Appending $ ensures that there are no nested suffixes,
because $ does not occur anywhere in s. Thus we obtain a one-to-one correspondence of
suffixes and leaves in the suffix tree.

Note the following properties for the suffix tree T of s$ = cabca$, or the larger example
shown in Figure 7.2.

• There is a bijection between suffixes of s$ and leaves of T .

• Each internal node has at least two children.

• Each outgoing edge of an internal node begins with a different letter.

• Edges are annotated with substrings of s$.

• Each substring s′ of s$ can be found by following a path from the root down the tree
for |s′| characters. Such a path does not necessarily end at a leaf or at an internal
node, but may end in the middle of an edge.

We now give more formal definitions and shall see that a “clever” representation of a suffix
tree only needs linear, i.e., O(n) space. Most importantly, we cannot store substrings at the
edges, because the sum of their lengths is still O(n2). Instead, we will store references to
the substrings.

65

7 Suffix Trees

7.3 A Formal Introduction to Suffix Trees

Definitions. A rooted tree is a connected directed acyclic graph with a special node r,
called the root, such that all edges point away from it. The depth of a node v is its distance
from the root; we have depth(r) = 0.

Let Σ be an alphabet. A Σ-tree, also called trie, is a rooted tree whose edges are labeled
with a single character from Σ in such a way that no node has two outgoing edges labeled
with the same letter.

A Σ+-tree is a rooted tree whose edges are labeled with non-empty strings over Σ in such a
way that no node has two outgoing edges whose labels start with the same letter. A Σ+-tree
is compact if no node (except possibly the root) has exactly one child (i.e., all internal
nodes have at least two children).

For a node v in a Σ- or Σ+-tree T , we call string(v) the concatenation of the edge labels on
the unique path from the root to v. We define the string depth stringdepth(v) := |string(v)|.
In a Σ-tree, this is equal to depth(v), but in a Σ+-tree, the depth of a node usually differs
from its string depth because one edge can represent more than one character. We always
have stringdepth(v) ≥ depth(v).

For a string x, if there exists a node v with string(v) = x, we write node(x) for v. Otherwise
node(x) is undefined. Sometimes, one can also find x written for node(x) in the literature.
Of course, node(ε) = ε is the root r.

We say that T displays a string x ∈ Σ∗ if x can be read along a path down the tree, starting
from the root, i.e., if there exists a node v and a possibly empty string y such that xy =
string(v). We finally define the words displayed by T by words(T) := {x : T displays x}.

The suffix tree of s is the compact Σ+-tree T with words(T) = {s′ : s′ is a substring of s}.
As mentioned above, we often consider the suffix tree of s$, where each suffix ends in a leaf.

An edge leading to an internal node is an internal edge. An edge leading to a leaf is a leaf
edge.

Generalized suffix trees. In many applications, we need a suffix tree built from more than
one string (e. g. to compare two genomes). There is an important difference between the set
of k suffix trees (one for each of k strings) and one (big) suffix tree for the concatenation
of all k strings. The big suffix tree is very useful, the collection of small trees is generally
useless!

When we concatenate several sequences into a long one, however, we need to make sure to
separate the strings appropriately in such a way that we do not create artificial substrings
that occur in none of the original strings.

For example, if we concatenate ab and ba without separating them, we would get abba, which
contains bb as a substring, but bb does not occur in either original string.

Therefore we use additional unique sentinel characters $1, $2, . . . that delimit each string.

66

7.4 Space requirements of Suffix Trees

Definition 7.1 Given strings s1, . . . , sk ∈ Σ∗, the generalized suffix tree of s1, . . . , sk is
the suffix tree of the string s1$1s2$2 . . . sk$k, where $1 < $2 < · · · < $k are distinct sentinel
characters that are not part of the underlying alphabet Σ.

In the case of only two strings, we usually use # to delimit the first string for convenience,
thus the generalized suffix tree of s and t is the suffix tree of s#t$.

7.4 Space requirements of Suffix Trees

Note that, in general, the suffix trie τ of a string s of length n contains O(n2) nodes. We
now show that the number of nodes in the suffix tree T of s is linear in n.

Lemma 7.2 The suffix tree of a string of length n has at most n− 1 internal nodes.

Proof. Let L be the number of leaves and let I be the number of internal nodes. We do
“double counting” of the edges; let E be their number. Each leaf and each internal node
except the root has exactly one incoming edge; thus E = L+ I−1. On the other hand, each
internal node is branching, i.e., has at least two outgoing edges; thus E ≥ 2I. It follows that
L+ I − 1 ≥ 2I, or I ≤ L− 1. Since L ≤ n (there can not be more leaves than suffixes), we
have I ≤ n− 1 and the lemma follows. Also note that E = L+ I − 1 ≤ 2n− 2. 2

By the above lemma, there are at most n leaves, n− 1 internal nodes and 2n− 2 edges; all
of these are linear in the string length. The remaining problem are the edge labels, which
are substrings of s and may each require O(n) space for a total of O(n2). To avoid this,
we do not store the edge labels explicitly, but only two numbers per edge: the start- and
end-position of a substring of s that spells the edge label. The following theorem is now an
easy consequence.

Theorem 7.3 The suffix tree of a string s of length n can be stored in O(n) space.

Corollary 7.4 The generalized suffix tree of several strings s1, . . . , sk can be stored inO(
k∑

i=1
|si|)

space.

7.5 Suffix Tree Construction: The WOTD Algorithm

Suffix tree constructions have a long history and there are algorithms which construct suffix
trees in linear time (McCreight, 1976; Ukkonen, 1995).

Here we describe a simple suffix tree construction method that has quadratic worst-case
time complexity, but is fast in practice and easy to explain: the Write Only Top Down
(WOTD) suffix tree construction algorithm.

We assume that the input string s$ ends with a sentinel character.

The WOTD algorithm adheres to the recursive structure of a suffix tree. The idea is that
for each branching node node(u), the subtree below node(u) is determined by the set of all

67

7 Suffix Trees

suffixes of s$ that have u as a prefix. Starting with the root (where u = ε), we recursively
construct the subtrees rooted in nodes corresponding to common prefixes.

To construct the subtree rooted in node(u), we need the set

R(node(u)) := {v | uv is a suffix of s$}

of remaining suffixes. To store this set, we would not store the suffixes explicitly, but only
their starting positions in s$. To construct the subtree, we proceed as follows.

At first R(node(u)) is divided into groups according to the first character of each suffix. For
any character c ∈ Σ, let group(node(u), c) := {w ∈ Σ∗ | cw ∈ R(node(u))} be the c-group
of R(node(u)).

If for a particular c ∈ Σ, the set group(node(u), c) contains only one string w, then there is
a leaf edge labeled cw outgoing from node(u).

If group(node(u), c) contains at least two strings, then there is an edge labeled cv lead-
ing to a branching node node(ucv) where v is the longest common prefix of all strings in
group(node(u), c). This includes that v may be equal to ε. The child node(ucv) has the set
of remaining suffixes R(node(ucv)) = {w | vw ∈ group(node(u), c)}.

The WOTD algorithm starts by evaluating the root from the set of all suffixes of s$. All
internal nodes are evaluated recursively in a top-down strategy.

Example 7.5 Consider the input string s$:= abab$. The WOTD algorithm works as follows.

At first, the root is evaluated from the set of all non-empty suffixes of the string s$, see
the first five columns in Figure 7.3 The algorithm recognizes three groups of suffixes: the
$-group, the a-group, and the b-group.

Figure 7.3: The write-only top-down construction of the suffix tree for abab$

The $-group is singleton, so we obtain a leaf reached by an edge labeled $.

The a-group contains two suffixes, bab$ and b$ (recall that the preceding a is not part of
the suffixes of the group). We compute the longest common prefix of the strings in this
group. This is b in our case. So the a-edge from the root is labeled by ab, and we obtain an
unevaluated branching node with remaining suffixes ab$ and $, which is evaluated recursively.
Since all suffixes differ in the first character, we obtain two singleton groups of suffixes, and
thus two leaf edges outgoing from node(ab), labeled by $ and ab$.

The b-group of the root contains two suffixes, too: ab$ and $. The outgoing edge is labeled b,
since there is no common prefix among the strings in the b-group, and the resulting branching
node node(b) has two remaining suffixes ab$ and $, which are recursively classified. �

68

7.6 Linear-Time Suffix Tree Construction Algorithm

Analysis. The worst case running time of WOTD is O(n2). Consider, for example, the
string s = an. The suffix tree for s$ is a binary tree with exactly one branching node of
depth i for each i ∈ [0, n−1]. To construct the branching node of depth i, exactly n−i suffixes
are considered. That is, the number of steps is

∑n−1
i=0 (n− i) =

∑n
j=1 j =

(
n+1
2

)
∈ O(n2).

In the average case, the maximal depth of the branching nodes is much smaller than n− 1,
namely O(log|Σ|(n)). In other words, the length of the path to the deepest branching node
in the suffix tree is O(log|Σ|(n)). The suffixes along the leaf edges are not read any more.
Hence the expected running time of the WOTD is O(n log|Σ|(n)).

WOTD has several properties that make it interesting in practice:

• The subtrees of the suffix tree are constructed independently from each other. Hence
the algorithm can easily be parallelized.

• The locality behavior is excellent: Due to the write-only-property, the construction of
the subtrees only depends on the set of remaining suffixes. Thus the data required
to construct the subtrees is very small. As a consequence, it often fits into the cache.
This makes the algorithm fast in practice since a cache access is much faster than the
access to the main memory. In many cases, WOTD is faster in practice than worst-case
linear time suffix tree construction methods.

• The paths in the suffix tree are constructed in the order they are searched, namely top-
down. Thus one could construct a subtree only when it is traversed for the first time.
This would result in a “lazy construction”, which could also be implemented in an eager
imperative language (such as C). Experiments show that such a lazy construction is
very fast.

7.6 Linear-Time Suffix Tree Construction Algorithm

The Ukkonen algorithm constructs the suffix tree of s online, i. e., it generates a sequence of
suffix trees for all prefixes of s, starting with the suffix tree of the empty sequence ε, followed
by the suffix trees of s[1], s[1]s[2], s[1]s[2]s[3], . . . , s, s$. The method is called online since
in each step the suffix trees are constructed without knowing the remaining part of the input
string. In other words, the algorithm may read the input string character by character from
left to right.

Note that during the intermediate steps, the string has no sentinel character at its end.
Therefore, not all suffixes correspond to leaves. Instead, some suffixes may end in the middle
of an edge or at an internal node. This changes as soon as the last character $ is added.

The suffix tree of the empty sequence consists just of the root and is easy to construct. Thus
we only need to focus on the changes that happen when we append a character to s. If we
can find a way to use only constant time per appended character (asymptotically), then we
have a linear-time algorithm.

How this can be done is well explained in Gusfields’s book, Chapter 6 (Gusfield, 1997).

69

7 Suffix Trees

7.7 Applications of Suffix Trees

7.7.1 Exact String Matching

Problem 7.6 (Exact String Matching Problem) Given a text s ∈ Σ∗ and a pattern p ∈ Σ∗,
it can be defined in three variants:

1. decide whether p occurs at least once in s (i. e., whether p is a substring of s),

2. count the number of occurrences of p in s,

3. list the starting positions of all occurrences of p in s.

We shall see that, given the suffix tree of s$, the first problem can be decided in O(|p|) time,
which is independent of the text length. The second problem can be solved in the same
time, using additional annotation in the suffix tree. The time to solve the third problem
must obviously depend on the number of occurences z of p in s. We show in three steps that
it can be solved in O(|p|+ z) optimal time.

1. Since the suffix tree for s$ contains all substrings of s$, it is easy to verify whether
p is a substring of s by following the path from the root directed by the characters
of p. If at some point one cannot proceed with the next character in p, then p is not
displayed by the suffix tree and hence it is not a substring of s. Otherwise, if p occurs
in the suffix tree, then it also is a substring of s. Processing each character of p takes
constant time, either by verifying that the next character of an edge label agrees with
the next character of p, or by finding the appropriate outgoing edge of a branching
node. The latter case assumes a constant alphabet size, i.e., |Σ| = O(1). Therefore
the total time is O(|p|).

2. To count the number of occurrences, we could proceed as follows after solving the first
problem. If p occurs at least once in s, we will have found a position in the tree (either
in the middle of an edge or a node) that represents p. Now we only need to count
the number of leaves below that position. However, this would take time proportional
to the number of leaves. A better way is to pre-process the tree once in a bottom-up
fashion and annotate each node with the number of leaves below. Then the answer
can be found in the node immediately below or at p’s position in the tree.

3. We first find the position in the tree that corresponds to p in O(|p|) time according to
step 1. Assuming that each leaf is annotated with the starting position of its associated
suffix, we visit each of the z leaves below p and output its suffix starting position in
O(z) time.

Example 7.7 Let s = abbab. The corresponding suffix tree of abbab$ is shown in Figure F.1
on page 168.

Suppose p = aba is the pattern. Reading its first character a, we follow the a-edge from the
root. Since the edge has length 2, we verify that the next character b agrees with the pattern.
This is the case. We arrive at the branching node node(ab). Trying to continue, we see that
there is no a-edge outgoing from node(ab), and we cannot proceed matching p against the
suffix tree. In other words, p is not displayed by the tree, hence it is not a substring of s.

70

7.7 Applications of Suffix Trees

Now suppose p = b. We follow the b-edge from the root, which brings us to the branching
node node(b). Thus b is a substring of s. The leaf numbers in the subtree below node(b) are
2, 3 and 5. Indeed, b starts in s = abbab at positions 2, 3 and 5. �

Longest matching prefix. One variation of this exact pattern matching algorithm is to
search for the longest prefix p′ of p that is a substring of s. This can clearly be done in
O(|p′|) time. This operation is required to find the left-to-right partition (which is optimal)
to compute the maximal matches distance (see Section 3.8).

7.7.2 The Shortest Unique Substring

Pattern discovery problems, in contrast to pattern matching problems, deal with the analysis
of just one string, in which interesting regions are to be discovered. An example is given in
the following.

Problem 7.8 (Shortest Unique Substring Problem) Given a string s ∈ Σ∗, find all shortest
strings u that occur once, but only once, in s.

Extensions of this problem have applications in DNA primer design, for example. A length
restriction serves to exclude too trivial solutions.

Example 7.9 Let s = abab. Then the shortest unique substring is ba. �

We exploit two properties of the suffix tree of s$.

• If a string w occurs at least twice in s, there are at least two suffixes in s$, of which w
is a proper prefix. Hence in the suffix tree of s$, w corresponds to a path ending with
an edge to a branching node.

• If a string w occurs only once in s, there is only one suffix in s$ of which w is a prefix.
Hence in the suffix tree of s$, w corresponds to a path ending within a leaf-edge.

According to the second property, we can find the unique strings by looking at the paths
ending on the edges to a leaf. So if we have reached a branching node, say node(w), then we
only have to look at the leaf edges outgoing from node(w). Consider an edge node(w)→ v,
where v is a leaf, and assume that au is the edge label with first character a ∈ Σ. Then wa
occurs only once in s, but w occurs at least twice, since it is a branching node. Among all
such strings, we pick the shortest one(s).

Note that we disregard edges whose label starts with $, since the sentinel is always a unique
substring by construction.

The running time of this simple algorithm is linear in the number of nodes and edges in the
suffix tree, since we have to visit each of these only once, and for each we do a constant amount
of work. The algorithm thus runs in linear time since the suffix tree can be constructed in
linear time, and there is a linear number of nodes and edges in the suffix tree. This is
optimal, since the running time is linear in the size of the input.

71

7 Suffix Trees

7.7.3 Maximal Repeats

Informally, a repeat of a string is a substring that occurs at least twice. However, care needs
to be taken when formalizing the notion of repeat.

Definition 7.10 Given a string s ∈ Σ∗, a repeat of s is a triple (i, i′, ℓ) of two starting
positions i < i′ in s and a length ℓ such that s[i, . . . , i+ ℓ− 1] = s[i′, . . . , i′ + ℓ− 1].

Equivalently, the same repeat can be described by two position pairs, containing starting
and ending position of each instance, i.e., for (i, i′, ℓ) we can also write ((i, j), (i′, j′)), where
j = i+ ℓ− 1 and j′ = i′ + ℓ− 1.

In that case (i, j) is called the left instance of the repeat and (i′, j′) is called the right
instance of the repeat; see Figure 7.4. Note that the two instances may overlap.

S = i j
︸ ︷︷ ︸

s[i, . . . , j] =
i′ j′

︸ ︷︷ ︸

s[i′, . . . , j′]

Figure 7.4: Illustration of a repeat

Example 7.11 The string s = gagctcgagc, |s| = 10 contains the following repeats of length≥ 2:

((1, 4), (7, 10)) gagc

((1, 3), (7, 9)) gag

((1, 2), (7, 8)) ga

((2, 4), (8, 10)) agc

((2, 3), (9, 10)) ag

((3, 4), (9, 10)) gc

�

We see that shorter repeats are often contained in longer repeats. To remove redundancy,
we introduce maximal repeats, illustrated in Figure 7.5. Essentially, maximality means that
the repeated substring cannot be extended to the left or right.

Definition 7.12 A repeat ((i, j), (i′, j′)) is left-maximal if and only if i = 1 or s[i − 1] 6=
s[i′ − 1]. It is right-maximal if and only if j′ = |s| or s[j + 1] 6= s[j′ + 1]. A repeat is
maximal if it is both left-maximal and right-maximal.

S =
a
i j

b︸ ︷︷ ︸

s[i, . . . , j] =
c

maximal ⇐⇒ a 6= c and b 6= d i′ j′

d︸ ︷︷ ︸

s[i′, . . . , j′]

Figure 7.5: Illustration of maximality

From now on we restrict ourselves to maximal repeats. All non-maximal repeats can easily be
obtained from the maximal repeats. In Example 7.11, the last five repeats can be extended
to the left or to the right. Hence only the first repeat

(
(1, 4), (7, 10)

)
is maximal.

72

7.7 Applications of Suffix Trees

Problem 7.13 (Maximal Repeat Discovery Problem) Given a string s ∈ Σ∗, find all max-
imal repeats of s (possibly of a given minimal length ℓ).

An optimal algorithm. We shall present a linear-time algorithm to compute all maximal
repeats. It works in two phases: In the first phase, the leaves of the suffix tree are anno-
tated. In the second phase, the maximal repeats are reported while the branching nodes are
annotated simultaneously.

In detail, suppose we have the suffix tree for some string s of length n over some alphabet
Σ such that the first and the last character of s both occur exactly once in s. We ignore
leaf edges from the root, since the root corresponds to repeats of length zero and we are not
interested in these. Figure 7.6 gives an example for the string ggcgctgcgcc$.

ggcgctgcgcc$

$

c

c$

c$

gc

tgcgcc$

tgcgcc$

g

c$

gc

c$ tgcgcc$

tgcgcc$

gcgctgcgcc$
c

123456789.12

Figure 7.6: The suffix tree for ggcgctgcgcc$. Leaf edges from the root are not shown. These
edges are not important for the algorithm.

In the first phase, the algorithm annotates each leaf of the suffix tree: if ν = s[i . . . n], then
the leaf v with path-label ν is annotated by the pair (a, i), where i is the position at which
the suffix ν starts and a = s[i−1] is the character to the immediate left of that position. We
also write A(v, s[i− 1]) = {i} to denote the annotation, and assume A(v, σ) = ∅ (the empty
set) for all characters σ ∈ Σ different from s[i − 1]. The latter assumption holds in general
(also for branching nodes) whenever there is no annotation (σ, j) for some j. For the suffix
tree of Figure 7.6, the leaf annotation is shown in Figure 7.7.

Figure 7.7: The suffix tree for ggcgctgcgcc$ with leaf annotation.

The leaf annotation gives us the character upon which we decide the left-maximality of
a repeat, plus a position where a repeated string occurs. We only have to combine this
information at the branching nodes appropriately.

73

7 Suffix Trees

This is done in the second phase of the algorithm: In a bottom-up traversal, the repeats
are reported and simultaneously the annotation for the branching nodes is computed. A
bottom-up traversal means that a branching node is visited only after all of its children have
been visited.

Each edge, say v → w, is processed as follows:

1. Repeats (for the string ν ending at node v) are reported by combining the annotation
already computed for node v with the complete annotation stored for w (this was
already computed due to the bottom-up strategy). In particular, we consider all pairs
((i, i+ q − 1), (j, j + q − 1)), where

• q is the depth of node v, i.e. q = |ν|,

• i ∈ A(v, σ) and j ∈ A(w, σ′) for some characters σ 6= σ′, where A(v, σ) is the an-
notation already computed for v w.r.t. character σ and A(w, σ′) is the annotation
stored for node w w.r.t. character σ′.

Note that only those pairs are considered which have different characters to the left.
Thus it guarantees left-maximality of the repeats.

2. Recall that we consider processing the edge v → w and let a be the first character
of the label of this edge. The annotation already computed for v was inherited along
edges outgoing from v, that are different from v → w. Thus the first character of the
label of such an edge, say σ, is different from a. Now since ν is the repeated substring,
σ and a are characters to the right of ν. As a consequence, only those positions are
combined which have different characters to the right. In other words, the algorithm
also guarantees right-maximality of the repeats.

As soon as for the current edge the repeats are reported, the algorithm computes the union
A(v, σ)∪A(w, σ) for all characters σ, i.e. the annotation is inherited from node w to node v.
In this way, after processing all edges outgoing from v, this node is annotated by the set
of positions where ν occurs, and this set is divided into (possibly empty) disjoint subsets
A(v, σ1), . . . , A(v, σr), where Σ = {σ1, . . . , σr}.

Example 7.14 The suffix tree of the string s = ggcgctgcgcc$ is shown in Figure 7.6. We
assume the leaf annotation of it (as shown in Figure 7.7) is already determined.

Proceeding from leaves 7 and 2, the bottom up traversal of the suffix tree for ggcgctgcgcc$
begins with node v whose path-label is gcgc of depth q = 4. This node has two children which
do not have the same character to their left (t vs. g). The node is annotated with (g, 2) and
(t, 7). Because our repeat is also left-maximal, it is reported: ((2, 2+4− 1), (7, 7+4− 1)) =
((2, 5), (7, 10)), as can be seen in Figure 7.8, which shows the annotation for a large part of
the suffix tree and some repeats.

Next comes the node v with path-label gc of depth two. The algorithm starts by processing
the first edge outgoing from v. Since initially there is no annotation for v, no repeat is
reported and v is annotated with the label of leaf 9: (c, 9). Then the second edge is processed.
This means that the annotation (g, 2), (t, 7) for w with path-label gcgc is combined with
the annotation (c, 9). The new annotation for v becomes (c, 9), (t, 7), (g, 2). This gives
the repeats ((7, 8), (9, 10)) and ((2, 3), (9, 10)). Finally, the third edge is processed. (c, 9)
and (c, 4) cannot be combined, see condition 2 above. So only the repeats ((4, 5), (7, 8)) and

74

7.7 Applications of Suffix Trees

Figure 7.8: The annotation for a large part of the suffix tree of Figure 7.7 and some repeats.

((2, 3), (4, 5)) are reported, resulting from the combination of (t, 7) and (g, 2) with (c, 4). The
final annotation for v is (c, 9), (t, 7), (g, 2), (c, 4), which can also be read as A(v, g) = {2},
A(v, c) = {4, 9} and A(v, t) = {7}. We leave further processing up to the reader. �

Running Time. Let us now consider the running time of the algorithm. Traversing the
suffix tree bottom-up can surely be done in time linear in the number of nodes, since each
node is visited only once and we only have to follow the paths in the suffix tree. There
are two operations performed during the traversal: Output of repeats and combination
of annotations. If the annotation for each node is stored in linked lists, then the output
operation can be implemented such that it runs in time linear in the number of repeats.
Combining the annotations only involves linking lists together, and this can be done in time
linear in the number of nodes visited during the traversal. Recall that the suffix tree can be
constructed in O(n) time. Hence the algorithm requires O(n+k) time where n is the length
of the input string and k is the number of repeats.

To analyze the space consumption of the algorithm, first note that we do not have to store the
annotations for all nodes all at once. As soon as a node and its parent has been processed,
we no longer need the annotation. As a consequence, the annotation requires only O(n)
overall space. Hence the space consumption of the algorithm is O(n).

Altogether the algorithm is optimal since its space and time requirement is linear in the size
of the input plus the size of the output.

7.7.4 Maximal Unique Matches

The standard dynamic programming algorithm to compute the optimal alignment between
two sequences of length m and n requires O(mn) steps. This is too slow if the sequences are
on the order of 100 000s or millions of characters.

There are other methods which allow to align two genomes under the assumption that these
are fairly similar. The basic idea is that the similarity often results in long identical substrings
which occur in both genomes. These identities, called MUMs (for maximal unique matches)
are almost surely part of any good alignment of the two genomes. So the first step is to
find the MUMs. These are then taken as the fixed part of an alignment and the remaining
parts of the genomes (those parts not included in a MUM) are aligned with traditional
dynamic programming methods. In this section, we will show how to compute the MUMs
in linear time. This is very important for the practical applicability of the method. We do

75

7 Suffix Trees

not consider how to compute the final alignment (the whole procedure of genome alignment
will be discussed in Chapter 13 of these notes). We first have to define the notion MUM
precisely:

Definition 7.15 Given strings s, t ∈ Σ∗ and a minimal length ℓ ≥ 1, a MUM is a string u
that satisfies the following conditions:

1. |u| ≥ ℓ,

2. u occurs exactly once in s and exactly once in t (uniqueness),

3. for any character a, neither au nor ua occur in both s and t (left- and right-maximality).

Problem 7.16 (Maximal Unique Matches Problem) Given s, t ∈ Σ∗ and a minimal length
ℓ ≥ 1, find all MUMs of s and t.

Example 7.17 Let s = ccttcgt, t = ctgtcgt, and ℓ = 2. Then there are two maximal unique
matches, ct and tcgt. Now consider an optimal alignment of these two sequences (assuming
unit costs for insertions, deletions, and replacements):

cct-tcgt

-ctgtcgt

The two MUMs ct and tcgt are part of this alignment. �

To compute the MUMs, we first construct the generalized suffix tree for s and t, i.e. the
suffix tree of the concatenated string x := s#t$.

A MUM u must occur exactly twice in x, once in s and once in t. Hence u corresponds to
a path in the suffix tree ending with an edge to a branching node. Since a MUM must be
right-maximal, u must even end in that branching node, and that node must have exactly
two leaves as children, one in s and one in t, and no further children. It remains to check
the left-maximality in each case. We thus arrive at the following algorithm:

For each branching node q of the suffix tree of x,

1. check that its string depth is at least ℓ,

2. check that there are exactly two children, both of which are leaves,

3. check that the suffix starting positions i and j at those leaves correspond to positions
from both s and t in x,

4. check that the characters x[i − 1] and x[j − 1] are different, or i = 0 or j = 0 (left-
maximiality condition).

If all checks are true, output string(q) and/or its positions i and j.
Clearly, the algorithm runs in linear time since each step (1. – 4.) can be organized to run
in constant time, and there are a linear number of branching nodes in the suffix tree of x.

76

7.7 Applications of Suffix Trees

1

5 13

9 2

6

11

14

7

4 12

10

3

15

Figure 7.9: The suffix tree for ccttcgt#ctgtcgt$ without the leaf edges from the root

Example 7.18 Let s = ccttcgt, t = ctgtcgt, ℓ = 2. Consider the suffix tree for s#t$ shown
in Figure 7.9.

The string tcgt occurs once in s and t, since there are two corresponding leaf edges from
branching node node(tcgt). Comparing the characters g and t immediately to the left of the
occurrences of tcgt in s and t verifies left-maximality. Similarly for ct. On the other hand,
cgt is not left-maximal, because both occurrences have the left neighbor t. �

77

7 Suffix Trees

78

CHAPTER 8

Suffix Arrays

Contents of this chapter: suffix array pos, inverse suffix array rank, longest
common prefix array lcp, suffix array construction, quicksort, Manber-Myers
algorithm, construction of rank and pos, applications.

8.1 Motivation

We have already seen that suffix trees are a very useful data structure for a variety of string
matching problems. They can be stored in memory efficiently without explicit representation
of leaves and internal nodes (details are outlined in Section F.1). In the early 1990s, it was
believed that storing a suffix tree needs around 30–40 bytes per character. Given the smaller
amounts of available memory at that time, this led to the invention of a ”flat“ data structure
that is even more memory efficient but nevertheless captures the essence of the suffix tree:
the suffix array.

More recently, it has become clear that a suffix array complemented with additional in-
formation, called an enhanced suffix array or extended suffix array, can completely
replace (because it is equivalent to) the suffix tree. Additionally, some problems have simpler
algorithms on suffix arrays than on suffix trees (for other problems, the opposite is true).

A suffix array is easy to define: Imagine the suffix tree, and assume that at each internal
node, the edges toward the children are alphabetically ordered. If furthermore each leaf is
annotated by the starting position of its corresponding suffix, we obtain the suffix array by
reading the leaf labels from left to right: This gives us the (starting positions of the) suffixes
in ascending lexicographic order.

79

8 Suffix Arrays

8.2 Basic Definitions

In this section, we start counting string positions at zero. Thus a string s of length n
is written as s = (s[0], . . . , s[n − 1]). As before, we append a sentinel $ to each string.
In examples, we shall always assume a natural order on the alphabet and define $ to be
lexicographically smaller than any character of the alphabet, i. e., $ < a < b < c <

Definition 8.1 For a string s ∈ Σn, the suffix array pos of t = s$ is a permutation of
the integers {0, . . . , n} such that pos[r] is the starting position of the lexicographically r-th
smallest suffix of t.

The inverse suffix array rank of s$ is a permutation of the integers {0, . . . , n} such that
rank[p] is the lexicographic rank of the suffix starting at position p.

Clearly by definition rank[pos[r]] = r for all r ∈ {0, . . . , n}, and also pos[rank[p]] = p for all
p ∈ {0, . . . , n}. Since we assume that $ is the smallest character and occurs only at position
n, we have rank[n] = 0 and pos[0] = n.

The suffix array by itself represents the order of the leaves of the suffix tree, but it does not
contain information about the internal nodes. Recall that the string depth of an internal node
corresponds to the length of the maximal common prefix of all suffixes below that node. We
can therefore recover information about the internal nodes by making the following definition.

Definition 8.2 Given a string s ∈ Σn and the suffix array pos of t = s$, we define the
longest common prefix array lcp : {1, . . . , n} → N0 by

lcp[r] := max{|x| : x is a prefix of both t[pos[r − 1]...n] and t[pos[r]...n]}.

In other words, lcp[r] is the length of the longest common prefix of the suffixes starting at
positions pos[r − 1] and pos[r].

By convention, we additionally define lcp[0] := −1 and lcp[n+1] := −1; this avoids treating
boundary cases specially.

Example 8.3 Table 8.1 shows the suffix array pos, its inverse rank and the lcp array of the
string abbab$. The suffix tree was given in Figure F.1. Since we started counting string
positions at 1, the suffix array is obtained by subtracting 1 from the leaf labels, and reading
them from left to right: pos = (5, 3, 0, 4, 2, 1). �

lcp intervals. It is important to realize the one-to-one correspondence between internal
nodes in the suffix tree and certain intervals in the suffix array. We have already seen
that all leaves below an internal node v in the suffix tree correspond to an interval pos[r],
r ∈ [r−, r+], in the suffix array. If v has string depth d, it follows that

• lcp[r−] < d, since the suffix starting at pos[r− − 1] is not below v and hence does not
share a common prefix of length d with the suffix starting at pos[r−];

80

8.3 Suffix Array Construction Algorithms

r 0 1 2 3 4 5

suffix $ ab$ abbab$ b$ bab$ bbab$

pos[r] 5 3 0 4 2 1

p 0 1 2 3 4 5

rank[p] 2 5 4 1 3 0

r 0 1 2 3 4 5

lcp[r] -1 0 2 0 1 1 -1

Table 8.1: Suffix array pos and its inverse rank of abbab$. The table also shows the longest
common prefix array lcp.

• lcp[r] ≥ d for all r− < r ≤ r+, since all suffixes below v share a common prefix of
at least d. On the other hand, at least for one r in this range, we have lcp[r] = d.
Otherwise, if all lcp[r] > d in this range, v would have a larger string depth than d,
too.

• lcp[r+ + 1] < d, since again the suffix starting at pos[r+ + 1] is not below v.

Conversely, each pair ([r−, r+], d) satisfying r− < r+ and the above conditions corresponds
to an internal node in the suffix tree. Such an interval [r−, r+] is called a d-interval, or
generally, an lcp interval.

8.3 Suffix Array Construction Algorithms

8.3.1 Linear-Time Construction using a Suffix Tree

Given the suffix tree of s$, it is straightforward to construct the suffix array of s$ in linear
time. We start with an empty list pos and then do a depth-first traversal of the suffix tree,
visiting the children of each internal node in alphabetical order. Whenever we encounter a
leaf, we append its annotation (the starting position of the associated suffix) to pos. This
takes linear time, since we traverse each edge once, and there is a linear number of edges.

If the suffix tree data structure stores the internal nodes in depth-first order, the suffix array
is particularly simple to construct. One must merely walk through the memory locations
from left to right, keep track of the current string depth, and collect all leaf pointers along
the way. Leaf pointers can be recognized e.g. by a special flag. The leaf number is obtained
by subtracting the current string depth from the leaf pointer. Section F.1 gives details of a
suffix tree data structure that is suitable for the described approach.

This construction is simple and fast, but first requires the suffix tree. One of the major
motivations of suffix arrays was to avoid constructing the tree in the first place. Therefore
direct construction methods are more important in practice.

81

8 Suffix Arrays

8.3.2 Direct Construction

Quicksort: The simplest direct construction method is to use any comparison-based sorting
algorithm (e.g. MergeSort or QuickSort) and apply it to the suffixes of s$. We let n := |s|. For
the analysis we need to consider that a comparison of two suffixes does not take constant
time, but O(n) time, since up to n characters must be compared to decide which suffix
is lexicographically smaller. Optimal comparison-based sorting algorithms need O(n logn)
comparisons, so this approach constructs the suffix array in O(n2 log n) time.

Especially QuickSort is an attractive choice for the basic sorting method, since it is fast in
practice (but needs O(n2) comparisons in the worst case, so this would lead to an O(n3)
worst-case suffix array construction algorithm), and sorting the suffix permutation can be
done in place, so no additional memory besides the text and pos is required.

For an average random text, two suffixes differ after log|Σ| n characters, so each comparison
needs only O(logn) time on average. Combined with the average-case running time of
QuickSort (or worst-case running time of MergeSort), we get an O(n log2 n) average-case
suffix array construction algorithm that is easy to implement (e.g. using the C stdlib function
qsort) and performs very well in practice on strings that do not contain long repeats.

Manber-Myers Algorithm: Manber and Myers (1990), who introduced the suffix array
data structure, proposed an algorithm that runs in O(n logn) worst-case time on any string
of length n. It uses an ingenious doubling technique due to Karp, Miller, and Rosenberg
(Karp et al., 1972).

The algorithm starts with an initial character-sorting phase (called phase k = 0) and then
proceeds inK := ⌈log2(n)⌉ phases, numbered from k = 1 to k = K. The algorithm maintains
the invariant that after phase k ∈ {0, . . . ,K}, all suffixes have been correctly sorted according
to their first 2k characters. Thus in phase 0, it is indeed sufficient to classify all suffixes
according to their first character. Each of the following phases must then double the number
of accounted characters and update the suffix order accordingly. After phase K, all suffixes
are correctly sorted with respect to their first 2K ≥ n characters and therefore in correct
lexicographic order. We shall show that the initial sorting and each doubling phase runs in
O(n) time; thus establishing the O(n logn) running time of the algorithm.

Example 8.4 Given string s$ = STETSTESTE$, construct the suffix array using the Manber-
Myers algorithm. The algorithm takes at most k∈{0, . . . ,K} phases whereK=⌈log2(11)⌉=4.

after
phase
k = 0

(2k = 1)

0123456789.

STETSTESTE$

σ # bucket start

$ 1 0
E 3 1
S 3 4
T 4 7

$ E E E S S S T T T T
10 2 6 9 0 4 7 1 3 5 8

� 3T 7S 10$ 1T 5T 8T 2E 4S 6E 9E

82

8.3 Suffix Array Construction Algorithms

after
phase 1
(2k = 2)

$ E$ ES ET ST ST ST TE TE TE TS
10 9 6 2 0 4 7 1 5 8 3

� � 8TE 4ST 2ET 6ES 9E$ 3TS 7ST 10$ 5TE

after
phase 2
(2k = 4)

$ E$ ES ET STE$ STES STET TE$ TEST TETS TS
10 9 6 2 7 4 0 8 5 1 3

The Manber-Myers algorithm has sorted the suffixes of s$ at the latest after phase K = 4,
more precisely in this example already after phase 2. In each phase, newly gained information
is black and newly formed buckets are marked with | while old bucket borders are represented
by ||. Below each substring that has position i in s$, the substring at position i+2k of length
2k is given. The substring is used for lexicographically sorting within the same bucket. �

Skew Algorithm: There also exists a more advanced algorithm, called Skew (Kärkkäinen and Sanders,
2003) that directly constructs suffix arrays in O(n) time. However, we will not give details
here.

8.3.3 Construction of the rank and lcp Arrays

We show how to construct the rank and lcp arrays in linear time when the suffix array pos

is already available.

The inverse suffix array rank can be easily computed from pos in linear time by the following
Java one-liner, using the fact that rank and pos are inverse permutations of each other.

for(int r=0; r<=n; r++) rank[pos[r]]=r;

Computing lcp in linear time is a little bit more difficult. The naive algorithm, comparing the
prefixes of all adjacent suffix pairs in pos until we find the first mismatch, can be described
as follows:

lcp[0] = lcp[n+1] = -1; // by convention

for(int r=1; r<=n; r++) {

lcp[r] = LongestCommonPrefixLength(pos[r-1],pos[r]);

}

Here we assume that LongestCommonPrefixLength(p1,p2) is a function that compares the
suffixes starting at positions p1 and p2 character by character until it finds the first mismatch,
and returns the prefix length. Clearly the overall time complexity is O(n2).

The following algorithm, due to Kasai et al. (2001) achieves O(n) time by comparing the
suffix pairs in a different order. On a high level, it can be written as follows:

lcp[0] = lcp[n+1] = -1; // by convention

for(int p=0; p<n; p++) {

lcp[rank[p]] = LongestCommonPrefixLength(pos[rank[p]-1],p);

}

83

8 Suffix Arrays

At first sight, we have gained nothing. Implemented in this way, the time complexity is
still O(n2). The only difference is that the lcp array is not filled from left to right, but in
apparently random order, depending on rank.

The key observation is that we do not need to evaluate LongestCommonPrefixLength from
scratch for every position p. First of all, let us simplify the notation. Define left[p] :=
pos[rank[p]− 1]; this is the number immediately left of the number p in the suffix array.

In the first iteration of the loop, we have p = 0 and compute the lcp-value at rank[p], i.e., the
length L of the longest common prefix of the suffixes starting at position p and at position
left[p] (which can be anywhere in the string).

In the next iteration, we look for the longest common prefix length of the suffixes starting
at positions p + 1 and at left[p + 1]. If left[p + 1] = left[p] + 1, we already know that
the answer is L − 1, one less than the previously computed value, since we are looking at
the same string with the first character chopped off. If left[p+ 1] 6= left[p] + 1, we know
at least that the current lcp value cannot be smaller than L − 1, since (assuming L > 0 in
the first place) the number left[p] + 1 must still appear somewhere to the left of p + 1 in
the suffix array, but might not be directly adjacent. Still, the suffixes starting at left[p] + 1
and p+1 share a prefix of length L− 1. Everything in between must share a common prefix
that is at least that long. Thus we do not need to check the first L− 1 characters, we know
that they are equal, and can immediately start comparing the L-th character.

The same idea applies to all p-iterations. We summarize the key idea in a lemma, which we
have just proven by the above argument.

Lemma 8.5 Let L := lcp[rank[p]]. Then lcp[rank[p+ 1]] ≥ L− 1.

The algorithm then looks as follows.

lcp[0] = lcp[n+1] = -1; // by convention

L = 0;

for(int p=0; p<n; p++) {

L = lcp[rank[p]] = LongestCommonPrefixExtension(left[p],p,L);

if (L>0) L--;

}

Here LongestCommonPrefixExtension(p1, p2, L) does essentially the same work as the func-
tion LongestCommonPrefixLength above, except that it starts comparing the suffixes at
p1 + L and p2 + L, effectively skipping the first L characters of the suffixes starting at p1
and p2, as they are known to be equal.

It remains to prove that these savings lead to a linear-time algorithm. The maximal value
that L can take at any time, including upon termination, is n. Initially L is zero. L
is decreased at most n times. Thus in total, L can increase by at most 2n across the
whole algorithm. Each increase is due to a successful character comparison. Each call
of LongestCommonPrefixExtension, of which there are n, ends with a failed character
comparison. Thus at most 3n = O(n) character comparisons are made during the course of
the algorithm. Thus we have proven the following theorem.

84

8.4 Applications of Suffix Arrays

Theorem 8.6 Given the string s$ and its suffix array pos, the lcp array can be computed
in linear time.

8.4 Applications of Suffix Arrays

• exact string matching (O(|p| logn) or O(|p|+ log n) with lcp array)

• Quasar (q-gram based database searching using a suffix array)

• matching statistics

• Burrows-Wheeler Transformation, see Chapter 9

• . . . and more

85

8 Suffix Arrays

86

CHAPTER 9

Burrows-Wheeler Transformation

Contents of this chapter: Burrows-Wheeler transformation and retransforma-
tion, exact string matching with the BWT, compression with run-length encod-
ing.

9.1 Introduction

The Burrows-Wheeler transformation (BWT) is a technique to transform a text into a per-
mutation of this text that is easy to compress and search. The central idea is to sort the
cyclic rotations of the text and gaining an output where equal characters are grouped to-
gether. These grouped characters then are a favorable input for run-length encoding, where
a sequence of numbers and characters is constructed, considerably reducing the length of the
text (see Section 9.4.1).

Due to the fact that in sequence analysis mostly large data sets are processed, it is favorable to
have a technique compressing the data to reduce memory requirement and at the same time
enabling important algorithms to be executed on the converted data. The BWT provides a
transformation of the text fulfilling both requirements in a useful and elegant way. Further,
the transformation is bijective, so it is guaranteed that the original text can be reconstructed
in an uncompression step, called retransformation.

9.2 Transformation and Retransformation

For the transformation of the input string, first all the cyclic rotations of the text are com-
puted and written into a matrix, one below the other. Afterwards the rotations are lexico-
graphically sorted. The first column, which contains all sorted characters, is called F . The

87

9 Burrows-Wheeler Transformation

last column, called L, is the output of the transformation step, together with an index I
that gives the row in which the original string is found.

Definition 9.1 Let s be the input string of length |s| = n. Let M be the n × n-matrix
containing in its rows the lexicographically sorted cyclic rotations of s. The Burrows-Wheeler
transform bwt(s) is the last column of M ,

bwt(s)[i] := M(i, n), for all 0 ≤ i < n.

As mentioned before, the index I refers to the row that contains the original string s, i.e.
s[j] = M(I, j) for all 0 ≤ j < n. Instead of this index, a sentinel character $ can be
appended, so no additional information has to be saved.

Another possibility to compute bwt(s) is to construct the suffix array and decrement each
entry of the array pos (modulo n if necessary). Then bwt(s)[i] = s[pos[i]decn] for all 1 ≤
i < n, where xdecn = (x− 1) mod n.

Observation 9.2 Facing the output string bwt(s) it can be seen that equal characters are
often grouped together.

This phenomenon is called left context. It can be observed in every natural language and it
is due to their structural properties, of course with differently distributed probabilities for
every language.

Example 9.3 In an English text, there will be many occurrences of the word ‘the’ and also
some occurrences of ‘she’ and ‘he’. Sorting the cyclic rotations of the text will lead to a
large group of ‘h’s in the first column and thus ‘t’s, ‘s’s and gaps will be grouped together
in the last column. This can be explained by the probability for a ‘t’ preceding ‘he’, which
is obviously quite high in contrast to the probability of e.g. an ‘h’ preceding ‘he’.

Reconstruction: Besides bwt(s), which is the last column of the matrix M , the first column
F is available by lexicographically sorting bwt(s). The reconstruction of the text is done in
a back-to-front manner by a method called Last-to-Front Mapping (LF mapping) based
on of the following observation on the Burrows-Wheeler transform:

Observation 9.4 The ith occurrence of a character x in L refers to the same character in
the original text as the ith occurrence of x in F .

The LF mapping is accomplished by the following steps:

1. Examine the character at position I, respectively the sentinel $ in the last column.

2. Search the occurrence of the reconstructed character in F by exploiting Observa-
tion 9.4.

3. Examine the precursor of the reconstructed character. Due to the fact that the matrix
contains the cyclic rotations, each character in the last column is the precursor of the
character in the first column of the same row.

88

9.3 Exact String Matching

Repeat step 2 and step 3 until the starting index I, respectively the sentinel $, is reached
again. The reconstruction phase ends and the original input string is obtained.

Efficient ways how to perform these searches are known, see e.g. Kärkkäinen (2007) or
Adjeroh et al. (2008), but the details go beyond the scope of these lecture notes.

Remark. The row containing the sentinel $ in the last column of matrix M is equivalent to
the row with index I, because I indicates the row where the original string was found in M .
Thus in the last column at position I the last character of s is found. The sentinel, which is
unique in the string, is appended to the end of the text. Thus, the row where the sentinel is
found in the last column has to be the row where the original string is found in the matrix.

Example 9.5 Let the text be t = s$ = STETSTESTE$.

Transformation: Construct the matrix M by building the cyclic rotations of t and sorting
them (shown in Table 9.1). The Burrows-Wheeler transform bwt(t) can be found in the last
column L = bwt(t) = ETTTET$SSSE.

F L

$ S T E T S T E S T E

E $ S T E T S T E S T

E S T E $ S T E T S T

E T S T E S T E $ S T

S T E $ S T E T S T E

S T E S T E $ S T E T

S T E T S T E S T E $

T E $ S T E T S T E S

T E S T E $ S T E T S

T E T S T E S T E $ S

T S T E S T E $ S T E

Table 9.1: This is the matrix M containing the cyclic rotations.

Retransformation: Reconstruct column F by lexicographically sorting the last column L =
bwt(t) = ETTTET$SSSE, giving F = $EEESSSTTTT (this is sketched in Figure 9.1). Starting
with the sentinel in L, the sentinel in F is searched. Because it is sorted, the sentinel of
course is found at position 0. Thus the second reconstructed character is the E at L[0].
This is the first E in L, so the first E in F is searched, etc. In the end, the original input
t = STETSTESTE$ is achieved again.

�

9.3 Exact String Matching

Amazing about the BWT is the existence of an exact string matching algorithm that works
directly on the transformed text. Similar to the reconstruction step of the BWT, this al-

89

9 Burrows-Wheeler Transformation

Figure 9.1: Illustration of the reconstruction path through the matrix.

gorithm also works in a back-to-front manner, by first searching the last character of the
pattern in F . All occurring precursors in L are then compared to the next character in the
pattern, matching ones are marked in F , and so on.

Eventually, this is a slightly modified application of the second and third step of the LF-
mapping described before. But instead of always searching for one character in F we search
for a range of characters and examine their precursors in L for matching.

This leads to the following iteration, which is started for i := |p| − 1 (index of last position
in the pattern).

1. Determine the interval of all occurrences of p[i] in F .

2. Continue with the same interval in L which corresponds to the precursors of the cur-
rently considered characters.

3. For all entries in the current interval in L which equal p[i− 1], determine their occur-
rence in F (LF-mapping). These define a new interval in F .

a) If this is empty, the algorithm ends and the pattern does not exist in the text.

b) If the interval is not empty and i = 0, the pattern is found at the corresponding
positions.

c) Otherwise decrease i by 1 and continue with step 2

If the pattern was found we can examine two more properties. First, the number of precursors
matching the first character of the pattern equals the number of occurences in the text.
Second, if at the beginning the suffix array of the original text was stored and sorted along
with the rotations, then after searching the first character of the pattern in F, the values at
the corresponding indices in the suffix array will refer to the positions where the pattern is
found the original text.

Example 9.6 Let the text again be t = s$ = STETSTESTE$ and the pattern be p = TEST.
First, the last character of p, namely T, is searched in F and all occurrences are highlighted
in black. Then the next character of p, which is S, is searched in L. All occurrences of S
that are precursors of the already highlighted Ts are also marked. The newly marked Ss are
searched in F and the precursors, which correspond to the next character of the pattern

90

9.4 Other Applications

(E), are searched. Here there is only one matching precursor. Afterwards the last searched
character, the T, is found as a precursor of the E. In Table 9.2 this example is sketched.

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

⊲

F · · · L

$ E

E T

E T

E T

S E

S T

S $

T S

T S

T S

T E

F · · · L

$ E

E T

E T

E T

S E

S T

S $

T −→ S

T −→ S

T −→ S

T E

F · · · L

$ E

E T

E T

E T

S E

S T

S $

T −→ S

T −→ S

T −→ S

T E

F · · · L

$ E

E T

E T

E T

S −→ E

S −→ T

S −→ $

T −→ S

T −→ S

T −→ S

T E

F · · · L

$ E

E T

E −→ T

E T

S −→ E

S T

S $

T −→ S

T S

T S

T E

Table 9.2: Searching the pattern TEST in STETSTESTE$. All observed characters are highlighted
in black, the found pattern in addition is highlighted with a shaded background.

In this case the pattern is found exactly once. To gain the index where the pattern starts in
the text, the occurrence of the last found character (the first character of p) is searched in F .
The corresponding value of the suffix array determines the wanted index. The sorted suffix
array in this example is [10,9,6,2,7,4,0,8,5,1,3]. Here, we thus have the second occurring T

(marked with ⊲ in Table 9.2), which is at index 8 in F . Looking up the value of the suffix
array at index 8 gives a value of 5, therefore index 5 is exactly the position where the pattern
starts in s. �

9.4 Other Applications

Besides exact string matching, also other common string matching problems can be solved
with the BWT. For example, alignment tools have been developed that work on the BWT,
for example BWA (Li and Durbin, 2009, 2010) or Bowtie (Langmead et al., 2009). It applies
a global alignment algorithm on short queries and contains a Smith-Waterman-like heuristic
for longer queries, allowing higher error rates. For more information see
http://bio-bwa.sourceforge.net/bwa.shtml.

The BWT of a text is further suitable for effective compression, e.g. with move-to-front or
run-length encoding. The occurrence of grouped characters enables a significantly better
compression than compressing the original text.

9.4.1 Compression with Run-Length Encoding

The run-length encoding (RLE) algorithm constructs a sequence of numbers and characters
from the text. The text is searched for runs of equal characters, and these are replaced by
the number of occurrences of this character in the run and the character itself, e.g. instead
of EEEEE just 5E is saved. A threshold value determines how long a run at least must be to

91

http://bio-bwa.sourceforge.net/bwa.shtml

9 Burrows-Wheeler Transformation

be compressed in this way. Default for this threshold is 3, so single and double characters
are not changed, but instead of a run of three times the character x, the algorithm will save
3x. Texts with many and long runs thus will obviously be effectively compressed.

Example 9.7 Considering the example t = s$ = STETSTESTE$, the compression with RLE
will have no advantage. If instead the Burrows-Wheeler transform of t bwt(t) = ETTTET$SSSE
is compressed, the space requirement is reduced by two characters, since the compressed
string is rle(bwt(t)) = E3TET$3SE. As soon as the input string gets longer, it is likely
that more grouped characters occur, and thus the space requirement reduction is even more
significant. �

92

CHAPTER 10

Multiple Sequence Alignment

Contents of this chapter: Multiple sequence comparison, multiple alignment
scoring functions, (weighted) sum-of-pairs score, (weighted) sum-of-pairs cost,
multiple sequence alignment problem, optimal alignment (score/cost), parsimony
principle, generalized tree alignment.

10.1 Basic Definitions

Multiple (sequence) alignment deals with the problem of aligning generally more than two
sequences. While at first sight multiple alignment might look like a straightforward gener-
alization of pairwise alignment, we will see that there are clear reasons why multiple align-
ments should be considered separately, reasons both from the application side, and from the
computational side. In fact, the first applications of multiple alignments date back to the
early days of phylogenetic studies on protein sequences in the 1960s. Back then, multiple
alignments were possibly of higher interest than pairwise alignments. However, due to the
computational hardness the progress on multiple alignment methods was slower than in the
pairwise case, and the main results were not obtained before the 1980s and 1990s.

A multiple alignment is the simultaneous alignment of at least two sequences, usually dis-
played as a matrix with multiple rows, each row corresponding to one sequence.

The formal definition of amultiple sequence alignment is a straightforward generalization
of that of a pairwise sequence alignment (see Section 4.1). We shall usually assume that there
are k ≥ 2 sequences s1, . . . , sk to be aligned.

93

10 Multiple Sequence Alignment

Definition 10.1 Let Σ be the character alphabet, and s1, . . . , sk ∈ Σ∗.

Then A(k) := (Σ∪{–})k \ {(–)k} is the multiple alignment alphabet for k sequences. In
other words, the elements of this alphabet are columns of k symbols, at least one of which
must be a character from Σ.

The projection π{i} to the i-th sequence is defined as the function A(k)∗ → Σ∗ with

π{i}(
(a1

:
ak

)
) :=

{

ai if ai 6= –,

ε if ai = –.

In other words, the projection reads the i-th row of a multiple alignment, omitting all gap
characters.

A global multiple alignment of s1, . . . , sk is a a × l - matrix, where a and l denotes to
the number of rows and columns of the alignment, respectively, with π{i}(A) = si for all

i = 1, . . . , k, without
(−

:
−

)
.

We generalize the definition of the projection function to a set I of sequences (in particular
to two sequences).

Definition 10.2 The projection of a multiple alignment A to an index set I = {i1, i2, . . . , iq},
where each i corresponds to an index of one of the k sequences (I ⊆ {1, . . . , k}), is defined
as the unique function that maps an alignment column a as follows:

πI(
(a1

:
ak

)
) :=

ε if
(ai1

:
aiq

)
=
(−

:
−

)

(ai1
:

aiq

)
otherwise.

In other words, the projection selects the rows with indices given by the index set I from
the alignment and omits all columns that consist only of gaps. The definition is illustrated
in Figure 10.1 and in the following example.

Example 10.3 Let

A =

- A C C - - A T G

- A - C G A A T -

T A C C - - A G G

- A - C C A A T G

.

Then

π{1,2}(A) =

(
A C C - - A T G

A - C G A A T -

)

,

π{1,3}(A) =

(
- A C C A T G

T A C C A G G

)

,

π{3,4}(A) =

(
T A C C - - A G G

- A - C C A A T G

)

.

�

94

10.2 Why multiple sequence comparison?

Figure 10.1: Projection of a multiple alignment of three sequences s1, s2, s3 on the three planes
(s1, s2), (s2, s3) and (s3, s1).

10.2 Why multiple sequence comparison?

In the following we list a few justifications why multiple sequence alignment is more than
just the multiple application of pairwise alignment.

• In a multiple sequence alignment, several sequences are compared at the same time.
Properties that do not clearly become visible from the comparison of only two sequences
will be highlighted if they appear in many sequences. For example, in the alignment
shown in Figure 10.2, if only s1 and s2 are compared, the two white areas might
look most similar, inhibiting the alignment of the two gray regions. Only by studying
all five sequences at the same time it becomes clear that the gray region is a better
characteristic feature of this sequence family than the white one.

• Sometimes alignment ambiguities can be resolved due to the additional information
given, as the following example shows: s1 = VIEQLA and s2 = VINLA may be aligned
in the two different ways

A1 =

(
V I E Q L A

V I N - L A

)

and A2 =

(
V I E Q L A

V I - N L A

)

.

Only the additional sequence s3 = VINQLA can show that the first alignment A1 is
probably the correct one.

• Dissimilar areas of related sequences become visible, showing regions where evolution-
ary changes happened.

The following two typical uses of multiple alignments can be identified:

1. Highlight similarities of the sequences in a family. Examples for applications of this
kind of multiple alignments are:

• sequence assembly,

95

10 Multiple Sequence Alignment

Figure 10.2: A small pattern present in many sequences may become better visible in a multiple
sequence alignment.

• molecular modeling, structure-function conclusions,

• database search,

• primer design.

2. Highlight dissimilarities between the sequences in a family. Here, the main application
is the analysis of phylogenetic relationships, like

• reconstruction of phylogenetic trees,

• analysis of single nucleotide polymorphisms (SNPs).

In conclusion: One or two homologous sequences whisper ... a full multiple alignment shouts
out loud. (Hubbard et al., 1996)

10.3 Sum-of-Pairs Alignment

We have not discussed quantitative measures of multiple sequence alignment quality so far.
In fact, several such measures exist. In this section we will define the sum-of-pairs score as
one example and in chapter 12, we will cover the tree score as another one.

Like in pairwise alignment, the first choice one has to make is that between a dissimilarity
(cost) and a similarity (score) function. Again, both are possible and being used, and one
always has to make sure not to confuse the two. We will encounter examples of both kinds.

The multiple alignment score/cost functions discussed here are based on pairwise alignment
score or cost functions, here denoted by S2(·) for score functions and D2(·) for distance

96

10.4 Multiple Alignment Problem

or cost functions, to highlight the fact that they apply to two sequences. (They may be
weighted or unweighted, with homogeneous, affine, or general gap costs.)

Definition 10.4 The following two scoring functions are commonly used.

• The sum-of-pairs score is just the sum of the scores of all pairwise projections:

SSP(A) =
∑

1≤p<q≤k

S2(π{p,q}(A)).

• The weighted sum-of-pairs score adds a weight factor wi,j ≥ 0 for each projection:

SWSP(A) =
∑

1≤p<q≤k

wp,q · S2(π{p,q}(A)).

We similarly define the sum-of-pairs cost DSP(A) and weighted sum-of-pairs cost
DWSP(A) of a multiple alignment A. Instead of cost, we also say distance.

We give an example for the distance setting.

Example 10.5 Let s1 = CGCTT, s2 = ACGGT, s3 = GCTGT and

A =

C G C T - T

- A C G G T

- G C T G T

 .

Assuming that D2(·) is the unit cost function, we get DSP(A) = 4 + 2 + 2 = 8, DWSP(A) =
4w1,2 + 2w1,3 + 2w2,3. �

10.4 Multiple Alignment Problem

The multiple sequence alignment problem is formulated as a direct generalization of the
pairwise case.

Problem 10.6 (Multiple Sequence Alignment Problem) Given k sequences s1, s2, . . . , sk and
an alignment score (cost) function S (D), find an alignment Aopt of s1, s2, . . . , sk such that
S(Aopt) is maximal (D(Aopt) is minimal) among all possible alignments of s1, s2, . . . , sk.

Such an alignment Aopt is called an optimal alignment, and S(s1, s2, . . . , sk) := S(Aopt)
is the optimal alignment score (D(s1, s2, . . . , sk) := D(Aopt) is the optimal alignment
cost) of s1, s2, . . . , sk.

97

10 Multiple Sequence Alignment

Hardness. Both (weighted) sum-of-pairs alignment and tree alignment are NP-hard opti-
mization problems (see Section 10.5) with respect to the number of sequences k (Wang and Jiang,
1994). While we will not prove this, we give an intuitive argument why the problem is diffi-
cult.

Let us have a look at the following example. It shows that sum-of-pairs-optimal multiple
alignments can not be constructed “greedily” by combination of several optimal pairwise
alignments:

Example 10.7 Let s1 = CGCG, s2 = ACGC and s3 = GCGA. In a unit cost scenario, the (only)
optimal alignment of s1 and s2 is

A(1,2) =

(
- C G C G

A C G C -

)

with cost D(A(1,2)) = 2, and the (only) optimal alignment of s1 and s3 is

A(1,3) =

(
C G C G -

- G C G A

)

with cost D(A(1,3)) = 2.

Combining the two alignments into one multiple alignment, using the common sequence s1
as seed, yields the multiple alignment

A((1,2),(1,3)) =

- C G C G -

A C G C - -

- - G C G A

with cost D(A((1,2),(1,3))) = 2 + 2 + 4 = 8. However, this is not the sum-of-pairs optimal
alignment, which is

Aopt =

- C G C G

A C G C -

G C G A -

with cost D(Aopt) = 2 + 3 + 2 = 7. �

10.5 Digression: NP-completeness

It was stated before that sum-of-pairs multiple alignment is an NP-hard optimization prob-
lem with respect to the number of sequences k without further explaining what that means.
This section shall now give a brief introduction to the field of NP-completeness about which
every good bioinformatician should know. The contents in this section are based on the book
of Cormen et al. (2001).

Speaking in an abstract way, a problem Q is a binary relation on a set I of problem
instances and a set S of problem solutions (see Figure 10.3). A problem instance can
point to no, one or several problem solutions and a problem solution can be one of no, one
or several problem instances.

98

10.5 Digression: NP-completeness

I S

Figure 10.3: Binary relations between problem instances I and problem solutions S.

Example 10.8 A simple example of a problem is integer addition. Then the problem in-
stances could be “5+3”, “4+4” and “1+4” pointing to the problem solutions “8”, “8” and
“5”, respectively. �

An optimization problem (OP) or search problem addresses the minimization or max-
imization of a cost function. For example, finding the highest-scoring alignment of two or
more sequences is an optimization problem.

A decision problem (DP) is a “yes/no question” with just two problem solutions, S =
{0, 1}. The question whether for two given sequences there exists an alignment with a score
higher than a constant k is a decision problem.

The discussion about NP-completeness mainly considers decision problems, but the results
influence also optimization problems: Searching for a bound, every optimization problem can
be stated as a series of decision problems. If a decision problem is difficult, the corresponding
optimization problem is usually difficult as well.

Complexity classes. The set of all decision problems for which algorithms exist that have
the same asymptotic behavior (e.g. running time) are contained in one complexity class. The
class P contains all problems for which a deterministic algorithm exists that can decide in
polynomial time whether a certain problem instance points to a valid problem solution. The
class NP contains all problems for which a deterministic algorithm exists that can verify in
polynomial time whether a given certificate (configuration of input variables) is able to solve
an actual problem instance, i.e. it can decide in polynomial time whether the certificate is
a correct solution to the problem or not. In short P = efficiently decidable and NP =
efficiently verifiable. It follows directly that P ⊆ NP . The question is still open whether

P
?
= NP .

Remark. The given definition of NP above is not the historical original one. The original
definition describes NP as the class that contains all problems for which a non-deterministic
algorithm exists that can decide in polynomial time whether a certain problem instance
points to a valid problem solution. However, as this definition is less intuitive the verifier-
based definition should be preferred.

99

10 Multiple Sequence Alignment

Reducibility. A problem Q is reducible to a problem Q′ if every instance of Q can be
formulated as an instance of Q′ so that the solution of problem Q follows from the solution
of problem Q′. If Q can be reduced to Q′ in a simple way, it is not harder to solve Q than
to solve Q′. Q is polynomial-time reducible to Q′ (shortly: Q ≤p Q′) if the reduction
takes only polynomial time. Q1 ≤p Q2 implies: Q2 ∈ P ⇒ Q1 ∈ P .

NP-hardness, NP-completeness. A problem Q is NP-hard if Q′ ≤p Q for every Q′ ∈ NP .
A problem Q is in the class NP-complete (NPC) if it is NP-hard and Q ∈ NP . The
following property holds for the class NPC: If some NP-complete problem is solvable in
polynomial time, then P = NP . If some problem of NP is not solvable in polynomial time,
then no single NP-complete problem is solvable in polynomial time.

For solving the question whether P
?
= NP , NP-complete problems are intensely studied.

The most common assumption is that P 6= NP . An alternative possibility is that P = NP
(see Figure 10.4 for schematic views of these two alternatives).

NP

NP-complete

NP-hard

P = NP =

NP-complete

NP-hard

Figure 10.4: Left: P 6= NP . Right: P = NP .

The satisfiability problem SAT. The first known example of an NP-complete problem was
the satisfiability problem (SAT). It is stated as follows: Given a boolean formula of length n,
is it satisfiable, i.e. is there a configuration of variables so that the evaluation of the formula
yields 1?

Example 10.9 Given the formula (a ∨ b) ∧ (¬a ∨ b) ∧ (¬b ∨ c), is there a configuration of
variables so that the formula is true? Yes, there are two certificates that satisfy the given
formula, first: a, b, c = 1 and second: a = 0 and b, c = 1 �

To show that SAT is NP-complete, we prove two properties:

1. We show that SAT belongs to the class NP. This is the case, because given a certificate,
it is easy to decide in polynomial time whether the evaluation of the formula with these
variables indeed yields 1 or not.

2. We show that any problem Q′ belonging to the class NP can be reduced to SAT
(Q′ ≤p SAT) in polynomial time. This can be seen as follows:

100

10.5 Digression: NP-completeness

• Q′ ∈ NP implies that a verification algorithm A(x, y) exists for Q′ that tells in poly-
nomial time for any problem instance x ∈ I and certificate y ∈ S whether y is a correct
solution of x, i.e. (A(x, y) = 1) or not, i.e. (A(x, y) = 0).

• Let f(A, x) be a reduction function that partially evaluates the verification algorithm
A according to its first argument, yielding the function C(y) = f(A(x, y), x). Then we
have:

– Encoded as a boolean function, C is satisfiable (C(y) = 1) if and only if y is an
optimal solution to x, otherwise C(y) = 0.

– It can be shown that for any Q′ ∈ NP the corresponding boolean function C(y)
can be constructed in polynomial time, therefore if SAT can be solved in polyno-
mial time, also Q′ can be solved in polynomial time, i.e. Q′ ≤p SAT.

Therefore SAT is an NP-complete problem.

Extension of the class NPC. For showing that some problem Q is in NPC, it is sufficient
to show that Q ∈ NP and to reduce a known NP-complete problem Q′ (e.g. Q′ = SAT) to
Q:

1. Show that Q ∈ NP .

2. Choose a known NP-complete problem Q′.

3. Describe an algorithm that calculates in polynomial time a function f that projects
any instance of Q′ to an instance of Q.

4. Show that for f holds: x ∈ Q′ if and only if f(x) ∈ Q for all x ∈ {0, 1}∗.

Consequences of NP completeness. While the proof of NP-completeness of a problem
implies that it is quite unlikely to find a deterministic polynomial-time algorithm to solve
the problem to optimality in general, there are different ways to respond to such a result if
one wants to solve the problem in feasible time:

1. Small problem instances might be solvable anyway.

2. Using adequate techniques to efficiently prune the search space, even larger instances
may be solvable in reasonable time (running time heuristics).

3. The problem may not be hard for certain subclasses, so polynomial-time algorithms
may exist for them, e.g. FPT (Fixed Parameter Tractability).

4. It may be sufficient to approximate the optimal solution to a certain degree. If closeness
to the optimal solution can be guaranteed, one speaks of an approximation algorithm.

5. By no longer confining oneself to any optimality guarantee, one may get very fast
heuristic algorithms that produce good but not always optimal or guaranteed close-to-
optimal solutions (correctness heuristics).

101

10 Multiple Sequence Alignment

102

CHAPTER 11

Algorithms for Sum-of-Pairs Multiple Alignment

Contents of this chapter: Basic algorithm, free end gaps, affine gap costs,
Carrillo-Lipman, bounding pairwise alignment costs, pruning the alignment graph,
Center-Star approximation, Divide-and-Conquer alignment, multiple additional
cost, DCA algorithm.

Sum-of-pairs alignment has been extensively studied. However, be aware that from a bio-
logical point of view, tree alignment should be the preferred choice.

While we only discuss the unweighted sum-of-pairs alignment problem explicitly, everything
in this chapter also applies to weighted sum-of-pairs.

11.1 A Guide to Multiple Sequence Alignment Algorithms

In this chapter, sum-of-pairs alignment algorithms will be discussed. We first explain a multi-
dimensional generalization of the pairwise dynamic programming (Needleman-Wunsch) al-
gorithm. We next show how to reduce the search space considerably (according to an idea of
Carrillo and Lipman). A simple 2-approximation is given by the center-star method. Finally,
we discuss a divide-and-conquer heuristic.

Tree alignment and generalized tree alignment are discussed in Chapter 12. We discuss
Sankoff’s tree alignment algorithm and two heuristics for generalized tree alignment (Greedy
Three-Way alignment and the Deferred Path Heuristic).

As mentioned before, the multiple alignment problem is NP hard and all known algorithms
have running times exponential in the number of sequences; thus aligning more than 7
sequences of reasonable length is problematic. Since in practice, one needs to produce multi-
ple alignments of (sometimes) hundreds of sequences, heuristics are required: Progressive

103

11 Algorithms for Sum-of-Pairs Multiple Alignment

alignment methods, discussed in Appendix H, pick two similar sequences (or existing align-
ments) and align them to each other, and then proceed with the next pair, until only one
alignment remains. These methods are by far the most widely used ones in practice. An-
other class of heuristics, called segment-based methods, first identify (unique) conserved
segments and then chain them together to obtain multiple alignments.

11.2 An Exact Algorithm

The Needleman-Wunsch algorithm for pairwise global alignment can be generalized for the
multiple alignment of k sequences s1, s2, . . . , sk of lengths n1, n2, . . . , nk, respectively, in the
obvious way (due to Waterman et al. (1976)). Here we give the formulation for distance
minimization. Naturally, an equivalent algorithm exists for score maximization.

11.2.1 The Basic Algorithm

Instead of a two-dimensional edit graph, a k-dimensional weighted edit graph is constructed,
one dimension for each sequence. Each edge e corresponds to a possible alignment column c,
weighted by its corresponding alignment score w(e) = D(c), and the optimal alignment
problem translates to the problem of finding a path that minimizes the path weight, from
the source vertex vS to the sink vertex vE . The graph is illustrated in Figure 11.1.

Figure 11.1: Top: Part of the 2-dimensional alignment graph for two sequences. Bottom:
Part of the 3-dimensional alignment graph for three sequences. Not shown: Parts of the
k-dimensional alignment graphs for k ≥ 4.

Intuitively, for each vertex v in the edit graph we compute

D(v) = min{D(v′) + w(v′ → v) | v′ is a predecessor of v}. (11.1)

104

11.2 An Exact Algorithm

More formally, this can be written as follows:

D(0, 0, . . . , 0) = 0

D(

v
︷ ︸︸ ︷

i1, i2, . . . , ik) = min
∆1,...,∆k∈{0,1}
∆1+...+∆k 6=0

D(

predecessor v′
︷ ︸︸ ︷

i1 −∆1, i2 −∆2, . . . , ik −∆k) +DSP

alignm. col.
︷ ︸︸ ︷

∆1s1[i1]
∆2s2[i2]
. . .
∆ksk[ik]

where for a character c ∈ Σ the notation ∆c denotes ∆c = c if ∆ = 1 and ∆c = ’−’ if ∆ = 0.

Space and time complexity. The space complexity of this algorithm is given by the size of
the k-dimensional edit graph. Obviously, this is O(n1n2 · · ·nk) which is in O(nk) if n is the
maximum sequence length.

The time complexity is even higher, since at each internal vertex where the sum-of-pairs cost
is computed a minimization is taking place over 2k − 1 incoming edges. Hence, the total
time complexity (for homogeneous gap costs) is O(2k ·nk · k2). For affine gap costs, the time
complexity rises even more (see below).

While the time may be tolerable in some cases, the exponentially growing space complexity
does not permit to run the algorithm on more than, say, five or six typical protein sequences.
Even worse, while in the pairwise case the space usage can be reduced from quadratic to
linear by only a little time overhead, the possible space reduction in the case of multiple
alignment is rather small, as we now discuss.

11.2.2 Variations of the Basic Algorithm

Memory reduction. From the pairwise alignment, we remember that it is possible to reduce
the space for optimal alignment computation from quadratic to linear using a divide-and-
conquer approach (Section 5.4).

Figure 11.2: Divide-and-conquer space reduction technique for multiple alignment.

In priciple, the same idea can also be followed for multiple alignment, but the effect is much
less dramatic. The space reduction is by one dimension, from O(nk) to O(nk−1). That the
space savings here are less impressive than for pairwise alignment becomes clear when one
considers that for k = 12 sequences, the space usage is still O(n11), using this technique.

Figure 11.2 sketches on the left side the first division step for the pairwise case, and on the
right side the corresponding step in the multiple (here 3-dimensional) case.

105

11 Algorithms for Sum-of-Pairs Multiple Alignment

Free end gaps. It is sometimes desired to penalize gaps at the beginning and the end of an
alignment less than internal gaps (or not at all, also called free end-gap alignment), in order
to avoid that shorter sequences are “spread” over longer ones, just to get a slightly higher
score that is not counter-penalized by gap costs, because these have to be imposed anyway
to account for the difference in sequence length.

This can be done in multiple alignment as in the pairwise case. It is just a different initial-
ization of the base cases, i.e. the edges of the k-dimensional edit graph.

Affine gap costs. Affine gap costs can be defined in a straightforward manner as a sim-
ple generalization of the pairwise case, called natural gap costs: The cost of a multiple
alignment is the sum of all costs of the pairwise projections, where the cost of a pairwise
projection is computed with affine gap costs. In principle it is possible to perform the com-
putation of such alignments similarly as it is done for pairwise alignments. However, the
number of “history matrices” (V and H in the pairwise case) grows exponentially with the
number of sequences, so that very much space is needed.

That is why Altschul (1989) suggested to use an approximation of the exact case, so-called
quasi-natural gap costs. The idea is to look back by only one position in the edit graph
and decide from the previous column in the alignment if a new gap is started in the column
to be computed or not. The choices, compared to the “correct” choices in natural gap costs,
are given in the following table whose first line depicts the different possible scenarios of
pairwise alignment projections where an asterisk (*) refers to a character, a dash (-) refers
to a blank, and a question mark (?) refers to either a character or a blank. The entries
correspond to the cost (d is gap open cost, e is gap extension cost), where “no” means no
new gap is opened (substitution cost):

?* ?- ** ** -* -*
?* ?- *- -- *- --

natural no 0 d e d d/e
quasi-natural no 0 d e d d

The last case in natural gap costs cannot be decided if only one previous column is given.

It would be d for *---*
*---- and e for ***--*

*----- .

With this heuristic, the overall computation becomes slower by a factor of 2k, yielding a
time complexity for the complete multiple alignment computation of O(nk22kk2).

The space requirements do not change in the worst case, they remain O(nk).

11.3 Carrillo and Lipman’s Search Space Reduction

Carrillo and Lipman (1988) suggested an effective way to prune the search space for multiple
alignments. Their algorithm is still exponential, but in many cases the time of alignment
computation is considerably reduced compared to the full dynamic programming algorithm
from Section 11.2, making it applicable in practice for data sets of moderate size (7–10
protein sequences of length 300-400).

106

11.3 Carrillo and Lipman’s Search Space Reduction

Let sequences s1, s2, . . . , sk be given. The algorithm of Carrillo and Lipman is a branch-and-
bound running time heuristic, based on a simple idea and observation.

Idea. As we have seen in Example 10.7, the pairwise projections of an optimal multiple
alignment are not necessarily the optimal pairwise alignments (making the problem hard).
However, intuitively, they can also not be particularly bad alignments. (If all pairwise
projections were bad, the whole multiple alignment would also have a bad sum-of-pairs
score.)

If we can quantify this idea, we can restrict the search space to those vertices that are part
of close-to-optimal pairwise alignments for each pairwise projection.

Bounding pairwise Alignment costs. Here we derive the Carrillo-Lipman bound in the
distance or cost setting. The same can be done (with reversed inequalities) in the score
setting. This is left as an exercise.

We assume that we already know some (suboptimal) multiple alignment A of the given
sequences with cost DSP (A) =: δ ≥ DSP (A

opt), for example computed by the center-star
heuristic (Section 11.4) or a progressive alignment method (Section H).

Remember the definition of the sum-of-pairs multiple alignment score:

DSP (A) =
∑

p<q

D2(π{p,q}(A)).

We now pick a particular index pair (x, y), x < y and remove it from the sum. In the
remaining pairs, we use the fact that the pairwise projections of the optimal multiple
alignment cannot have a lower cost than the optimal corresponding pairwise alignments:
D2(π{p,q}(A

opt)) ≥ d(sp, sq). Thus

δ ≥ DSP (A
opt)

=
∑

p<q

D2(π{p,q}(A
opt))

= D2(π{x,y}(A
opt)) +

∑

p<q
(p,q) 6=(x,y)

D2(π{p,q}(A
opt))

≥ D2(π{x,y}(A
opt)) +

∑

p<q
(p,q) 6=(x,y)

d(sp, sq)

for any pair (x, y), 1 ≤ x < y ≤ k.

This implies the following upper bound for the cost of the projection of an optimal multiple
alignment on rows x and y:

D2(π{x,y}(A
opt)) ≤ δ −

∑

p<q
(p,q) 6=(x,y)

d(sp, sq) =: U(x,y).

Note that in order to compute the upper bound U(x,y), only pairwise optimal alignments and
a heuristic multiple alignment need to be calculated. This can be done efficiently.

107

11 Algorithms for Sum-of-Pairs Multiple Alignment

Pruning the Alignment graph. We now keep only those vertices (i1, . . . , ik) of the alignment
graph that satisfy the following condition for all pairs (x, y), 1 ≤ x < y ≤ k:

The best pairwise alignment of sx and sy through (ix, iy) has cost ≤ U(x,y).

How do we know the cost of the best pairwise alignment through any given point (ix, iy)?
This question was answered in Section 5.3: we use the forward-backward techniqe. In other
words, for every pair (x, y), x < y, we compute a matrix T(x,y) such that T(x,y)(ix, iy) contains
the cost of the best alignment of sx and sy that passes through the point (ix, iy).

We can define the set of vertices in the multi-dimensional alignment graph that satisfy the
constraint imposed by the pair (x, y) as follows:

B(x,y) := {(i1, . . . , ik) : T(x,y)(ix, iy) ≤ U(x,y)}

From the above considerations it is clear that the projection of an SP-optimal multiple
alignment on sequences sx and sy can not have a cost higher than U(x,y), implying that in
the picture of T(x,y) in Figure 11.3, the shaded regions with values T(x,y)(i, j) > U(x,y) cannot
contain such a projection.

Figure 11.3: The Carrillo-Lipman bound states that the two-dimensional projection of an
optimal multiple alignment cannot pass through the shaded region.

Thus the optimal multiple alignment consists at most of vertices that are in B(x,y) for all
pairs (x, y), i.e., in

B :=
⋂

x<y

B(x,y).

This means: Instead of computing the distances in all O(nk) vertices in the alignment graph,
we only need to compute the distances of |B| vertices. The size of B depends on many things,
e.g. on

• the quality of the heuristic alignment with cost δ that serves as an upper bound of the
optimal alignment cost. The closer δ is to the true optimal value, the smaller is B;

108

11.3 Carrillo and Lipman’s Search Space Reduction

• the difference between the optimal pairwise alignment costs and the costs of the pair-
wise projections of the optimal multiple alignment.

Generally, if all k sequences are similar and the gap costs are small, then a good heuris-
tic alignment (maybe even an optimal one) is easy to find, so B may contain almost no
additional vertices besides the true optimal multiple alignment path. Thus, for a medium
number of similar sequences, the simple Carrillo-Lipman heuristic may already perform very
well (because the relevant regions become very small) while for even fewer but less closely
related sequences even the best known heuristics will not finish within weeks of computa-
tion. Sequence similarity plays a much higher role than sequence length or the number of
sequences.

Some implementations of the Carrillo-Lipman bound attempt to reduce the size of B further
by “cheating”: Remember that we need a heuristic alignment to obtain an upper bound δ
on the optimal cost. If we have reason to suspect that we have found a bad alignment, and
believe that a better one exists, we may replace δ by a smaller value (which could even be
chosen differently for each pair (x, y)) δ − ǫ(x,y). Of course, since we cannot be sure that
such a better alignment exists, we may reduce the size of B too much and in fact exclude
the optimal multiple alignment from B. In practice, however, this kind of cheating works
quite well if done carefully, and further reduces the running time.

Algorithm. We give a few remarks about implementing the above idea. We emphasize
that the set B is conceptual and does not need to be constructed explicitly. Instead, it is
sufficient to precompute all T(x,y) matrices, the optimal pairwise alignment scores d(sp, sq)
for all 1 ≤ p < q ≤ k, and a heuristic alignment to obain δ.

Conceptually, we can imagine that every vertex has a distance of ∞ at the beginning of the
algorithm, but we do not store this information explicitly. Instead, we maintain a list (e.g.
a queue or priority queue) of “active” vertices, that initially contains only (0, 0, . . . , 0).

The algorithm then consists of “visiting” a vertex from the queue until the final vertex
(n1, n2, . . . , nk) is visited. When a vertex is visited, it already contains the correct alignment
distance.

Visiting a vertex v consists of the following steps.

• We look at the 2k − 1 successors w of v in the alignment graph and check for each of
them if it belongs to the set B. This is the case if w is already in the queue, or if the
current distance value plus edge cost v → w satisfies the Carrillo-Lipman bound for
every index pair (x, y). In the former case, the distance (and backpointer) information
of w is updated if the new distance value coming from v is lower than the current
one. In the latter case w is “activated” with the appropriate distance and backpointer
information and added to the queue.

• We remove v from the queue. If we want to create an alignment in the end, we need
to store v’s information somewhere else to reconstruct the traceback information. If
we only want the score, v can now be completely discarded.

• We pick the next vertex x to visit. The algorithm works correctly if x is

109

11 Algorithms for Sum-of-Pairs Multiple Alignment

– a vertex of minimum distance; then the algorithm is essentially Dijkstra’s algo-
rithm for single-source shortest paths in the (reduced) alignment graph, or

– any vertex that has no active ancestors, so we can be sure that we do not need to
update x’s distance information after visiting x.

Since often more than one vertex is available for visiting, a good target-driven choice
may speed up the algorithm.

Implementations. An implementation of the Carrillo-Lipman heuristic is the programMSA
(Gupta et al., 1995).

A newer implementation of many of the mentioned algorithms is the program QALIGN
(Sammeth et al., 2003b), see http://gi.cebitec.uni-bielefeld.de/QAlign. This pro-
gram not only runs much more stable than MSA, it also has a very nice and flexible graphical
user interface.

11.4 The Center-Star Approximation

There exists a series of results on the approximability of the sum-of-pairs multiple sequence
alignment problem.

Definition 11.1 For c ≥ 1, an algorithm for a cost or distance minimization problem is called
a c-approximation if its output solution has cost at most c times the optimal solution.

For a maximization problem, an algorithm is called a c-approximation if its output solution
has score at least 1/c times the optimal solution.

A simple algorithm, the so-called center star method (Gusfield, 1991, 1993), is a 2-approx-
imation for the sum-of-pairs multiple alignment problem if the underlying weighted edit
distance satisfies the triangle inequality.

The algorithm is the following. First, for each sequence sp, 1 ≤ p ≤ k, its overall distance
dp to the other sequences is computed, i.e. the sum of the pairwise optimal alignment costs:

dp =
∑

1≤q≤k

d(sp, sq).

Let sc be the sequence that minimizes this overall distance, called the center sequence.

Secondly, a multiple alignment Ac is constructed from all pairwise optimal alignments where
the center sequence is involved, i.e., all the optimal alignments of sc and the other sp, p 6= c,
are combined into one multiple alignment Ac.

The claim is that this alignment is a 2-approximation for the optimal sum-of-pairs multiple
alignment score of the sequences s1, s2, . . . , sk, i.e.,

DSP (Ac) ≤ 2 ·DSP (A
opt).

110

http://gi.cebitec.uni-bielefeld.de/QAlign

11.5 Divide-and-Conquer Alignment

This can be seen as follows:

DSP (Ac) =
∑

p<q

D2(π{p,q}(Ac)) (definition)

=
1

2

∑

(p,q)

D2(π{p,q}(Ac)) (since D2(π{p,p}) = 0)

≤ 1

2

∑

(p,q)

(
D2(π{p,c}(Ac)) +D2(π{c,q}(Ac))

)
(triangle inequality!)

=
1

2

∑

(p,q)

(d(sp, sc) + d(sc, sq)) (alignments to c are optimal)

= k ·
∑

q

d(sc, sq) (star property)

≤
∑

(p,q)

d(sp, sq) (minimal choice of c)

≤
∑

(p,q)

D2(π{p,q}(A
opt))

= 2 ·
∑

p<q

D2(π{p,q}(A
opt))

= 2 ·DSP (A
opt)

Hence Ac is a 2-approximation of the optimal alignment Aopt.

Time and space complexity. The running time of the algorithm can be estimated as follows,
assuming all k sequences have the same length n:

In the first phase,
(
k
2

)
pairwise alignments are computed, requiring overall O(k2n2) time.

In the second phase, the k − 1 alignments are combined into one multiple alignment which
can be done in time proportional to the size of the constructed alignment, i.e. O(k2n). This
yields an overall running time of O(k2n2).

The space complexity is O(n + k) for the linear-space score computation and to store k
computed values dp. Additionally, O(k2n) is used to store k pairwise alignments and the
intermediate/final multiple alignment. Hence, the overall space complexity is O(k2n).

This idea can be generalized to a 2− κ
k -approximation if instead of pairwise alignments, op-

timal multiple alignments of κ sequences are computed (see Bafna et al. (1994), Jiang et al.
(1994) and Wang et al. (1996)).

11.5 Divide-and-Conquer Alignment

In this section we present a heuristic for sum-of-pairs multiple sequence alignment that no
longer guarantees that an optimal alignment will be found.

While in the worst case the running time of the heuristic is still exponential in the number of
sequences, the advantage is that on average the practical running time is much faster while
the result is very often still optimal or close to optimal.

111

11 Algorithms for Sum-of-Pairs Multiple Alignment

Idea. The basic idea of the heuristic is to cut all sequences at suitable cut points into left
and right parts, and then to solve the two such generated alignment problems for the left
parts and the right parts separately. This is done either by recursion or, if the sequences are
short enough, by an exact algorithm. For a graphical sketch of the procedure, see Figure 11.4.

Figure 11.4: Overview of divide-and-conquer multiple sequence alignment.

Finding cut positions. The main question about this procedure is how to choose good cut
positions, since this choice is obviously critical for the quality of the final alignment. The
ideal case is easy to formulate:

Definition 11.2 A family of cut positions (c1, c2, . . . , ck) of the sequences s1, s2, . . . , sk of
lengths n1, n2, . . . , nk, respectively, is called an optimal cut if and only if there exists
an alignment A of the prefixes (s1[1..c1], s2[1..c2], . . . , sk[1..ck]) and an alignment B of the
suffixes (s1[c1 + 1..n1], s2[c2 + 1..n2], . . . , sk[ck + 1..nk]) such that the concatenation A++B
is an optimal alignment of s1, s2, . . . , sk.

There are many optimal cut positions, e.g. the trivial ones (0, 0, . . . , 0) and (|s1|, |s2|, . . . , |sk|).
In fact:

Lemma 11.3 For any cut position ĉ1 ∈ {0, . . . , n1} of the first sequence s1, there exist
cut positions c2, . . . , ck of the remaining sequences s2, . . . , sk such that (ĉ1, c2, . . . , ck) is an
optimal cut of the sequences s1, s2, . . . , sk.

Proof. Assume that Aopt is an optimal alignment. Choose one of the points between the
characters in the first row Aopt

1 that correspond to the characters s1[ĉ1] and s1[ĉ1 + 1]. The

112

11.5 Divide-and-Conquer Alignment

vertical “cut” at this point through the optimal alignment defines the cut positions c2, . . . , ck
that, together with ĉ1, are optimal by definition. See Figure 11.5 for an illustration. 2

s1

...

sk

⇐⇒ Aopt

Figure 11.5: Connection between unaligned sequences s1, . . . , sk (left) and a multiple align-
ment A of them (right). If A is an optimal alignment Aopt, any vertical cut in the alignment
corresponds to an optimal family of cut positions of the sequences.

The lemma tells us that a first cut position ĉ1 of s1 can be chosen arbitrarily (for symmetry
reasons and to arrive at an efficient divide-and-conquer procedure, we will use ⌈n1/2⌉ as
the cut position), and then there exist cut positions of the other sequences that produce an
optimal cut.

The NP-completeness of the SP-alignment problem implies, however, that it is unlikely that
there exists a polynomial time algorithm for finding optimal cuts. Hence a heuristic is used
to find good, though not always optimal cut positions.

This heuristic is based on pairwise sequence comparisons whose results are stored in an
additional cost matrix that contains for each pair of cut positions (cp, cq) the penalty (addi-
tional cost) imposed by cutting the two sequences at these points, instead of cutting them
at points compatible with an optimal pairwise alignment (see Definition 5.8). The efficient
computation of additional cost matrices was discussed in Section 5.3.

The idea of using additional cost matrices to quantify the quality of a multiple-sequence cut
is that the closer a potential cut point is to an optimal pairwise alignment path, the smaller
will be the contribution of this pair to the overall sum-of-pairs multiple alignment cost. Since
we are dealing with sum-of-pairs alignment, we define the additional cost of a family of cuts
along the same rationale.

Definition 11.4 The multiple additional cost of a family of cut positions (c1, c2, . . . , ck)
is defined as

C(c1, c2, .., ck) :=
∑

1≤p<q≤k

C(p,q)(cp, cq),

where C(p,q) is the additional cost matrix for pair (p, q), p < q.

A family of cut positions (c1, c2, . . . , ck) is called C-optimal if it minimizes the multiple
additional cost C(c1, c2, . . . , ck).

Although maybe unintuitive, even a family of cut positions with zero multiple additional
cost, i.e. one whose implied pairwise cuts are all compatible with the corresponding pairwise
optimal alignments, is not necessarily optimal (see Example 11.5). The converse is also not
true: neither has an optimal cut always multiple additional cost zero, nor is a cut with
smallest possible additional cost necessarily optimal.

113

11 Algorithms for Sum-of-Pairs Multiple Alignment

Example 11.5 Let s1 = CT , s2 = AGT , and s3 = G. Using unit cost edit distance, the
three additional cost matrices are the following:

C(1,2):

ǫ A G T

ǫ 0 0 1 3
C 1 0 0 2
T 3 2 1 0

C(1,3):

ǫ G

ǫ 0 1
C 0 0
T 1 0

C(2,3):

ǫ G

ǫ 0 2
A 0 1
G 1 0
T 2 0

There are two C-optimal cuts: (1, 1, 0) and (1, 2, 1), both of which yield a multiple additional
cost C(1, 1, 0) = C(1, 2, 1) = 0. Nevertheless, the implied multiple alignments are not
necessarily optimal as can be seen for the cut (1, 1, 0):

C | T
A | GT
ε | G

→

C
A
−

++

− T
G T
G −

 =

C − T
A G T
− G −

 (SP-cost 7, not optimal).

But they might be optimal, as for the cut (1, 2, 1):

C | T
AG | T
G | ε

→

− C
A G
− G

++

T
T
−

 =

− C T
A G T
− G −

 (SP-cost 6, optimal).

�

Nevertheless, it is a good heuristic to choose a C-optimal cut.

DCA Algorithm. The divide-and-conquer alignment algorithm first chooses an arbitrary
cut position ĉ1 for the first sequence (usually the sequence is cut in half for symmetry reasons)
and then searches for the remaining cut positions c2, . . . , ck such that the cut (ĉ1, c2, . . . , ck)
is C-optimal.

Then the sequences are cut in this way, and the procedure is repeated recursively until the
maximal sequence length drops below a threshold value L, when an exact multiple sequence
alignment algorithm MSA (e.g. Carrillo-Lipman bounds) is applied.

The pseudocode for this procedure is given in Algorithm 11.1.

Algorithm 11.1 DCA(s1, s2, . . . , sk;L)

1: Let np ← |sp| for all p, 1 ≤ p ≤ k
2: if max{n1, n2, . . . , nk} ≤ L then
3: return MSA(s1, s2, . . . , sk)
4: else
5: ĉ1 ← ⌈n1/2⌉
6: compute (c2, . . . , ck) such that (ĉ1, c2, . . . , ck) is a C-optimal cut
7: return DCA(s1[1..ĉ1], s2[1..c2], . . . , sk[1..ck];L)++DCA(s1[ĉ1+1..n1], s2[c2+1..n2],

. . . , sk[ck + 1..nk];L)

114

11.5 Divide-and-Conquer Alignment

The search space in the computation of C-optimal cut positions is sketched in Figure 11.6.
Since the cut position of the first sequence s1 is fixed to ĉ1 but the others can vary over their
whole sequence length, the search space has size O(n2 ·n3 · · ·nk). This implies that the time
for computing a C-optimal cut (i.e. finding the minimum in this search space) by exhaustive
search takes O(k2n2 + nk−1) time and uses O(k2n2) space.

Figure 11.6: Calculation of C-optimal cuts.

Overall complexity. Let L be the length bound below which the exact MSA algorithm is
applied. Assuming that the maximum sequence length n is of the form n = L · 2D and all
cuts are symmetric (i.e. n(d) = n/2d for all d = 0, . . . , D − 1), the whole divide-and-conquer
alignment procedure has the overall time complexity

(
D−1∑

d=0

2d
(

k2n2
(d) + nk−1

(d)

)
)

+
n

L
(2kLkk2)

=

(
D−1∑

d=0

2d
(

k2
n2

22d
+

nk−1

2d(k−1)

))

+ 2knLk−1k2

=

(
D−1∑

d=0

(

k2
n2

2d
+

nk−1

2d(k−2)

))

+ 2knLk−1k2

≤
(

D−1∑

d=0

(

k2
n2

2d
+

nk−1

2d

))

+ 2knLk−1k2 (since k ≥ 3)

=
(

k2n2 + nk−1
)
(

D−1∑

d=0

1

2d

)

+ 2knLk−1k2

≤
(

k2n2 + nk−1
)

· 2 + 2knLk−1k2 (geometric series)

∈ O(k2n2 + nk−1 + 2knLk−1k2)

115

11 Algorithms for Sum-of-Pairs Multiple Alignment

and space complexity

max
0≤d<D

{

kn(d) +

(
k − 1

2

)

n2
(d)

}

+ Lk ∈ O(k2n2 + Lk).

Compared to the standard dynamic programming for multiple alignment, the time is reduced
only by one dimension, so it is not clear if the whole method is really an advantage. However:

• The space usage for the whole divide-and-conquer alignment procedure can be seen as
polynomial since the space is mainly required for

(
k
2

)
additional cost matrices. The

exponential term in the space complexity to compute the exact multiple alignment for
sequences shorter than L can be neglected because L is small and can be chosen freely.

• Additional cost matrices have a very nice structure, since the low values that are of
interest here are often close to the main diagonal, and the values increase rapidly
when one leaves this diagonal. Based on this observation, several branch-and-bound
heuristics have been developed to speed-up the search for C-optimal cut positions, for
more details see (Stoye, 1998).

An implementation of the divide-and-conquer alignment algorithm, plus further documenta-
tion, can be found at http://bibiserv.techfak.uni-bielefeld.de/dca; another imple-
mentation is part of the QAlign package.

116

http://bibiserv.techfak.uni-bielefeld.de/dca

CHAPTER 12

Algorithms for Tree Alignments

Contents of this chapter: Sankoff, MinimumMutation Problem, Fitch, general-
ized tree alignment, Steiner tree, three-way tree alignment construction, deferred
path heuristic.

12.1 The Tree Alignment

To define the tree score of a multiple alignment, we assume that there additionally exists a
given tree T (representing evolutionary relationships) withK nodes, whose k leaves represent
the given sequences and whose K − k internal nodes represent “deduced” sequences. The
alignment A hence contains not only the given sequences s1, s2, . . . , sk, but also the (initially
unknown) internal sequences sk+1, . . . , sK that must be found or guessed.

Definition 12.1 The tree alignment score of an extended alignment A is the sum of the
scores of the projection of each pair of sequences that are connected by an edge in the tree:

S
(T)
Tree(A) =

∑

(p,q)∈E(T)

S2(π{p,q}(A)),

where E(T) is the set of edges of T .

From a biological point of view, tree scores make more sense than sum-of-pairs scores because
they better reflect the fact that the evolution of species, and also the relationship of genes
inside the genome of a single species, happens mostly tree-like. That is why often tree-
alignment is considered producing better alignments than sum-of-pairs alignment.

117

12 Algorithms for Tree Alignments

Remark. In the case of tree alignment, every alignment involves additional sequences at
the inner nodes, as discussed above. To find these sequences is part of the optimization
problem! Therefore, the tree alignment problem is more precisely stated in the following.

In the first version of tree alignment that we consider, we assume that the tree structure, by
which the given sequences are related, is known. A typical scenario is that the sequences are
orthologous proteins from different species whose phylogenetic relationship is well known, as
in Figure 12.1

�
�

�
�

�
�

�
�

�
�

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅

❅
❅
❅
❅

❅
❅
❅❅

❅
❅

❅
❅

r

�
�

�

r

r

r

human monkey rat mouse butterfly

Figure 12.1: A phylogenetic tree

Problem 12.2 (Tree Alignment Problem) Given a tree T = (V,E) that has k sequences
s1, . . . , sk attached to its leaves and a pairwise alignment score (cost) function S2 (D2), find
sequences sk+1, . . . , sK to be attached to the internal vertices of T and an alignment A of

the sequences s1, . . . , sK such that S
(T)
Tree(A) is maximal (D

(T)
Tree(A) is minimal).

The rationale behind tree alignment is that an alignment that minimizes the number of
mutations along the branches of this tree probably best reflects the true evolutionary history
and hence is most likely to be the correct one. This rationale is called the parsimony
principle and the attached sequences at internal vertices are called a most parsimonious
assignment. (Obviously there is no guarantee that the most parsimonious assignment is
the biologically correct one, and it can even be shown that in some special cases the most
parsimonious assignment is likely to be wrong. In the field of phylogenetic tree studies that
we are entering here, a long debate has been carried out about such topics, but that is
another story . . .)

Example 12.3 Consider sequences s1 = LCD, s2 = LV CR, s3 = V C, s4 = LC and the
following (unrooted) tree with four leaves and two internal nodes:

�
�

�
��

❅
❅

❅
❅❅

�
�
�

��

❅
❅
❅

❅❅

s1 = LCD

s2 = LV CR

s3 = V C

s4 = LC

s5 s6

118

12.2 Sankoff’s Algorithm

If the sequences at the internal vertices are chosen as s5 = LV CD and s6 = LV C and as
pairwise cost function D2 the unit edit cost function is used, the following alignment

A =

L − C D
L V C R
− V C −
L − C −
L V C D
L V C −

has cost

D
(T)
Tree(A) = D2(A1, A5) +D2(A2, A5) +D2(A3, A6) +D2(A4, A6) +D2(A5, A6)

= 1 + 1 + 1 + 1 + 1

= 5.

�

12.2 Sankoff’s Algorithm

An exponential-time exact algorithm that solves the tree alignment problem (Problem 12.2)
is due to Sankoff (1975).

Note that for a given alignment A the tree alignment cost with homogeneous gap costs can
be equivalently written in the following column-wise form:

D
(T)
Tree(A) =

∑

{p,q}∈E

D2(π{p,q}(A)) =
∑

column j of A

D(T)(A∗,j),

where the cost of the jth alignment column of A is given by

D(T)(A∗,j) :=
∑

{p,q}∈E

cost(Ap,j , Aq,j)

and cost is a dissimilarity function on characters (and gaps) satisfying cost(–, –) = 0.

Then the optimal alignment cost for sequence prefixes s1[1..i1], s2[1..i2], . . . , sk[1..ik] can be
computed by the recursive formula

D(i1, i2, . . . , ik)

= min
∆1,...,∆k∈{0,1}
∆1+...+∆k 6=0

D(i1 −∆1, i2 −∆2, . . . , ik −∆k) + min
ck+1,...,cK∈Σ∪{–}

D(T)

∆1s1[i1]
. . .
∆ksk[ik]
ck+1

. . .
cK

where we use the notation ∆c := c if ∆ = 1 and ∆c := – if ∆ = 0 for a character c ∈ Σ and,
as in Definition 10.4, K is the number of vertices of the tree T .

119

12 Algorithms for Tree Alignments

The outer minimization alone is computationally intensive: Like for sum-of-pairs optimal
multiple alignment, each entry in the k-dimensional search space of the indices (i1, i2, . . . , ik)
has 2k − 1 predecessors.

Moreover, there is the inner minimization where the optimal characters for the sequences at
the K − k internal nodes of the tree are to be selected:

Problem 12.4 (Minimum Mutation Problem) Given a phylogenetic tree T with characters
attached to the leaves, find a labelling of the internal vertices of T with characters such that
the overall number of character changes along the edges of T is minimized.

Here, the so-called Fitch Algorithm (Fitch, 1971) can be used, which we describe in its
original version for the unit cost function and a rooted binary tree T (if the tree is unrooted,
a root can be arbitrarily chosen, the algorithm will always give the same result).

1. Bottom-up phase: Assign to each internal node a set of potential labels.

• For each leaf i set:

Ri = {xi} (xi = character at leaf i)

• Bottom-up traversal of tree (from leaves to root)
For internal node i with children j, k, set

Ri =

{

Rj ∩Rk, if Rj ∩Rk 6= ∅
Rj ∪Rk, otherwise.

2. Top-down phase: Pick a label for each internal node.

• Choose arbitrarily:

xroot = some x ∈ Rroot

• Top-down traversal of tree (from root to leaves)
For internal node j with parent i, set

xj =

{

xi, if xi ∈ Rj

some x ∈ Rj , otherwise.

See Figure 12.2 for an example of the Fitch algorithm.

The analysis of the Fitch algorithm is easy: It takes O(k|Σ|) time and space, because the
number of internal nodes is bounded by k − 1 and each step takes O(|Σ|) time.

Since in the overall algorithm we have that for each of the O(nk) entries (i1, . . . , ik) in the
alignment search space there are 2k−1 choices for the (∆1,∆2, . . . ,∆k), and for each of them
we run the Fitch algorithm, the overall time complexity of Sankoff’s algorithm is O(nk2kk|Σ|)
time.

Knudsen (2003) shows how this algorithm can be generalized to affine gap costs.

120

12.3 Generalized Tree Alignment

A G T A T GAG T

{A}

{A,T}

{A}

{A,G}

{T}
{A,G}

{A,G,T}

{G}

Figure 12.2: Illustration of the Fitch algorithm for Σ = {A,G, T}. The characters assigned
during the top-down phase are underlined.

Note: A bottom-up traversal of a tree can be implemented by a post-order traversal that
starts at the leaves of the tree and at each internal node it recursively traverses the subtrees
before visiting the node itself.

A top-down traversal of a tree can be implemented by a pre-order traversal (also called depth-
first traversal) that starts at the root of the tree, and for each internal node it recursively
visits the node first and then traverses the subtrees.

12.3 Generalized Tree Alignment

Although tree alignment is already hard, there exists an even harder problem: the gen-
eralized tree alignment problem. Recall that the tree T is already given in the tree
alignment problem. In practice, the tree is often unknown and an additional optimization
parameter. Thus the problem (in its distance version) is as follows.

Problem 12.5 (Generalized Tree Alignment Problem) Given sequences s1, . . . , sk, find

1. a tree T ,

2. sequences sk+1, . . . , sK to be assigned to the internal vertices of T , and

3. a multiple alignment A of the sequences s1, . . . , sK ,

such that the tree alignment cost D
(T)
Tree(A) is minimal among all such settings.

It can be solved (theoretically) by solving the tree alignment problem (see Section 12.2) for
all tree topologies (of which there are super-exponentially many in k) and picking the best
one.

An alternative approach is to solve the Steiner tree problem in sequence space. Therefore
the generalized tree alignment problem needs to be equivalently formulated as a Steiner tree
problem in sequence space:

Problem 12.6 Given the complete weighted graph whose vertices V represent the infinite
set Σ∗ of all sequences over Σ and whose edges have as weight the edit distance between the
connected vertices (the so-called Sequence Space), and a subset V ′ ⊆ V , find a tree T with

121

12 Algorithms for Tree Alignments

vertices V ′′ ⊆ V such that V ′ ⊆ V ′′ and the total weight of the edges in T is minimal. Such
a tree is called a Steiner tree for V ′.

For two-letter sequences over the alphabet Σ = {A,C,G, T}, this is visualized in Figure 12.3.

Figure 12.3: The generalized tree alignment problem for two-letter sequences as a Steiner
tree problem in sequence space. Given are the sequences AA, CA, AT , and GC. The tree
shown contains one additional internal “Steiner” node AC and has total cost 4.

Generalized tree alignment is a very hard, but very attractive problem to solve. For ex-
ample, the chicken-and-egg problem of alignment and tree construction is avoided; see also
Section H.1. Therefore heuristic methods have been developed, two of which are presented
here.

12.3.1 Greedy Three-Way Tree Alignment Construction

This heuristic method was developed by Vingron and von Haeseler (1997).

The idea is to construct alignment and tree simultaneously by iterative insertion of leaves
into a growing tree, resulting in a series of trees T2, T3, . . . , Tk, and at the same time a series
of alignments A2, A3, . . . , Ak.

The starting point is the (trivial) tree T2 with the two leaves representing s1 and s2, and the
alignment A2 that is just the optimal pairwise alignment of s1 and s2.

Then, iteratively the other sequences s3, . . . , sk are inserted in the tree as new leaves and
joined into the growing alignment. In order to decide where a new leaf si+1 is inserted in
Ti, the cost of the new tree is computed for each possible insertion point, i.e., each internal
edge of Ti, and compared to the cost of the corresponding alignment Ai.

In this procedure, the insertion of the new leaf si+1 in an edge e (with the set of leaves L on
the one side and the set of leaves R on the other side) of the tree is performed by breaking
the edge e into two parts eL and eR and adding a new edge enew leading to the new leaf (see
Figure 12.4).

In order to compare tree cost and alignment cost, average distances between subtrees and
subalignments are used. Thereby, the average distance between elements of two subtrees of
T with leaves in L and R, respectively, is defined as follows:

D̄T (L,R) =
1

|L|
1

|R|
∑

s∈L,t∈R

DT (s, t)

122

12.3 Generalized Tree Alignment

where DT (s, t) is the distance (sum of edge lengths as defined below) between the two leaves
s and t in the tree T .

The new alignment Ai+1 is the result of an optimal three-way alignment of the projection of
the previous alignment Ai to the leaves in L, the projection of the previous alignment Ai to
the leaves in R, and the new sequence si+1. The average distance of the two sub-alignments
is

D̄A(L,R) =
1

|L|
1

|R|
∑

s∈L,t∈R

DA(s, t)

where DA(s, t) is the cost of the projection of A on sequences s and t, that is, DA(s, t) =
D2(π{s,t}(A)).

Figure 12.4: Inserting a new leaf si+1 into edge e of tree T . Filled circles represent the given
sequences, empty circles represent Steiner points (inferred sequences at internal points in
the tree), and the dashed circle represents a possible insertion point for the edge leading to
the newly inserted sequence si+1.

In order to avoid trivial results, during the optimization the average distances are required
to be equal in the tree and in the alignment:

D̄Ti+1({si+1}, L) = D̄A({si+1}, L)
D̄Ti+1({si+1}, R) = D̄A({si+1}, R) (12.1)

D̄Ti+1(L,R) = D̄A(L,R).

Now, we would like to derive the new edge lengths eL, eR, and enew. Therefore, observe the
following from Figure 12.4:

D̄Ti+1({si+1}, L) = enew + eL + D̄Ti
(L, rL)

D̄Ti+1({si+1}, R) = enew + eR + D̄Ti
(R, rR)

D̄Ti+1(L,R) = eL + eR + D̄Ti
(L, rL) + D̄Ti

(R, rR).

123

12 Algorithms for Tree Alignments

Using the equalities (12.1) this can be solved for the desired edge lengths:

eL =
1

2

(
D̄A(si+1, L) + D̄A(L,R)− D̄A(si+1, R)

)
− D̄Ti

(L, rL)

eR =
1

2

(
D̄A(L,R) + D̄A(si+1, R)− D̄A(si+1, L)

)
− D̄Ti

(R, rR)

enew =
1

2

(
D̄A(si+1, R) + D̄A(si+1, L)− D̄A(L,R)

)
.

Note that by this equation, edge lengths can be negative. Therefore, among all insertion
edges that result in no negative edge lengths, that one is selected for which the length of the
new edge enew in the tree is minimal. This defines the edge where the new leaf is inserted.

The insertion step is repeated until all leaves are inserted into the tree and thus Tk and Ak

are obtained.

Finally, a refinement phase can be started, where one leaf at a time is removed from the tree
and a new (possibly the same) insertion point is searched by the same procedure as above.

While there is no guarantee that the algorithm computes trees that come close to the optimal
Steiner tree, in practice the method is not too bad, and quick as well, especially if a fast
three-way alignment procedure is used.

12.3.2 The Deferred Path Heuristic

This heuristic method was developed by Schwikowski and Vingron (1997).

Similar to the greedy three-way alignment heuristic, the tree is iteratively constructed by
inserting one sequence after the other. However, the tree is not directly constructed as a
Steiner tree in sequence space, but instead first a directed acyclic sequence graph is computed
representing all co-optimal and slightly sub-optimal pairwise alignments of the sequences.
The algorithm is a kind of agglomerative clustering, where initially all singleton sequence
graphs are constructed (as trivial nodes in the sequence space), and then in each iteration
the two closest sequence graphs are merged into joint sequence graphs, where optimal and
suboptimal paths between the two sequence graphs are considered (see Figure 12.5). In
the end, the multiple alignment will be constructed from the final sequence graph for all k
sequences.

This method yields an approximation algorithm with a guaranteed error bound of at most
(
2− 2

k

)
, with respect to the optimal generalized tree alignment.

124

12.3 Generalized Tree Alignment

Figure 12.5: The deferred path heuristic for generalized tree alignment. Filled circles represent
the given sequences, dashed circles represent possible Steiner points (inferred sequences at
internal points in the tree). The dotted points are introduced during the insertion of
sequence si+1.

125

12 Algorithms for Tree Alignments

126

CHAPTER 13

Whole Genome Alignment

Contents of this chapter: Filter algorithms, Maximal Unique Match (MUM),
Maximal Exact Match (MEM), pairwise genome alignment (MUMer), Chain-
ing Problem, multiple genome alignment (MGA, MUMer 3), multiple genome
alignment with rearrangements (MAUVE).

Because more and more prokaryotic and eukaryotic genomes are sequenced, and their com-
parison reveals much information about their function and evolutionary history, the align-
ment of whole genomes is in general very valuable. A review of algorithms for whole genome
alignment can be found in (Chain et al., 2003).

We start this chapter with a few general remarks on whole genome alignment:

1. The alignment of whole genomes only makes sense if there is a global similarity between
the compared genomes. If the genomes do not have a common layout, other methods
like rearrangement studies (Gascuel, 2005) should be applied.

2. In principle, like in the case of “normal” alignments, alignments of two or more whole
genomes could be computed by dynamic programming. Since one deals with large
amounts of data, though, the quadratic (or exponential in the multiple case) time
complexity leads to extremely long computation times.

3. The previous point is why in practice one needs to apply faster methods that are
specialized for similar DNA sequences, as they often appear in closely related genomes.
Most of the commonly used methods for whole genome alignment are filtration based,
in the sense that in a first step highly similar (or identical) subregions are identified
that in a second step are connected in the best possible way. This procedure may be
repeated a few times.

127

13 Whole Genome Alignment

In this chapter we will first explain the general approach of filtration with exact seeds in se-
quence analysis and how this can be efficiently performed using suffix trees. Then we describe
a few of the more popular tools for whole genome alignment, MUMmer (Delcher et al., 1999,
2002; Kurtz et al., 2004), MGA (Höhl et al., 2002), and MAUVE (Darling et al., 2004).

13.1 Filter Algorithms

Filter algorithms (see also Section 3.9) are not only popular in whole genome alignment, but
are also used in other methods for fast sequence comparison, the most popular examples
being BLAST and FASTA, but they are also used in repeat finding, for instance.

Generally, a filter algorithm is a two-step procedure where first in a filtration phase small
high-similarity regions, so-called seeds, are searched, and then in the second verification
phase those regions that contain one or more seeds are postprocessed in various ways. As the
particular way of postprocessing depends very much on the application that one is dealing
with, in this section we will not go into further details. The kind of verification used in whole
genome alignment (chaining) will be described in the following sections.

In the filtration phase, different types of seeds are considered by the various methods. Pos-
sibilities are

• exact or approximate matches,

• maximal (non-extendable) matches, and

• unique matches.

In whole genome alignment, two types of seeds are in popular use: Maximal unique matches
(MUMs) and maximal exact matches (MEMs). Both may be defined for two or multiple
sequences. MUMs for two sequences were already discussed in Section 7.7.4, here we discuss
the more general case. The precise definitions follow:

Definition 13.1 A MUM (Maximal Unique Match) is a substring that occurs exactly once
in each sequence si, 1 ≤ i ≤ k, and that can not simultaneously be extended to the left or
to the right in every sequence.

The definition of MEMs is less restrictive as they may occur several times in the same
sequence:

Definition 13.2 A MEM (Maximal Exact Match) is a substring that occurs in all sequences
s1, s2, . . . , sk and that cannot simultaneously be extended to the left or to the right in every
sequence. A MEM in more than two sequences is sometimes called a multiMEM.

Both MUMs and MEMs can be efficiently found using the generalized suffix tree of the
sequences s1, s2, . . . , sk introduced in Section 7.3.

We begin with multiMEMs: It is easy to see that there is a correspondence between the
internal nodes of T that have, in their subtree, at least one leaf for each input sequence, and
the right-maximal exact matches. These nodes can be found by a bottom-up traversal of T ,
storing at each node the set of input sequences for which leaves exist in the corresponding

128

13.2 General Strategy for Multiple Genome Alignment (MUMmer)

subtree and their positions in the input sequences. In addition, to test for left-maximality,
one has to test that there are no extensions possible to the left by looking up the character
immediately to the left of their start positions in the input sequences. This simple algorithm
takes O(n+ kr) time where n = n1 + n2 + · · ·+ nk is the total length of all k genomes and
r is the number of right-maximal exact matches. But also algorithms that run in O(n) time
are possible with some enhancement of the data structure.

MUMs have the additional restriction that in the subtree below the endpoint of the MUM,
each sequence s1, s2, . . . , sk must correspond to exactly one leaf. MUMs can be found in
O(kn) time.

Once the filtration has been performed, a verification step is necessary. In genome alignment
this is done by chaining.

The task of finding the chain of compatible MUMs that maximizes the weight along its path
in step 2 (the Chaining Problem) can be modeled as the following graph problem: Let
R = {r1, . . . , rz} be the MUMs found in the first phase of the algorithm. Define a partial
order ≺ on MUMs where ri ≺ rj if and only if the end of MUM ri is smaller than the
beginning of MUM rj in both s1 and s2. The directed, vertex-weighted graph G = (V,E)
contains the vertex set V = R∪{start, stop} and an edge (ri → rj) ∈ E if and only if ri ≺ rj .
Moreover, (start → ri) ∈ E and (ri → stop) ∈ E for all 1 ≤ i ≤ z. The weight w(v) of a
vertex v is defined as the length of the MUM represented by v, and w(start) = w(stop) = 0.

Problem 13.3 (Chaining Problem) Find a chain c = (ri0 , ri1 , ri2 , . . . , riℓ , riℓ+1
), with ri0 =

start and riℓ+1
= stop, where two neighboring vertices are connected by an edge (rij → rij+1)

for all 0 ≤ j ≤ ℓ, of heaviest weight w(c) :=
∑ℓ

j=1w(rij).

It is well known that in an acyclic graph a path of maximum weight can be found in O(|V |+
|E|) time by topologically sorting the vertices and then applying dynamic programming.
Here, this easily yields an O(z2) time algorithm for the chaining. However, since the MUMs
can be linearly ordered, using a heaviest increasing subsequence algorithm the computation
can even be reduced to O(z log z) time.

13.2 General Strategy for Multiple Genome Alignment
(MUMmer)

The first and most popular alignment program for two whole genomes was MUMmer whose
first (Delcher et al., 1999) and second (Delcher et al., 2002) versions differ only slightly.

The general strategy of the overall algorithm is as follows:

1. Given n genomes s1, . . . , sn,all MUMs or MEMs are found using the generalized suffix
tree as described in the previous section.

2. The chain of compatible MUMs/MEMs that maximizes the weight along its path
is selected, where a set of MUMs/MEMs is compatible if the MUMs/MEMs can be
ordered linearly (See also Figure H.3 on page 192)

129

13 Whole Genome Alignment

3. Short gaps (up to 5000 base pairs) are filled by ordinary pairwise alignment. Long
gaps remain unaligned.

Overall, the first two phases take time O(|s1|+ · · ·+ |sn|+ z2) or O(|s1|+ · · ·+ |sn|+ z log z),
depending on the time needed for chaining. The time used by the last phase depends on
the size of the remaining gaps and the used algorithm. In the worst case the last phase
dominates the whole procedure, for example when no single MUM was found. But in a
typical case, where the genomes are of considerable global similarity, not too many and not
too large gaps should remain such that the last phase does not require too much time.

13.3 Multiple Genome Alignment (MUMmer 1/2 and

MUMmer 3)

One design decision in MUMmer 1 and 2 was to use MUMs as output of the filtration phase.
The advantage is that this gives reliable anchors since the uniqueness is a strong hint that the
regions in the two genomes indeed correspond to each other, i.e. are orthologous. However,
if more than two sequences are compared, it is unlikely that there exist many MUMs that
are present and unique in all considered sequences.

MUMmer in its third version (Kurtz et al., 2004) is now based on multi-MEMs, as the
authors have noted that these are less restrictive and the chaining does not become more
complicated.

13.4 Multiple Genome Alignment with Rearrangements (MAUVE)

Another genome alignment program described here is MAUVE (Darling et al., 2004). This
program uses multi-MUMs as seeds, but can also deal with rearrangements, i.e. its chaining
algorithm is more general than in MUMmer, as it is not restricted to finding one chain of
collinear seeds. Instead it looks for several locally collinear blocks of seeds. Among these
blocks, by a greedy selection procedure the most reliable blocks are selected and assembled
into a global “alignment”. MAUVE is applied with less restrictive parameters recursively to
the regions not aligned in the previous phase. It can be summarized as follows:

1. Find local alignments (multiMUMs).

2. Use the multiMUMs to calculate a phylogenetic guide tree.

3. Select a subset of the multiMUMs to use as anchors — these anchors are partitioned
into collinear groups called LCBs.

4. Perform recursive anchoring to identify additional alignment anchors within and out-
side each LCB.

5. Perform a progressive alignment of each LCB using the guide tree.

MAUVE can be found at http://gel.ahabs.wisc.edu/mauve. There is also an advanced
version of MAUVE that includes rearrangements between the aligned genomes.

130

http://gel.ahabs.wisc.edu/mauve

APPENDIX A

Distances versus Similarity Measures on Sequences

Contents of this chapter: Biologically inspired distances between DNA and
protein sequences. Dissimilarity and similarity measures. Equivalence of dis-
similarity and similarity formulation. Log-odds scores. Non-symmetric score
matrices.

So far we have only defined distances between sequences, focusing on their differences. An-
other viewpoint is to focus on their common features. This leads to the notion of similarity
measures (or scores). The purpose of this chapter is to introduce biologically more mean-
ingful measures than edit distance, and to make the transition from the cost viewpoint to
the score viewpoint.

A.1 Biologically Inspired Distances

The unit cost edit distance simply counts certain differences between strings. There is no
inherent biological meaning. If we want to compare DNA or protein sequences, for example,
a biologically more meaningful distance should be used.

The following is called the transversion/transition cost on the DNA alphabet:

A G C T

A 0 1 2 2
G 1 0 2 2

C 2 2 0 1
T 2 2 1 0

131

A Distances versus Similarity Measures on Sequences

A R N D C Q E G H I L K M F P S T W Y V
A 0 14 7 9 20 9 8 7 12 13 17 11 14 24 7 6 4 32 23 11
R 14 0 11 15 26 11 14 17 11 18 19 7 16 25 13 12 13 25 24 18
N 7 11 0 6 23 5 6 10 7 16 19 7 16 25 10 7 7 30 23 15
D 9 15 6 0 25 6 3 9 11 19 22 10 19 29 11 11 10 34 27 17
C 20 26 23 25 0 26 25 21 25 22 26 25 26 26 22 20 21 34 22 21
Q 9 11 5 6 26 0 5 12 7 17 20 8 16 27 10 11 10 32 26 16
E 8 14 6 3 25 5 0 9 10 17 21 10 17 28 11 10 9 34 26 16
G 7 17 10 9 21 12 9 0 15 17 21 13 18 27 10 9 9 33 26 15
H 12 11 7 11 25 7 10 15 0 17 19 10 17 24 13 11 11 30 21 16
I 13 18 16 19 22 17 17 17 17 0 9 17 8 17 16 14 12 31 18 4
L 17 19 19 22 26 20 21 21 19 9 0 19 7 14 20 19 17 27 18 10
K 11 7 7 10 25 8 10 13 10 17 19 0 15 26 11 10 10 29 25 16
M 14 16 16 19 26 16 17 18 17 8 7 15 0 18 17 16 13 29 20 8
F 24 25 25 29 26 27 28 27 24 17 14 26 18 0 27 24 23 24 8 19
P 7 13 10 11 22 10 11 10 13 16 20 11 17 27 0 9 8 32 26 14
S 6 12 7 11 20 11 10 9 11 14 19 10 16 24 9 0 5 29 22 13
T 4 13 7 10 21 10 9 9 11 12 17 10 13 23 8 5 0 31 22 10
W 32 25 30 34 34 32 34 33 30 31 27 29 29 24 32 29 31 0 25 32
Y 23 24 23 27 22 26 26 26 21 18 18 25 20 8 26 22 22 25 0 20
V 11 18 15 17 21 16 16 15 16 4 10 16 8 19 14 13 10 32 20 0

Table A.1: Amino acid replacement costs as suggested by W. Taylor.

Bases A and G are called purines, and bases C and T are called pyrimidines. The
transversion/transition cost function reflects the biological fact that a purine/purine and a
pyrimidine/pyrimidine replacement is much more likely to occur than a purine/pyrimidine
replacement. Often, an insertion/deletion cost of 3 is used with the above costs to take into
account that a deletion or an insertion of a base is even more seldom. These costs define the
transition/transversion distance between two DNA sequences.

To compare protein sequences and define a cost function on the amino acid alphabet, we
may count how many DNA bases must change minimally in a codon to transform one amino
acid into another.

A more sophisticated cost function for replacement of amino acids was calculated by W.
Taylor according to the method described in Taylor and Jones (1993) and is shown in Ta-
ble A.1. To completely define a metric, we would also have to define the costs for insertions
and deletions.

To allow such general costs, we have to re-define the edit alphabet. The reason is that so far,
we have considered an operation Sc that substitutes the next character by c ∈ Σ, but does
not tell us which character is being substituted. Since the cost of Sc can vary depending on
the substituted character, from now on, we use the following edit alphabet:

E :≡ E(Σ) := {Sa,c, Ic, Dc : a ∈ Σ, c ∈ Σ}.

The previous copy operation C that copied the next arbitrary character a ∈ Σ is now the
appropriate Sa,a. (We do not consider flips at all for the time being.) Similarly, we have to
modify the definition of the edit function E : Σ∗ × E∗ → Σ∗ (cf. p. 18) accordingly.

We will not allow arbitrary cost functions on E , but only those that satisfy certain (intuitive)
properties.

Definition A.1 A sensible cost function or sensible dissimilarity function on E(Σ) is

132

A.2 From Distance to Similarity

a function cost : E → R
+
0 such that

0 ≤ cost(Sa,a) ≤ cost(Da) = cost(Ia) for all a ∈ Σ

cost(Sa,a) ≤ cost(Sa,c) = cost(Sc,a) for all a, c ∈ Σ

cost(Sa,c) ≤ cost(Sa,b) + cost(Sb,c) for all a, b, c ∈ Σ

cost(Sa,c) ≤ cost(Da) + cost(Ic) for all a, c ∈ Σ

The first and second condition state that a copy operation on a ∈ Σ should always have lower
cost than any other operation involving a; they also impose symmetry on the cost function.
If we want the resulting edit distance to be a metric, we will explicitly demand cost(Sa,a) = 0
for all a. The third condition states that dissimilarity should be subadditive and is essential
in proving the triangle inequality of the edit distance defined by this cost function. The
fourth condition is essential for substitutions being used at all; if it were violated, it would
always be cheaper to delete one character and insert another.

A.2 From Distance to Similarity

The concept of a metric is useful because it embodies the essential properties of our intuition
about distances. For example, if the triangle inequality is violated, we could find a shorter
way from x to y via a detour over z, which is not intuitive. However, distances also have
disadvantages, which have not become apparent so far, because we have looked at whole
sequences.

What would happen if we adopt a local instead of a global view and start looking for the
least different parts of two sequences (the sequences could be, as a whole, very different from
each other)? By definition, a distance can only punish differences, not reward similarities,
since it can never drop below zero. Note that the empty sequence ε is a (trivial) substring of
every sequence and d(ε, ε) = 0; so this (probably completely uninteresting) common part is
always among the best possible ones. More generally, short strings simply cannot accumulate
as many differences as long strings, and would be preferred by a distance measure.

As another example of a problematic issue, look at the amino acid dissimilarities above. The
dissimilarity between glutamine (Q) and tryptophan (W) is twice as large as the dissimilarity
between methionine (M) and arginine (R): d(Q,W) = 32 vs. d(M,R) = 16. Which units
are they measured in? What is the intuition behind the above values? How could we derive
meaningful distances or dissimilarities between amino acids? The answers to these questions
are not easily found.

It turns out that some problems are more easily formulated in terms of similarity than in
terms of dissimilarity or distance. For example, when we want to find similar substrings of
two sequences, we can assign a positive similarity value (or score) to each pair that consists
of a copy of the same letter and a negative score to each mismatched pair (corresponding
to a substitution operation), and also to insertions and deletions. The main difference is
that we can explicitly reward desired features instead of only punishing undesired features.
For some people, a similarity-centered view is also psychologically more attractive than a
distance-centered view.

Again, a similarity function on an edit alphabet should satisfy certain intuitive properties.

133

A Distances versus Similarity Measures on Sequences

Definition A.2 A sensible similarity function or sensible score function on E(Σ) is a
function score : E → R such that

score(Sa,a) ≥ 0 ≥ score(Da) = score(Ia) for all a ∈ Σ

score(Sa,a) ≥ score(Sa,c) for all a, c ∈ Σ

score(Sa,c) = score(Sc,a) for all a, c ∈ Σ

score(Sa,c) ≥ score(Da) + score(Ic) for all a, c ∈ Σ

The first and second condition state that the similarity between a and itself is always higher
than between a and anything else. In particular, insertions and deletions never score posi-
tively. The first and third condition impose symmetry, and the last condition states that a
direct substitution is preferable to an insertion and a deletion.

In contrast to costs, similarity scores can be both negative and positive. In fact, the zero plays
an important role: it represents a neutral event. This is why a copy operation should always
have nonnegative score, and an insertion/deletion operation should always have nonpositive
score.

We now review the definition of edit distance and define edit similarity. Cost and score of
an edit sequence are defined as the sum of their components’ costs and scores, respectively:

cost(e) :=

|e|
∑

i=1

cost(ei), and score(e) :=

|e|
∑

i=1

score(ei) (e ∈ E∗).

Definition A.3 Given x, y ∈ Σ∗, their edit distance d(x, y) is defined as

d(x, y) := min{cost(e) : e ∈ E∗, E(x, e) = y}.

The edit sequences (there can be more than one) that achieve the minimum are called the
distance-minimizing edit sequences and written as the set

eoptd (x, y) := argmin{cost(e) : e ∈ E∗, E(x, e) = y}
:= {e ∈ E∗ : E(x, e) = y, cost(e) = d(x, y)}.

The edit score s(x, y) is defined as

s(x, y) := max{score(e) : e ∈ E∗, E(x, e) = y}.

There is also the set of score-maximizing edit sequences

eopts (x, y) := argmax{score(e) : e ∈ E∗, E(x, e) = y}
:= {e ∈ E∗ : E(x, e) = y, score(e) = s(x, y)}.

A general note on terminology: If X is some space and we maximize a function f : X → R in
such a way that the maximum is achieved by at least one x ∈ X , then maxx∈X f(x) denotes
the value of the maximum and argmaxx∈X f(x) denotes the set of x ∈ X that achieve the
maximum.

134

A.2 From Distance to Similarity

An equivalence question. Given a cost function, an important question is whether we can
define a score function in such a way that an edit sequence has minimal cost if and only if it
has maximal score, i.e., such that eoptd (x, y) = eopts (x, y) for all x, y ∈ Σ∗. The same question
arises when the score function is given, and we look for an equivalent cost function.

We first present an equivalent score function for the unit cost edit distance. Then we give
more general results.

Theorem A.4 The standard edit distance costs (0 for a copy, 1 for a substitution, insertion,
and deletion) are equivalent to the following edit similarity scores: 1 for a copy, 0 for a
substitution, −1/2 for an insertion and deletion. With this choice, s(x, y) = (|x|+ |y|)/2−
d(x, y) for all x, y ∈ Σ∗.

Proof. The idea is to find a monotonicity preserving transformation from costs to scores.
We introduce variables sC, sS, sI, and sD for the scores to be determined. We shall attempt
to define them in such a way that there is a constant γ (that may depend on x and y, but
not on e) such that score(e) = γ − cost(e).

Let e be any edit sequence with nC copy-type substitutions, nS non-copy substitutions, nI
insertions and nD deletions, so

score(e) =
∑

o∈{C,S,I,D}

so no.

Any edit sequence e that transforms some sequence x ∈ Σ∗ into y ∈ Σ∗ satisfies

|x|+ |y| = 2nC + 2nS + nI + nD,

or equivalently,

nC =
|x|+ |y|

2
− nS − nI/2− nD/2.

Therefore

score(e) = sC ·
(|x|+ |y|

2
− nS − nI/2− nD/2

)

+ sS · nS + sI · nI + sD · nD

= sC ·
|x|+ |y|

2
+ (sS − sC) · nS + (sI − sC/2) · nI + (sD − sC/2) · nD.

We want to write this in such a way that

score(e) = γ − cost(e)

for some constant γ independent of the n-values to preserve monotonicity. Since

−cost(e) = −1 · nS − 1 · nI − 1 · nD,

we need to set the coefficients above correctly, i.e.,

sC ·
|x|+ |y|

2
= γ,

sS − sC = −1,
sI − sC/2 = −1,
sD − sC/2 = −1.

135

A Distances versus Similarity Measures on Sequences

It follows that we can arbitrarily set sC = 1 to obtain sS = 0 and sI = sD = −1/2 and
γ = (|x|+ |y|)/2; the theorem is proved. 2

Note that we could also have chosen sC = 2 to obtain γ = |x| + |y|, sS = 1, sI = sD = 0.
This is just at the limit of being a sensible score function. Similarly, for sC = 0, we would
get γ = 0 and sS = sI = sD = −1. Is there a best choice? This question becomes important
when we discuss local similarity in Section 4.5.

A more general version of the above theorem is the following one.

Theorem A.5 Let cost be a sensible cost function. Let M := maxa∈Σ cost(Sa,a). For each
edit operation o ∈ E , define

score(o) :=

{

M − cost(o) if o ∈ {Sa,c : a, c ∈ Σ},
M/2− cost(o) if o ∈ {Ia, Da : a ∈ Σ}.

Then

1. score is a sensible similarity function;

2. for the constant γ := M · (|x|+ |y|)/2, we have s(x, y) = γ − d(x, y);

3. eopts (x, y) = eoptd (x, y).

Proof. 1. Score symmetry follows from cost symmetry. By definition of M as maximum
copy cost, score(Sa,a) ≥ 0 for all a ∈ Σ. Also, score(Da) = 1/2 · (M − 2 · cost(Da)) ≤ 0, since
for sensible costs, M ≤ [cost(Da)+ cost(Ia)] for all a ∈ Σ. We have score(Sa,a) ≥ score(Sa,c)
for all a 6= c, since the reverse inequality holds for the costs by definition. Finally, we use
cost(Sa,c) ≤ cost(Da) + cost(Ic) to see that score(Sa,c) = M − cost(Sa,c) ≥M/2− cost(Da) +
M/2− cost(Ic) = score(Da) + score(Ic).

2. The proof idea is the same as in the special case. Let e be any edit sequence transforming
x into y, let na,b be the number of Sa,b-operations for a, b ∈ Σ, and let da and ia be the
numbers of Da and Ia operations, respectively. Then |x|+ |y| = 2 ·∑a,b na,b +

∑

a [ia + da].
Thus

score(e) =
∑

a,b

na,b · score(Sa,b) +
∑

a

[da · score(Da) + ia · score(Ia)]

=
∑

a,b

na,b · (M − cost(Sa,b)) +
∑

a

[da · (M/2− cost(Da)) + ia · (M/2− cost(Ia))]

= M ·
(∑

a,b

na,b +
∑

a

[da/2 + ia/2]
)

−
∑

a,b

na,b · cost(Sa,b) −
∑

a

[da · cost(Da) + ia · cost(Ia)]

= M(|x|+ |y|)/2 − cost(e).

This shows that score(e) = γ − cost(e) for all edit sequences that transform x into y.
Let e∗ be a cost-optimal edit sequence. By the above statement, it is also score-optimal.
The converse argument holds for a score-optimal edit sequence. It follows that s(x, y) =
maxe:E(x,e)=y score(e) = γ −mine:E(x,e)=y cost(e) = γ − d(x, y).

136

A.3 Log-Odds Score Matrices

3. This statement has just been proven as part of 2. 2

When we apply the above theorem to the unit cost edit distance, we obtain M = 0 and thus
similarity scores score(C) ≡ score(Sa,a) = 0 for all a ∈ Σ, and negative unit scores for the
other operations. Since the whole point of a similarity measure is to reward identities, this is
probably not what we desire. In fact, we can often increase the constant M in the previous
theorem and still obtain a sensible similarity function. We did this in Theorem A.4, where
we arbitrarily chose M := 1.

Note that the conversion also works in the other direction when a similarity measure is given
whose smallest identity score mina score(Sa,a) is zero. In general, a conversion in the spirit
of Theorem A.5 can always be attempted, but it may lead to a non-sensible cost function
when starting with a similarity function.

A.3 Log-Odds Score Matrices

Now that we have established a similarity-based viewpoint, it is time to discuss how we can
define similarity scores for biological sequences from an evolutionary point of view; we focus
on proteins and define a similarity function on the alphabet of 20 amino acids.

The basic observation is that over evolutionary time-scales, in functional proteins, two similar
amino acids are replaced more frequently by each other than dissimilar amino acids. The
twist is now to define similarity by observing how often one amino acid is replaced by another
one in a given amount of time.

Let π = (πa)a∈Σ be the frequency vector, also probability vector, which means that
πa ≥ 0 for all a and

∑

a πa = 1, of the naturally occurring amino acids. If we look at two
random positions in two randomly selected proteins, the probability that we see the ordered
pair (a, b) is πa ·πb. The entries of π are also called background frequencies of the amino
acids.

Now assume that we can track the fate of individual amino acids over a fixed evolutionary
time period t. Let M t(a, b) be the observed frequency table of homologous amino acid pairs
where we observed a at the beginning of the period and b at the end of the period, such
that

∑

a,b M
t(a, b) = 1. Usually, we count substitutions and identities twice, i.e., once in

each direction. This ensures the symmetry of M t : M t(a, b) = M t(b, a). The reason is that
we can in fact not track amino acids during evolution; we can only observe the state of two
present-day sequences and do not know their most recent common ancestor. The fields of
molecular evolution and phylogenetics examine more of the resulting implications. For
more examples of these fields see Chapters 10.4, 12 or H.

We can find the background frequencies as the marginals of M t: πa =
∑

b M
t(a, b) =

∑

b M
t(b, a) because of symmetry.

There are two reasons why an entry M t(a, b) can be relatively large. The first reason is the
one we are interested in: because a and b are similar. The second reason is that simply a
or b could be frequent amino acids. To remove the second effect, we consider the so-called
likelihood ratio M t(a, b)/(πa · πb), which relates the probability of the pair (a, b) in an
evolutionary model to its probability in a random model. We declare that a and b are
similar if this ratio exceeds 1 and that they are dissimilar if this ratio is below 1. To obtain

137

A Distances versus Similarity Measures on Sequences

an additive function, we take the logarithm and define the log-odds score matrix with
respect to time period t by

St(a, b) := log

(
M t(a, b)

πa · πb

)

.

The time parameter t should be chosen in such a way that the score matrix is optimal for the
problem at hand: If we want to compare two sequences whose most recent common ancestor
existed, say, 530 million years ago, then we should ideally use a score matrix constructed
from sequence pairs with distance t ≈ 1060 million years.

Some remarks:

• For convenience, scores are often scaled by a constant factor and then rounded to
integers. The score unit is called a bit if the score is obtained by a log2(·) operation.
When multiplied by a factor of three, say, we get scores in third-bits.

• Since we cannot easily observe how DNA or proteins change over millions of years, con-
structing a score matrix is somewhat difficult. Since the pioneering work of Margaret
Dayhoff and colleagues in the 1970s, Markov processes are used to model molecular
evolution. Methods that allow to integrate information from sequences of different
divergence times in a consistent fashion have been developed more recently.

• Important score matrix families for proteins are the PAM(t) and the BLOSUM(s)
matrices. Here t is a divergence time parameter and s is a clustering similarity param-
eter inversely correlated to t. (The inventors of BLOSUM have chosen to index their
matrices in a different way.) The BLOSUM matrices are the most widely used ones
for protein sequence comparison.

Non-symmetric score matrices. We usually demand that similarity functions and hence
score matrices are symmetric. In some cases, however, there are good reasons to choose
a non-symmetric similarity function. Often then, the unsymmetry does not stem from an
unsymmetry of M t (for reasons explained above), but from different background frequencies.
We mention an example.

Assume that we have a particular protein fragment (the “query”) that forms a transmem-
brane helix. The amino acid composition in membrane regions differs strongly from that
of the “average” protein: It is hydrophobically biased. Assume that we want to look for
similar fragments in a large database of peptide sequences (of unknown or “average” type).
It follows that the matrix M t of pair frequencies should be one derived from an evolutionary
process acting on transmembrane helices and that two different types of background frequen-
cies should be used: The query background frequencies τ are those of the transmembrane
model, different from the background frequencies π of the database. It follows that we should
use

St(a, b) := log

(
M t(a, b)

τa · πb

)

,

or a rounded multiple thereof, so that now S(a, b) 6= S(b, a) in general. Table A.2 shows
the SLIM161 matrix for transmembrane helices (Müller et al., 2001). The 161 is the time
parameter t referring to the expected number of evolutionary events per 100 positions.

138

A.4 Score and Cost Variations for Alignments

A R N D C Q E G H I L K M F P S T W Y V

A 5 -8 -5 -10 3 -7 -11 0 -5 1 1 -10 1 1 -5 2 1 -2 -3 2
R -3 10 -4 -10 -2 -3 -11 -4 -4 -2 -1 -3 -1 -2 -7 -4 -3 -2 -3 -3
N -1 -5 8 -2 0 -2 -7 -2 2 -1 -1 -6 0 1 -5 2 0 -2 2 -2
D -3 -9 1 9 -4 -2 1 -2 -2 -2 -2 -6 -2 -1 -5 -3 -3 -3 -2 -2
C 2 -8 -5 -11 11 -7 -12 -3 -8 0 1 -12 1 3 -11 2 0 -1 0 1
Q -1 -2 0 -3 0 7 -4 -2 0 0 0 -4 2 2 -4 0 -1 4 1 0
E -3 -7 -2 3 -2 -1 7 -3 -1 -2 -2 -8 -1 0 -4 -1 -3 -1 -1 -2
G 1 -7 -4 -7 0 -5 -10 7 -7 -1 0 -8 0 1 -5 1 -1 -3 -2 -1
H -1 -5 3 -5 -2 -1 -5 -4 10 -1 -1 -8 -1 2 -7 -1 -2 1 5 -2
I -1 -9 -7 -11 -1 -7 -12 -4 -7 6 3 -11 4 2 -6 -3 -1 -2 -3 4
L -1 -8 -6 -10 1 -7 -12 -4 -7 4 5 -11 4 3 -7 -3 -1 -1 -2 2
K -1 2 -1 -4 -2 0 -7 -1 -3 0 -1 6 0 0 -1 -1 -1 -1 1 -2
M -1 -7 -6 -10 1 -5 -11 -3 -7 4 4 -11 7 3 -7 -2 0 -1 -2 2
F -1 -9 -5 -10 2 -6 -11 -3 -4 1 2 -11 2 8 -7 -2 -2 3 4 0
P -3 -9 -7 -9 -7 -8 -10 -4 -9 -2 -3 -8 -3 -2 11 -3 -3 -3 -4 -2
S 2 -8 -1 -8 4 -5 -9 0 -4 0 0 -9 0 1 -5 6 1 -2 -1 0
T 2 -7 -3 -8 2 -6 -10 -2 -5 2 2 -9 3 2 -4 2 4 -4 -2 2
W -3 -7 -6 -10 0 -2 -11 -5 -3 -1 0 -10 0 4 -6 -4 -5 15 2 -2
Y -4 -8 -2 -9 1 -5 -10 -5 0 -2 -1 -8 -1 6 -7 -3 -3 2 11 -2
V 1 -9 -7 -10 1 -7 -11 -4 -7 5 3 -12 3 2 -6 -2 0 -2 -3 5

Table A.2: The non-symmetric SLIM 161 score matrix. Scores are given in third-bits, i.e., as
S(a, b) = round[3 · log2(M(a, b)/(τaπb))].

A.4 Score and Cost Variations for Alignments

Position-specific scores. The match/mismatch score in all of the above algorithms depends
on a (sensible) similarity function score as defined in Definition A.2, often given by a log-
odds score matrix. However, this does not need to be the case. The algorithm does not
change in any way if indel and match/mismatch scores depend also on the position in the
sequences. Therefore we can replace score(xi, yj) by score(i, j) and worry later about where
to obtain reasonable score values.

Figure A.1: Bipartite scoring scheme for detection of homologous transmembrane proteins
due to Müller et al. (2001). The figure represents the Smith-Waterman alignment matrix
and indicates which scoring matrix is used for which query positions (rows): In transmem-
brane helices (TM), the transmembrane-specific scoring matrix SLIM is used, elsewhere the
general-purpose matrix BLOSUM.

A useful application of this observation is as follows: Local alignment is often used in large-
scale database searches to find remote homologs of a given protein. Transmembrane (TM)

139

A Distances versus Similarity Measures on Sequences

proteins have an unusual sequence composition (as pointed out in Section A.3). According
to Müller et al. (2001), one can increase the sensitivity of the homology search, by using a
bipartite scoring scheme with a (non-symmetric) transmembrane helix specific scoring matrix
(such as SLIM) for the TM helices and a general-purpose scoring matrix (such as BLOSUM)
for the remaining regions of the query protein; see Figure A.1. As a consequence, the score
of aligning xi with yj does not only depend on the amino acids xi and yj themselves, but
also on the position i within the query sequence x.

140

APPENDIX B

Pairwise Sequence Alignment (Extended Material)

Contents of this chapter: Number of Alignments.

B.1 The Number of Global Alignments

How many ways are there to align two sequences of lengths m and n? Let N(m,n) be that
number. It is equal to the number of different edit sequences that transform a length-m
sequence into a length-n sequence.

An algorithmic perspective. First, we derive a recurrence for N(m,n). Obviously, there
is just one possibility to align ε to any sequence; therefore N(m, 0) = N(0, n) = 1 for all
m ≥ 0 and n ≥ 0.

Theorem B.1 For m ≥ 1 and n ≥ 1,

N(m,n) = N(m− 1, n− 1) +N(m− 1, n) +N(m,n− 1).

Proof. Each alignment must end with either a match/mismatch, an insertion, or a deletion.
In the match/mismatch case, there are N(m − 1, n − 1) ways to align the corresponding
prefixes of length m − 1 and n − 1. The other cases are treated correspondingly. All these
possibilities lead to different alignments; see also Figure B.1. This argument shows that
N(m,n) is at least as large as the stated sum. However, we have also covered all possibilities;
therefore equality holds. 2

Note that the proof of Theorem B.1 follows the same argumentation as the one for Theo-
rem 3.5. This is because we are exploiting the same structural property of alignments (or edit
sequences). A technique called algebraic dynamic programming developed in Robert

141

B Pairwise Sequence Alignment (Extended Material)

1 1 1 1 1 . . .

1 3 5 7 9 . . .

1 5 13 25 41 . . .

1 7 25 63
. . .

. . .

1 9 41
. . .

. . .
. . .

1
...

...
. . .

. . .
. . .

Figure B.1: The number N(m,n) of global alignments of sequences of lengths m and n is equal
to N(m− 1, n− 1) +N(m,n− 1) +N(m− 1, n): This recurrence can be easily computed
by dynamic programming, just like the edit distance.

Giegerich’s group “Praktische Informatik” at Bielefeld University uses methods from algebra
to make such connections more explicit.

Theorem B.1 provides us with an algorithm to compute N(m,n) in O(mn) arithmetic op-
erations. As we will see below, the numbers N(m,n) grow exponentially and thus have
O(min{m,n}) bits such that the total time is O(mnmin{m,n}), which by the way is ex-
ponential in the input size (the input just consists of O(logm + log n) bits to encode the
numbers m and n). When implementing a function to compute N(m,n), it is advisable to
use a library that can compute with integers of arbitrary size (e.g. the BigInteger class of
the Java Runtime Environment).

A combinatorial perspective. Fortunately, it is also not difficult to find a closed (i.e., non-
recursive) formula for N(m,n). Because N is symmetric (which follows from the definition
and formally from the symmetries of the initialization and of the recurrence), we will assume
that m ≥ n ≥ 0.

Recall from Observation 4.3 that the number of match/mismatch columns k in any alignment
satisfies 0 ≤ k ≤ n. If there are k such columns, the alignment length is m + n − k. The
number of indel columns is thus m + n − 2k; there are then m − k insertions in the longer
sequence and n− k insertions in the shorter sequence.

There are thus
(
m+n−k

k

)
possibilities to choose the match/mismatch positions in the align-

ment, and, for each of these, further
(
m+n−2k

n−k

)
possibilities to distribute the insertion po-

sitions of the shorter sequence (deletion positions of the longer sequence) among the indel
positions.

For fixed k, we thus get
(
m+n−k

k

)
·
(
m+n−2k

n−k

)
=
(
m+r
n−r

)
·
(
m−n+2r

r

)
possibilities, where we have

set r := n− k (the number of indel positions in the shorter sequence). It follows that

N(m,n) =
n∑

r=0

(
m+ r

n− r

)

·
(
m− n+ 2r

r

)

.

For m = n, we get the diagonal entries

N(n, n) =
n∑

r=0

(
n+ r

n− r

)

·
(
2r

r

)

.

142

B.1 The Number of Global Alignments

Laquer (1981) shows that

N(n, n) ≈ 1

25/4
√
π
· (3 + 2

√
2)n+1/2

√
n

.

For more information about this diagonal sequence, you may consult the extremely useful
on-line encyclopedia of integer sequences maintained by Neil J.A. Sloane, sequence
A001850, at http://www.research.att.com/~njas/sequences/A001850.

By looking up research papers on N(m,n), particularly Gupta (1974), we can find out
additional properties of N(m,n), e.g.

N(m,n) =
n∑

j=0

(
n

j

)

·
(
m+ j

n

)

=
n∑

j=0

(
m+ j

j

)

·
(

m

n− j

)

=
n∑

j=0

2j ·
(
n

j

)

·
(
m

j

)

.

Relating N(m,n) to the theory of hypergeometric functions (in the same paper), we can
compute a single row (or column) of the matrix. The important observation is that m is
fixed in the next recurrence.

Theorem B.2 Recall that N(m, 0) = 1 and N(m, 1) = 1 + 2m for m ≥ 1. For n ≥ 2,

N(m,n) = [(2m+ 1) ·N(m,n− 1) + (n− 1) ·N(m,n− 2)]/n.

Proof. This goes far beyond the scope of these lecture notes. 2

Disregarding the order of consecutive indels. One could argue that the above numbers
are exaggerated because the order of insertions and deletions immediately following each
other is not important. For example, the three alignments

A X – – C
B – Y Z D

A – X – C
B Y – Z D

A – – X C
B Y Z – D

should be considered equivalent. That is, only the choice of the aligned character pairs
should matter. Let N ′(m,n) be the number of effective alignments, counted in this fashion;
again we assume that m ≥ n.

If k ∈ [0, n] denotes the number of match/mismatch positions in each sequence, we can select
k such positions in

(
n
k

)
ways in the shorter sequence and in

(
m
k

)
ways in the longer sequence.

The total number of possibilities is thus

N ′(m,n) =
n∑

k=0

(
m

k

)

·
(
n

k

)

=

(
m+ n

n

)

,

where the last identity is known as theVandermonde convolution of Binomial coefficients.

For n = m we get

N ′(n, n) =

(
2n

n

)

=
(2n)!

(n!)2
≃ 4n√

π · n · exp(−3/(24n));

this is sequence A000984 in the on-line encyclopedia of integer sequences. The asymptotic
value follows from Stirling’s approximation for factorials:

ln(n!) = n lnn− n+ (lnn)/2 + ln(
√
2π) + 1/(12n) + o(1/n).

143

http://www.research.att.com/~njas/sequences/A001850

B Pairwise Sequence Alignment (Extended Material)

Finally, some numbers.

n 0 1 2 3 4 5 . . . 1000 Reference

N(n, n) 1 3 13 63 321 1683 . . . ≈ 10767.4 A001850
N ′(n, n) 1 2 6 20 70 252 . . . ≈ 10600 A000984

As an exercise, draw all 13 alignments resp. all 6 distinct classes of alignments of x = AB
and y = CD.

144

APPENDIX C

Pairwise Alignment in Practice (Extended Material)

Contents of this chapter: Fast Smith-Waterman, FASTA: on-line database
search method, hot spots, diagonal runs, index-based database search methods
(BLAT, SWIFT, QUASAR), software propositions.

C.1 Fast Implementations of the Smith-Waterman Algorithm

Since alignment by dynamic programming in a large-scale context can be very time demand-
ing, some approaches have been taken to accelerate the alignment comparison. One approach
is the parallelization using special hardware or special commands of common hardware.

Remarkable is here an effort where by using special graphics commands from the Intel
MMX architecture, it was possible to speed-up the computation of Smith-Waterman local
alignments by a factor of six on a Pentium computer. Other projects attempt to exploit the
power of modern graphics cards.

Another approach is the use of special hardware, either FPGAs or special processors.

Commercial products are the GeneMatcher and BlastMachine from Paracel.

C.2 FASTA: An On-line Database Search Method

FASTA1 used to be a popular tool for comparing biological sequences; it seems to be used
less these days. First consider the problem FASTA was designed for: Let x be a query
sequence (e.g. a novel DNA-sequence or an unknown protein). Let Y be a set of sequences
(the database). The problem is to find all sequences y ∈ Y that are similar to x. We need

1FASTA, pronounced “fast-ay”, stands for fast-all: It is fast on nucleotide as well as protein sequences.

145

C Pairwise Alignment in Practice (Extended Material)

to specify the similarity notion used by FASTA. There is no formal model of what FASTA
computes; instead FASTA is a heuristic stepwise procedure of three phases that is executed
for each y ∈ Y . On a high level, the algorithm proceeds as follows.

• Preprocessing: Create a q-gram index I of the query x

• For each y ∈ Y do:

1. Find hot spots and compute the FASTA score C(x, y).

2. Combine hot spots into diagonal runs.

3. Find maximal paths in the graph of diagonal runs.

We explain the first step in detail and steps 2 and 3 on a higher level.

Finding hot spots.

Definition C.1 Given x ∈ Σm, y ∈ Σn, and q ∈ N, a hot spot is a location (i, j) of starting
positions of a common q-gram of x and y.

Hot spots are grouped according to the diagonal in the edit matrix where they occur: The
coordinates (i, j) are said to lie on diagonal d := j − i. Diagonal indices d thus range from
−m to n.

Definition C.2 For d ∈ {−m. . . n}, let c(d) be the number of hot spots on diagonal d, i.e.,

c(x, y; d) := #
{

i : x
[
i . . . (i+ q − 1)

]
= y
[
(i+ d) . . . (i+ d+ q − 1)

]}

.

Then the FASTA score of x and y is defined as

C(x, y) := max
d

c(x, y; d).

Example C.3 Take x = freizeit, y = zeitgeist, and q = 2. Then c(−4) = 3, c(−1) = 1,
c(0) = 1, c(3) = 1 and c(d) = 0 for d /∈ {−4,−1, 0, 3}; see Figure C.1. �

z e i t g e i s t

f

r

e ց ց
i ց ց
z ց
e ց ց
i ց ց
t ց ց

Figure C.1: Diagonal matches for freizeit and zeitgeist

146

C.2 FASTA: An On-line Database Search Method

To compute c(x, y; d) for all diagonals d, we move a q-window across the subject y, and note
which q-grams occur in the query x and where; so we can increment the correct diagonal
counters. In essence, the following pseudo-code is executed (see Algorithm C.1). Note the
use of the q-gram index I of the query x. The code hides the details of the implementation
of the index I.

Algorithm C.1 Pseudo-code FASTA

1: for d = −m to n do
2: c[d] = 0
3: for j = 1 to n− q + 1 do
4: if j == 1 then
5: r =rank(y[1]...y[q])
6: else
7: r =update rank(r, y[j + q − 1])
8: for each i in I[r] do
9: c[j − i]++

Now it is easy to compute C(x, y) = maxd c(x, y; d). The whole procedure takes O(m+ n+
∑

d c(x, y; d)) time: The more common q-grams exist between x and y, the longer it takes.
If in the end we find that C(x, y) is small, i.e., smaller than a pre-defined threshold t, we
decide that y is not sufficiently similar to x to warrant further investigation: We skip the
next steps and immediately proceed with the next subject from the database. Of course, a
good choice of q and t is crucial; we investigate these issues further in Chapter D.

If C(x, y) ≥ t, one option is to directly compute a full Smith-Waterman alignment of x and
y, and maybe even suboptimal alignments. In this sense one can use FASTA as a heuristic
filter before running a full alignment.

Another option is to continue heuristically: We re-process the diagonals and note where on
each diagonal we have a matching q-gram. Then these matches (including small mismatching
regions in between) can be combined into diagonal runs.

Diagonal runs: Creation and optimal connection. Diagonal runs are hot spots on the
same diagonal, possibly with small mismatching regions in between, see Figure C.2 for an
illustration. To score diagonal runs, one assigns positive scores to the hot spots and negative
scores to the mismatching regions. Note that not necessarily all hot spots on the same
diagonal are put into a single diagonal run: One diagonal can contain more than one run.

In the next step, a directed graph is constructed. The nodes of the graph are the diagonal
runs from the previous step with corresponding positive scores assigned. Let us repre-
sent a diagonal run r by its upper left corner (top(r), left(r)) and its lower right corner
(bottom(r), right(r)). The nodes for runs r and r′ are connected by an edge r → r′ if and
only if bottom(r) ≤ top(r′) and right(r) ≤ left(r′). Such an edge represents gaps and/or
mismatches between r and r′, and therefore edges receive a negative score.

The graph of runs is obviously acyclic and therefore we can compute all maximal paths. A
path is maximal if extending it by another vertex (at either end or inside) lowers its score.
The score of a path is the (positive) score plus the (negative) score of its edges.

147

C Pairwise Alignment in Practice (Extended Material)

Figure C.2: Diagonal runs in the FASTA heuristic.

Suppose that all maximal paths are computed. From each path we pick the first and the
last node. The upper left corner of the first node and the lower right corner of the last node
define a pair of substrings of x and y. These are aligned using standard global alignment
algorithms.

C.3 Index-based Database Search Methods

The previous methods do not pre-process the database in any way and therefore can react
flexibly to continuing changes of the database. They do pre-process the query, but this is
usually not referred to as indexing. As discussed above, database indexing can speed up
searches tremendously. The general ideas are the same as for indexing the query: Often we
simply generate position lists of q-grams of the database. If we do not want to specify q
in advance, so-called suffix arrays provide an alternative. These are extremely useful data
structures discussed in detail in Chapter 8. Here we give general ideas about three software
tools that use slightly different indexing strategies.

Common strategies employed by these methods are:

• When building the index, partition the database into buckets to avoid keeping a hit
counter for every database position or diagonal. Buckets usually overlap a little in
order not to miss hits at bucket boundaries.

• Find high-scoring hits for each bucket. Discard a bucket when the number of hits is
too low. This allows to discard a large fraction of the database very quickly.

• Run a more sensitive alignment algorithm on the remaining buckets.

BLAT. BLAT (Kent, 2002) was designed to be exceptionally fast for detecting highly similar
sequences. It was developed for assembling the human genome, where hundreds of millions
of DNA sequence reads have to be checked for possible overlap. Unlike BLAST, which allows
to find somewhat more remote homologies, BLAT focuses on essentially identical sequence
parts with very few errors.

During preprocessing, BLAT constructs an index of nonoverlapping (!) q-grams and their
positions in the database. BLAT excludes q-grams from the index that occur too often.

148

C.3 Index-based Database Search Methods

For each query, BLAT looks up each overlapping q-gram of the query sequence in the index;
it also has the option of looking up q-grams with one mismatch. In this way, BLAT builds a
list of hits (each hit is a pair (i, j) of query and database position) where query and database
share a q-gram. The hit list is split into buckets (of size 64K), based on the database position.
The hits in each bucket are sorted according to their diagonal i−j. Hits within the gap limit
are bundled together into proto-clumps. Hits within proto-clumps are then sorted along the
database coordinate and joined into real clumps if they are within the window limit on the
database coordinate. Clumps with less than the minimum number of hits are discarded; the
remaining ones are used to define regions of the database which are homologous to the query
sequence.

SWIFT. SWIFT (Rasmussen et al., 2006) was designed as an exact filter to find all ε-
matches of a query against a database: Let n be the minimum length of an alignment and
e the number of allowed errors. The error rate ε := e/n is specified by the user: the smaller
the allowed error rate, the faster the algorithm will run. After constructing a q-gram index
for the database, the following filtration phase is executed for each query.

Let w be a window size whose value can be determined from n, q and e. SWIFT looks
for parallelograms in the edit matrix of dimension w × e that may contain an ε-match.
A threshold value t is determined such that only those parallelograms are of interest that
contain t or more q-gram hits. In order to locate such parallelograms, a w-window is moved
over the query, and q-gram hits are counted for each e + 1 adjacent diagonals. In practice,
this step can be accelerated by using bins of size e+ 1 +∆ for some ∆ > 0, e.g. ∆ = 2z for
some z ∈ N with 2z > e. Each parallelogram whose hit counter reaches the threshold t is
reported, possibly merging overlapping parallelograms.

The filtration phase guarantees that no ε-matches are lost. Now these matches can be
extended to full local alignments. Therefore, dynamic programming is used to find an optimal
local alignment starting in the parallelogram, possibly using BLAST’s X-drop extension
algorithm.

The time complexity of the method is O(|Σ|q+N) for the preprocessing (building the q-gram
index) plus O(mN |Σ|−q) expected time for filtration, which can be O(m) if the user-defined
choice of ε allows an appropriate choice of q. The time of the extension obviously depends on
the similarity of the two sequences, and on the exact method that is used for the extension.

QUASAR. Each q-gram based approach required a careful choice of q (see also Chapter D).
Depending on the application, a user may want to vary the value of q. However, with the
q-gram index approach described here, this would require rebuilding the index. One way
to leave the choice of q flexible is to use a data structure called a suffix array. The main
difference between QUASAR2 (Burkhardt et al., 1999) and other q-gram based approaches
is precisely the use of suffix arrays.

2Q-gram Alignment based on Suffix ARrays

149

C Pairwise Alignment in Practice (Extended Material)

C.4 Software

This final section contains some pointers to implementations of the methods discussed in
this chapter. This list is far from complete.

Dotter for creating dotplots with greyscale rendering

• E.L.L. Sonnhamer and R. Durbin

• http://www.cgb.ki.se/cgb/groups/sonnhammer/Dotter.html

DOTLET is a nice tool written in Java that generates dot plots for two given sequences.

• T. Junier and M. Pagni

• Web server: http://myhits.isb-sib.ch/cgi-bin/dotlet

DNADot nice interactive Web tool at http://www.vivo.colostate.edu/molkit/dnadot/

The FASTA package contains FASTA for protein/protein or DNA/DNA database search
and SSEARCH for full Smith-Waterman alignment

• B. Pearson and D.J. Lipman

• http://www.ebi.ac.uk/fasta/

• http://fasta.bioch.virginia.edu/

BLAST Basic Local Alignment Search Tool

• NCBI BLAST website: http://130.14.29.110/BLAST/

BLAT is useful for mapping sequences to whole genomes

• J. Kent

• Web server: http://genome.ucsc.edu

SWIFT guarantees not to miss any ε-match

• K. Rasmussen, J. Stoye, and E.W. Myers

• http://bibiserv.techfak.uni-bielefeld.de/swift/welcome.html

STELLAR fast and exact pairwise local alignments using SWIFT

• B. Kehr, D. Weese, and K. Reinert

• http://www.seqan.de/projects/stellar.html

QUASAR q-gram based database searching using a suffix array

• Stefan Burkhardt and others

• provided as part of SeqAn at http://www.seqan.de/

EMBOSS Pairwise Alignment Algorithms. European Molecular Biology Open Source
Software Suite http://www.ebi.ac.uk/emboss/align/index.html

• Global (Needleman-Wunsch) alignment: needle

150

http://www.cgb.ki.se/cgb/groups/sonnhammer/Dotter.html
http://myhits.isb-sib.ch/cgi-bin/dotlet
http://www.vivo.colostate.edu/molkit/dnadot/
http://www.ebi.ac.uk/fasta/
http://fasta.bioch.virginia.edu/
http://130.14.29.110/BLAST/
http://genome.ucsc.edu
http://bibiserv.techfak.uni-bielefeld.de/swift/welcome.html
http://www.seqan.de/projects/stellar.html
http://www.seqan.de/
http://www.ebi.ac.uk/emboss/align/index.html

C.4 Software

• Local (Smith-Waterman) alignment: water

e2g is a web based-tool which efficiently maps large EST and cDNA data sets to genomic
DNA.

• J. Krüger, A. Sczyrba, S. Kurtz, and R. Giegerich

• Webserver: http://bibiserv.techfak.uni-bielefeld.de/e2g/

151

http://bibiserv.techfak.uni-bielefeld.de/e2g/

C Pairwise Alignment in Practice (Extended Material)

152

APPENDIXD

Alignment Statistics

Contents of this chapter: Null model (for pairwise sequence alignment), statis-
tics (q-gram matches, FASTA score), multiple testing problem, longest match,
statistics of local alignments.

D.1 Preliminaries

In this chapter, we present some basic probabilistic calculations that are useful for choosing
appropriate parameters of database search algorithms and to evaluate the quality of local
alignments.

Often it is a problem to rank two alignments, especially if they have been created from
different sequences under different scoring schemes (different score matrix and gap cost
function): The absolute score value cannot be compared because the scores in one matrix
might be scaled with a factor of 10, while the scores in the other matrix might be scaled
with a factor of 100, so scores of 67 and 670 would not indicate that the second alignment
is much better.

Statistical significance computations provide a universal way to evaluate and rank alignments
(among other things). The central question in this context is: How probable is it to observe
the present event (or a more extremal one) in a null model?

Definition D.1 A null model in general is a random model for objects of interest that does
not contain signal features. It specifies a probability distribution on the set of objects under
consideration.

More specifically, a null model for pairwise sequence alignment (for given sequence
lengths m and n) specifies a probability for each sequence pair (x, y) ∈ Σm × Σn.

153

D Alignment Statistics

Definition D.2 The most commonly used null model for pairwise sequence alignment is the
i.i.d. model1, where each sequence is created by randomly and independently drawing
each character from a given alphabet with given character frequencies f = (fc)c∈Σ. The
probability that a random sequence X of length m turns out to be exactly x ∈ Σm is
the product of its character frequencies: P(X = x) =

∏m
i=1 fx[i]. Similarly, P(Y = y) =

∏n
j=1 fy[j]. The probability that the pair (X,Y) is exactly (x, y) is the product of the

individual probabilities: P((X,Y) = (x, y)) = P(X = x) · P(Y = y).

When we observe an alignment score s for two given sequences, we can ask the following
two questions: For random sequences from the null model of the same length as the given
ones, what is the probability that two of these sequences have an alignment score of at
least s and what is the expected number of pairwise alignments with an alignment score
of at least s? The probability is called the p-value and the expected number is called the
e-value associated to the event of observing score s.

Definition D.3 The p-value of an event (with respect to a null model) is the probability to
observe the event or a more extremal one in the null model.

Definition D.4 The e-value of an event (with respect to a null model) is the expected
number of events equal to or more extremal than the observed one in the null model.

Note that the null model ensures that the sequences have essentially no built-in similarity,
since they are chosen independently. Any similarity measured by the alignment score is
therefore due to chance. In other words, if a score ≥ s is quite probable in the null model,
a score value of s is not an indicator of biological similarity or homology. The smaller the
p-value and the e-value, the less likely it is that the observed similarity is simply due to
chance and the more significant is the score. Good p-values are for example 10−10 or 10−20.

A p-value can be converted into a universally interpretable score (a measure of surprise of
the observed event), e.g. by B := − log2(p), called the bit score. A bit score of B ≥ b
always has probability 2−b in the null model.

It is often a difficult problem to compute the p-value associated to an event. This is especially
true for local sequence alignment. The remainder of this chapter provides an intuitive, but
mathematically inexact approach.

D.2 Statistics of q-gram Matches and FASTA Scores

Let us begin by computing the exact p-value of a q-gram match at position (i, j) in the
alignment matrix. In the following, X and Y denote random sequences of length m and n,
respectively, from the null model.

Look at two arbitrary characters X[i] and Y [j]. What is the probability p that they are
equal? The probability that both are equal to c ∈ Σ is fc · fc = f2

c . Since c can be any
character, we have

p = P(X[i] = Y [j]) =
∑

c∈Σ

f2
c .

1
independent and identically distributed.

154

D.2 Statistics of q-gram Matches and FASTA Scores

If the characters are uniformly distributed, i.e., if fc = 1/|Σ| for all c ∈ Σ, then p = 1/|Σ|.

Now let us look at two q-grams X[i . . . i + q − 1] and Y [j . . . j + q − 1]. They are equal if
and only if all q characters are equal; since these are independent in the i.i.d. model, the
probability of an exact q-gram match (Hamming distance zero) is

p0(q) : = P(dH(X[i . . . i+ q − 1], Y [j . . . j + q − 1]) = 0)

= P(X[i . . . i+ q − 1] = Y [j . . . j + q − 1]) = pq.

We can also compute the probability that the q-gram contains exactly one mismatch (proba-
bility 1−p) and q−1 matches (probability p each): There are q positions where the mismatch
can occur; therefore the total probability for Hamming distance 1 is

P(dH(X[i . . . i+ q − 1], Y [j . . . j + q − 1]) = 1) = q · (1− p) · pq−1.

Taken together, the probability of a q-gram match with at most one mismatch is

p1(q) := P(dH(X[i . . . i+ q − 1], Y [j . . . j + q − 1]) ≤ 1) = [p+ q(1− p)] · pq−1.

Similarly, we can compute the p-value pk(q) of a q-gram match with at most k mismatches.

Online database search. So far, we have considered fixed but arbitrary coordinates (i, j).
If we run a q-gram based filter in a large-scale database search and consider each q-gram a
hit that must be extended, we are interested in the e-value, the expected number µ(q) of
exact hits, and the probability p∗(q) of at least one hit. This is a so called multiple testing
problem: At each position, there is a small chance of a random q-gram hit. When there
are many positions, the probability of seeing at least one hit somewhere can become large,
even though the individual probability is small.

Since there are (m− q+1) · (n− q+1) positions where a q-gram can start and each has the
same probability, we have

µ(q) = (m− q + 1) · (n− q + 1) · pq.

Computing p∗(q) is much more difficult. If all positions were independent and pq was small,
we could argue that the number of hits N(q) has a Poisson distribution with expectation

µ(q). Since the probability of having zero hits is P(N(q) = 0) ≈ e−µ(q) ·[µ(q)]0

0! = e−µ(q), see
Section 2.5, the probability of having at least one hit equals the probability of not having
zero hits: p∗(q) = P(N(q) ≥ 1) = 1− P(N(q) = 0) which results to

p∗(q) = P(N(q) ≥ 1) = 1− e−µ(q) .

However, many potential q-grams in the alignment matrix overlap and therefore cannot be
independent.

155

D Alignment Statistics

The longest match. We can ask for the p-value of the longest exact match between x and
y being at least ℓ characters long. This probability is equal to the probability of at least one
match of length at least ℓ, which is approximately 1 − e−µ(l) = 1 − e−(m−ℓ+1)·(n−ℓ+1)·pℓ ≈
1− e−mnpℓ ≈ mnpℓ if mnpℓ ≪ 1.

The take-home message is: For relatively large ℓ, the probability that the longest exact match
has length ℓ increases linearly with the search space size mn and decreases exponentially
with the match length ℓ.

The FASTA score. What is the probability to observe a FASTA score C(X,Y) ≥ t for a
given q-gram length q and random sequences X and Y of lengths m and n, respectively?
The most probable way to observe a FASTA score ≥ t is via the existence of t consecutively
matching q-grams in the same diagonal for a total match length of t+ q − 1. By the above
paragraph, the probability is approximately

P(C(X,Y) ≥ t) ≈ 1− e−mnpt+q−1 ≈ mnpt+q−1.

This result can be used to guide the choice of the parameters q and score threshold t for
the FASTA algorithm. For example, we could assume that average nucleotide queries have
m = n = 1000 and p = 1/4. If we take q = 6, how must we choose t such that the above
p-value is 0.01?

Of course, such a strict threshold may miss many weak similarities. The null model view is
one-sided: We can make sure that we do not get too many hits by chance, but we do not
know how many biologically interesting hits we might miss. To weigh these considerations
against each other, we would have to specify a model for the biological signal, which is often
close to impossible.

D.3 Statistics of Local Alignments

In the previous section we have argued that, if we measure the alignment score between
random sequences X and Y of lengths m and n simply by the length C(X,Y) of the longest
exact match, we get

P(C(X,Y) ≥ t) ≈ 1− e−mnpt+q−1
= 1− e−Cmne−λt

for constants C > 0 and λ > 0 such that p = e−λ.

There is much theoretical and practical evidence that the same formula is still true if the
length of the longest exact match is replaced by a more complex scoring function for local
alignment that also allows mismatches and gaps. Restrictions are that the gap cost must
be reasonably high (so the alignment is not dominated by gaps) and the average score of
aligning two random characters must be negative (so the local alignment does not become
global just by chance). In this case it can be argued (note that we haven’t proved anything
here and that our derivations are far from mathematically exact!) that the local alignment
score S(X,Y) also satisfies

P(S(X,Y) ≥ t) ≈ 1− e−Cmne−λt
[

≈ Cmne−λt if Cmne−λt ≪ 1
]

156

D.3 Statistics of Local Alignments

with constants C > 0 and λ > 0 that depend on the scoring scheme. This distribution is
referred to as an extreme value distribution or Gumbel distribution.

157

D Alignment Statistics

158

APPENDIX E

Basic RNA Secondary Structure Prediction

Contents of this chapter: RNA structure, RNA structure elements, the Opti-
mization Problem, Simple RNA Secondary Structure Prediction Problem, context-
free grammars, the Nussinov Algorithm.

E.1 Introduction

RNA is in many ways similar to DNA, with a few important differences.

1. Thymine (T) is replaced by uracil (U), so the RNA alphabet is {A, C, G, U}.

2. The additional base pair (G-U).

3. RNA is less stable than DNA and more easily degraded.

4. RNA mostly occurs as a single-stranded molecule that forms secondary structures by
base-pairing.

5. While DNA is mainly the carrier of genetic information, RNA has a wide variety of
tasks in the cell, e.g.

• it acts as messenger (mRNA), transporting the transcribed genetic information,

• it has regulatory functions,

• it has structural tasks, e.g. in forming a part of the ribosome (rRNA),

• it takes an active role in cellular processes, e.g. in the translation of mRNA to
proteins, by transferring amino acids (tRNA).

159

E Basic RNA Secondary Structure Prediction

As with proteins, the three-dimensional structure of an RNA molecule is crucial in deter-
mining its function. Since 3D-structure is hard to determine, an intermediate structural
level, the secondary structure, is frequently considered. The secondary structure of an
RNA molecule simply determines the intra-molecular basepairs. As with DNA, the Watson-
Crick pairs {A, U} and {C, G} stabilize the molecule, but also the “wobble pair” {G, U} adds
structural stability. We now define this formally.

Let s ∈ {A, C, G, U}n be an RNA sequence of length n.

Definition E.1 An s-basepair is a set of two different numbers {i, j} ⊂ {1, . . . , n} such
that {s[i], s[j]} ∈ {{A, U}, {C, G}, {G, U}}. Basepairs must bridge at least δ ≥ 0 positions (e.g.
δ = 3); to account for this, we have the additional constraint |i− j| > δ for a basepair {i, j}.

Definition E.2 A simple structure on s is a set S = {b1, b2, . . . , bN} of s-basepairs with
N ≥ 0 and the following properties:

• Either N ≤ 1, or

• if N ≥ 2 and {i, j} ∈ S and {k, l} ∈ S are two different basepairs such that i < j and
k < l, then i < k < l < j or k < i < j < l (nested basepairs) or i < j < k < l or
k < l < i < j (separated basepairs).

In other words, basepairs in a simple structure may not cross.

The restriction that basepairs may not cross is actually unrealistic, but it helps to keep
several computational problems regarding RNA analysis of manageable complexity, as we
shall see shortly.

With the above definition of a simple structure, we cover the following structural elements of
RNA molecules: single-stranded RNA, stem or stacking region, hairpin loop, bulge
loop, interior loop, junction or multi-loop; see Figure E.1.

Several more complex RNA interactions are not covered, e.g. pseudoknot, kissing hair-
pins, hairpin-bulge contact. This is not such a severe restriction, because these elements
seem to be comparatively rare and can be considered separately at a later stage.

160

E.2 The Optimization Problem

Figure E.1: RNA secondary structure elements covered by Definition E.2.

We point out that all of the above structural elements can be rigorously defined in terms of
sets of basepairs. For our purposes, an intuitive visual understanding of these elements is suf-
ficient. There exist different ways to represent a simple structure in the computer. A popular
way is the dot-bracket notation, where dots represent unpaired bases and corresponding
parentheses represent paired bases:

5′ AACGCUCCCAUAGAUUACCGUACAAAGUAGGGCGC 3′

..(((.((..((...)).(.(...).)..))))).

As an exercise, draw a picture of this structure, similar to that in Figure E.1, and create the
dot-bracket representation of the structure in that figure.

Another popular way to visualize a structure is by means of a mountain plot: Starting
with the dot-bracket representation, replace dots by - and brackets () by /\, and use a
second dimension. Another alternative is a circle plot; see Figure E.2.

E.2 The Optimization Problem

Over time, an RNA molecule may assume several distinct structures. The more energetically
stable a structure, the more likely the molecule will assume this structure. To make this
precise, we need to define an energy model for all secondary structure elements. This can
become quite complicated (the problem of predicting RNA structures could fill an entire
course), so here we only consider a drastically simplified version of the problem: We assign
a score (that can be interpreted as “stability” measure or negative free energy) to each
basepair, depending on its type. We can simply count basepairs by assigning +1 to each
pair, or we may take their relative stability into account by assigning score({A, U}) := 2,
score({C, G}) := 3, score({G, U}) := 1, for example. On a sequence s of length n, the score
of a basepair b = {i, j} is then defined as score(b) := score({s[i], s[j]}). The computational
problem becomes the following one.

161

E Basic RNA Secondary Structure Prediction

Problem E.3 (Simple RNA Secondary Structure Prediction Problem) Given an RNA se-
quence s of length n, determine a simple structure S∗ on s such that score(S∗) = maxS score(S)
among all simple structures S on s, where score(S) :=

∑

b∈S score(b) is the sum of the base
pair scores in the structure S.

Generally, the number of valid simple structures for a molecule of length n is exponential
in n, so the most stable structure cannot be found in reasonable time by enumerating all
possible structures. After a short digression to context free grammars, we present an efficient
algorithm to solve the problem.

E.3 Context-Free Grammars

From the above discussion of the dot-bracket notation, we may say that a (simple secondary)
structure is

• either the empty structure,

• or an unpaired base, followed by a structure,

• or a structure, followed by an unpaired base,

• or an outer basepair (with a sequence constraint), enclosing a structure (with a mini-
mum length constraint),

• or two consecutive structures.

We recall the notion of a context-free grammar here to show that simple secondary
structures allow a straightforward recursive description.

Definition E.4 A context-free grammar (CFG) is a quadruple G = (N,T, P, S), where

• N is a finite set of non-terminal symbols,

/---\ /---\

/ \ /- -\

/-- - --\

/ \

/- \

/ \

/ \

-- -

AACGCUCCCAUAGAUUACCGUACAAAGUAGGGCGC
C

G

C

A A
C

G
C

U
C

C

C

A

U

A

G

A

U

U

A
C

G
U

ACAA
G

U
A

G
G

C

G

3’

5’

A

Interior Loop

Hairpin

Junction

BulgeStem

H

Figure E.2: Mountain plot (left) and circle plot (right) of an RNA secondary structure.

162

E.4 The Nussinov Algorithm

• T is a finite set of terminal symbols, N ∩ T = ∅,

• P is a finite subset of N×(N ∪T)∗, the productions, which are rules for transforming
a non-terminal symbol into a (possibly empty) sequence of terminal and non-terminal
symbols,

• S ∈ N is the start symbol.

Ignoring basepair sequence and distance constraints, in the RNA structure setting, the termi-
nal symbols are T = {(, .,)}, and N = {S}, where S is also the start symbol, and represents
a secondary structure. The productions are formalized versions of the above rules, i.e.,

• S → ε, where ε denotes the empty sequence,

• S → .S

• S → S.

• S → (S)

• S → SS

Note that this context-free recursive description is only possible because we imposed the
constraint that basepairs do not cross.

Also note that this grammar is ambiguous: There are generally many ways to produce a
given dot-bracket string from the start symbol S. For the Nussinov Algorithm in the next
section, this ambiguity is not a problem. However, for other tasks, e.g. counting the number
of possible structures, we need to consider a grammar that produces each structure in a
unique way. We can argue as follows: Either the structure is empty, or it contains at least
one base. In each nonempty RNA structure, look at the last base. Either it is unpaired
and preceded by a (shorter) prefix structure, or it is paired with some base at a previous
position. We obtain the following non-ambiguous grammar:

S → ε | S. | S(S)

E.4 The Nussinov Algorithm

To solve Problem E.3, we now give a dynamic programming algorithm based on the structural
description of simple secondary structures from the previous section. This algorithm is due
to Nussinov and Jacobson (1980). We also take into account the distance and sequence
constraints for basepairs.

In the previous section, we have seen how to build longer secondary structures from shorter
ones that can be arbitrary substrings of the longer ones. As before, let s ∈ {A, C, G, U}n be
an RNA sequence of length n. For i ≤ j, we define M(i, j) as the solution to Problem E.3
(i.e., maximally attainable score) for the string s[i . . . j].

Since it is easy to find the optimal secondary structure of short sequences, let us start with
those.

163

E Basic RNA Secondary Structure Prediction

• If j − i ≤ δ (in particular if i = j, and to avoid complications also if i > j), then
M(i, j) = 0, since no basepair is possible due to the length or distance constraints.

• If j− i > δ, then we can decompose the optimal structure according to one of the four
cases. In each case, the resulting substructures must also be the optimal ones. Thus

M(i, j) = max

M(i+ 1, j),
M(i, j − 1),
µ(i, j) +M(i+ 1, j − 1),
maxi+1<k<j [M(i, k − 1) +M(k, j)]

(case S → .S)
(case S → S.)

(case S → (S))
(all cases S → SS)

where µ(i, j) := score({s[i], s[j]}) > 0 if {s[i], s[j]} is a valid basepair, and µ(i, j) :=
−∞ otherwise, excluding the possibility of any forbidden basepair {i, j}.

This recurrence states: To find the optimal structure for s[i . . . j], consider all possible de-
compositions according to the grammar and their respective scores, and evaluate which score
for s[i . . . j] would result from each decomposition. Then pick the best one.

This is possible because the composing elements of the optimal structure are themselves
optimal. The proof is by contradiction: If they were not optimal and there existed better
sub-structures, we could build a better overall structure from them, which would contradict
its optimality.

The above recurrence is not yet an algorithm. We see that, to evaluate M(i, j), we need
access to all entries M(x, y) for which [x, y] is a (strictly shorter) sub-interval of [i, j]. This
suggests to compute matrix M in order of increasing j − i values. The initialization for
j − i ≤ δ is easily done. Then we proceed for increasing d = j − i, as in Algorithm E.1.

Algorithm E.1 Nussinov-Algorithm

Input: RNA sequence s = s[1 . . . n];
a scoring function for basepairs;
minimum number δ of unpaired bases in a hairpin loop

Output: maximal score M(i, j) for a simple secondary structure of each substring s[i . . . j];
traceback indicators T (i, j) indicating which case leads to the optimum.

1: for i← 2, . . . , n do
2: M(i, i− 1)← 0
3: T (i, i− 1)← “init” // ε
4: for d← 0, . . . , δ do
5: for i← 1, . . . , n− d do
6: M(i, i+ d)← 0
7: T (i, i+ d)← “init” // .S and/or S.
8: for d← (δ + 1), . . . , (n− 1) do
9: for i← 1, . . . , n− d do

10: compute M(i, i+ d) according to the recurrence
11: store the maximizing case in T (i, i+ d) (e.g. the maximizing k)
12: report score M(1, n)
13: start traceback with T (1, n)

To find the optimal secondary structure (in addition to the optimal score), we also store
traceback indicators in a second matrix T that shows which of the production rules (and

164

E.4 The Nussinov Algorithm

which value of k for the S → SS rule) was used at each step. By following the traceback
pointers backwards, we can build the dot-bracket representation of the secondary structure.
For this, we start in cell (1, n) and look at the recursion of the algorithm: When we follow a
S → SS production traceback, the process branches recursively into the two substructures,
reconstructing each substructure independently. Diagonals mean S → (S) and horizontal or
vertical movement uses S → S. | .S. Note that when reaching the δ-diagonals only horizontal
and vertical movement is allowed. Finally, when we end in the lowest diagonal (below the
i = j diagonal) we have S → ε.

Complexity. The memory requirement for the whole procedure is obviously O(n2) and its
time complexity is O(n3).

There exists a faster algorithm using the Four-Russians speedup yielding an O(n3

log n) time
algorithm (Frid and Gusfield, 2009), but this goes far beyond the scope of these lecture notes.

Example E.5 The Nussinov matrix for the RNA sequence GACUCGAGUU. We use δ = 1 and
the scoring scheme: (G, C) = 3, (A, U) = 2 and (G, U) = 1. As can be seen in Figure E.3, there

Figure E.3: The Nussinov matrix for the RNA sequence GACUCGAGUU.

exist two distinct variants (indicated in solid and dashed traces) in which the given RNA
sequence can fold under this basepair scoring scheme. The resulting dot-bracket notations
are ((.))((.)) and ((((..)))) for the solid and dashed variant, respectively. �

When reaching the δ-diagonals we could move vertically or horizontally which is possible in
the ambiguous grammar. However, since in a hairpin loop a sequence of S → .S |S. will
eventually end with S → ε no matter whether the . is put left or right, this would lead
to identical dot-bracket notations. Hence, we could also choose to allow only horizontal or
only vertical movement within the initialized 0-diagonals as to simplify the backtracing of
all optimal dot-bracket notations (only 1 backtrace instead of 4 for the dashed variant).

165

E Basic RNA Secondary Structure Prediction

166

APPENDIX F

Suffix Tree (Extended Material)

Contents of this chapter: Memory representation of suffix trees.

F.1 Memory Representations of Suffix Trees

Theorem 7.3 is important in both theory and practice: The index only requires a constant
factor more space than the text. In practice, however, the exact constant factor is also
important: Does the tree need 10, 100, or 1000 times the size of s? Here we discuss a
memory-efficient way to store the tree.

We assume that the text length is bounded by the maximum integer size (often 232 for
unsigned integers, or 231 for signed integers); thus storing a number or a reference to a suffix
takes 4 bytes.

Above, we said that edge labels could be stored as a pair of numbers (8 bytes per edge). In
fact, just one number (4 bytes per edge) is sufficient: Note that the labels of all leaf edges
end at position n. Thus for leaf edges it is sufficient to store the starting position. Now we
traverse the tree bottom-up: For edges e into internal nodes v, consider the leftmost outgoing
edge of v and its already determined starting position j. It follows that we can label e by
(j−k, j−1) (if the length of the edge label is k) and only need to store the starting position
j − k, since we can retrieve j − 1 by looking up the starting position j of the first outgoing
edge of the child.

We can store the edges to the children of each node consecutively in memory as follows.

• For an edge to an internal node, we store two integers: The pointer into the string as
described above in order to reconstruct the edge label, and a reference to the child list
of the target node.

167

F Suffix Tree (Extended Material)

• For an edge to a leaf, we only store one integer: The pointer into the string as described
above in order to reconstruct the edge label.

In the field where we store the string pointer, we also use two flags (that can be coded as
the two highest bits of the integer, effectively restricting the size of the string further):

1. a leaf-flag L to indicate a leaf edge,

2. a last-child flag ∗ to indicate the last child in a child list.

Using the two flags we can store 30 bit numbers in an 32 bit integer value:

bit index 31 30 29 . . . 2 1 0
content L * 30 bit number

The order in which we store the nodes is flexible, but it is customary (and integrated well
with the WOTD algorithm described below) to store them in depth-first pre-order. This
means, we first store the children of the root, then the first child of the root and its children
recursively, then the second child of the root, and so on.

Figure F.1: The suffix tree of abbab$ with edge labels, substring pointers, and leaf labels.

For example, the suffix tree in Figure F.1 would be stored as follows (bold numbers indicate
memory positions while string indices are in normal font).

parent node r x y

index 0 1 2 3 4 5 6 7 8 9

content 6L 4 5 5∗ 7 6L 3∗L 6L 4L 3∗L

points to 6 (x) (y) 4 1 5 3 2

Note how the edge to the child (x) of (r) is represented by two numbers. First, the 4 indicates
the starting position of the substring (ab) to read along the edge. Next, the 5 directly points
to the memory location where the children of x are stored. Since it begins with 6, we know
that the above edge ends at string position 5 and hence has length 2.

168

F.1 Memory Representations of Suffix Trees

It remains to answer the question how we can deduce toward which leaf a leaf edge points.
While we move in the tree, we always keep track of the current string depth. This is
straightforward, since we can deduce the length of each edge as described above. We just
have to subtract the current string depth from the string pointer on a leaf edge to obtain
the leaf label.

For example, the root has string depth zero and the edge into x has length 2, so we know
that x has a string depth of 2. The second child of x is a leaf with substring pointer 3.
Subtracting the string depth of x, we see that it points to leaf 1.

The memory requirements for storing the suffix tree in this way are 2 integers for each
internal node (except the root) and 1 integer for each leaf. This assumes that the flags L
and ∗ are stored as high-order bits inside the integers.

We point out that there are many other ways to organize the storage of a suffix tree in
memory, especially if we want to store additional annotations for the internal nodes or
leaves.

169

F Suffix Tree (Extended Material)

170

APPENDIX G

Advanced Topics in Pairwise Alignment (Extended
Material)

Contents of this chapter: Length-normalized alignment, shadow effect, mosaic
effect, optimal normalized alignment score, parametric alignment, ray search
problem.

G.1 Length-Normalized Alignment

G.1.1 A Problem with Alignment Scores

A convenient feature of the usual score definition of (local or global) alignments is its addi-
tivity. This allows a simple computation of the score (by summing the scores of each column)
and is also the basis for all alignment-related dynamic programming algorithms that we have
seen so far.

However, for local alignment, additivity also leads to at least two undesired effects from a
biologist’s perspective (see also Figure G.1):

Shadow effect (long mediocre alignments mask short excellent alignments): Consider two
candidate local alignments A1 and A2. Assume that A1 achieves a score of 100 by
aligning, say, 50 nucleotides of each sequence; further assume that there is no alignment
with a higher score. We do not know how A1 looks (i.e., if there are many or few gaps or
mismatches inside); all we can say is that the average score per alignment column is 2.
Now assume that A2 achieves a score of 99 (and is therefore slightly suboptimal), but
it only aligns 33 nucleotides of each sequence, thus is much shorter. On average, the
score per alignment column is 3. We could argue that in fact this is a better alignment,
but it will not be found by the Smith-Waterman algorithm because it scores slightly
below the optimum. See Figure G.1, left-hand side.

171

G Advanced Topics in Pairwise Alignment (Extended Material)

Mosaic effect (inclusion of arbitrarily poor regions between two high-scoring ones): Con-
sider an alignment that is well conserved at its borders, but has an extremely bad (thus
low-scoring) middle part. For concreteness, let us assume that the score of the three
parts is (+100,−99,+100). This gives a total score of 101 and is thus better than each
of the two separate border parts. However, a biologist might in fact be only interested
in those, but has to read through a lot of “noise” because of additive scoring. See
Figure G.1, right-hand side.

length 50

length 33

100

99

101
100

−99

100

Figure G.1: Left: Shadow effect. Right: Mosaic effect.

Let us emphasize that the above problems do not indicate that the Smith-Waterman algo-
rithm is incorrect. It correctly solves the local alignment problem, as specified previously,
with an additive scoring function. What we are facing here is instead a modeling prob-
lem. There may be something wrong (or at least, not ideal) with the way we (or the whole
computational biology community) have defined the quality (score) of a local alignment. It
is important to keep modeling issues separate from algorithmic issues.

How can we deal with the above problems? Of course, the cleanest solution is to re-define the
objective function. However, this leads to an entirely new computational problem, for which
so far we may not have an algorithm. (No need to worry, in this section we will develop
one!) In practice and under the usual time constraints, though, we may not want to develop
new theories, although this is often the most interesting part of working as a computational
biologist. The usual approach is to deal with such problems in an ad-hoc manner that works
well in practice.

We already know how to compute suboptimal Smith-Waterman alignments, so we can com-
pute some of them and re-evaluate them with different scoring functions. Such a heuristic
assumes, of course, that good alignments under our new scoring function are also not too
bad Smith-Waterman alignments. This cannot always be guaranteed, however. Other ad-hoc
methods would be postprocessing Smith-Waterman alignments to cut out bad regions in the
middle of an alignment, effectively splitting one alignment into two shorter but (relatively)
better ones.

Interestingly, the popular BLAST heuristic (Altschul et al., 1990) proceeds quite cleverly, as
we discussed in Section 6.3: Starting from well conserved seeds, it extends the alignment only
until a once reached score drops too far and then again removes the bad border region. This
effectively avoids the mosaic effect and leads to shorter, better conserved alignments. So
although BLAST is sometimes accused of not finding the best Smith-Waterman alignment,
this behavior in fact has a good reason.

172

G.1 Length-Normalized Alignment

G.1.2 A Length-Normalized Scoring Function for Local Alignment

The above problems suggest that it is better to consider a score per alignment column or a
related quantity. In this section, we follow Arslan et al. (2001) and normalize the score by
the sum of the lengths of the aligned substrings.

Recall that the standard optimal global and local alignment scores of s and t – let us call
them GAS(s, t) and LAS(s, t), respectively – were defined as

GAS(s, t) := max
A Alignment of s and t

score(A),

LAS(s, t) := max
substrings s′ � s, t′ � t

GAS(s′, t′).

This relation is useful in many contexts: the local alignment score is in fact a global alignment
score, once we know which substrings we have to align! The new idea is to normalize
GAS(s′, t′) with a length-related quantity.

The length of an alignment can be defined in different ways. For our purposes, the following
convention is useful: The length of an alignment of (sub)strings s′, t′ is defined as |s′|+|t′|.
(The obvious alternative, taking the number of columns of the alignment, is also possible.)

Thus we could look for substrings s′, t′ maximizing GAS(s′, t′)/(|s′| + |t′|). This would
give high preference to very short alignments (think about the two empty substrings!), so
this idea still needs modifications. We could enforce the constraint |s′|+ |t′| ≥ Lmin, where
Lmin > 0 is a minimum length parameter. Here we use a different, but related approach. Let
L > 0 be a free parameter. We define the optimal normalized alignment score (with
parameter L) as

NASL(s, t) := max
substrings s′ � s, t′ � t

GAS(s′, t′)/(|s′|+ |t′|+ L).

For Lց 0, very short alignments will be optimal. For Lր∞, the lengths of the substrings
become less important, and we eventually obtain the same results as for standard local
alignment.

G.1.3 Finding an Optimal Normalized Alignment

Now that we have defined the objective function, we need an efficient algorithm to compute
NASL(s, t).

The first (inefficient) possibility is to apply the definition: For each of the O(m2n2) pairs of
substrings s′�s and t′�t, compute GAS(s′, t′)/(|s′|+ |t′|+L) in O(mn) time and keep track
of the maximum. This leads to a straightforward O(m3n3), or, if m = Θ(n), an O(n6) time
algorithm, which is very impractical. By re-using some information during the computation,
it is easy to speed this up to an O(m2n2) or O(n4) time algorithm, still not practical.

Fortunately, there is a better way. The main problem is that the target function to be
maximized is not additive anymore (but this was the whole idea behind the change). We
shall see that we can iteratively solve a series of standard alignment problems with changing
scoring parameters to find the optimal length-normalized alignment.

173

G Advanced Topics in Pairwise Alignment (Extended Material)

Consider any alignment A. It consists of a certain number na,b(A) of substitutions (or
identities) a → b, where (a, b) ∈ Σ2, of a certain number g(A) of contiguous gaps, and of
a certain number b(A) of blanks (gap characters). In this section it is useful to distinguish
between the gap characters (which we call blanks) and the contiguous gaps, which consist
of one or more blanks. For each gap’s first blank, we pay an opening penalty of d, for each
further blank, we pay an extension penalty of e.

The total score score(A) of an alignment A is thus

score(A) =
(∑

(a,b)∈Σ2

na,b(A) · w(a, b)
)

− g(A) · d− (b(A)− g(A)) · e.

The length |s′|+ |t′| of an alignment A of two substrings s′ and t′ is furthermore

length(A) = |s′|+ |t′| =
(

2 ·
∑

(a,b)∈Σ2

na,b(A)
)

+ b(A),

since each substitution column contains two characters and each column with a blank con-
tains one character (of the other sequence).

Observation G.1 Both score(A) and length(A) are linear functions of the counts (na,b(A)),
g(A) and b(A). In contrast, score(A)/(length(A)+L) is a rational function of these counts.

The main idea is as follows: What we want to solve is the fractional problem

(P) : Find Smax = max
A

S(A), where S(A) =
score(A)

length(A) + L
.

In order to solve this problem, we introduce a new parameter λ ≥ 0 and define the parame-
terized problem

(Pλ) : Find Smax
λ = max

A
Sλ(A), where Sλ(A) = score(A)− λ ·

(
length(A) + L

)
.

First, in Lemma G.2, we show that for each fixed choice of λ, (Pλ) is a standard Smith-
Waterman alignment problem with a scoring scheme that depends on λ; thus we know how
to solve it. Next, in Lemma G.3, we show that we can solve (P) searching for the right λ by
a particular strategy, which is fortunately easy to describe.

Lemma G.2 Problem (Pλ) can be solved by solving a standard Smith-Waterman alignment
problem with a different scoring function. If w(a, b), d, e are the substitution scores, gap
open and gap extend costs of an instance of the parameterized alignment problem (Pλ),
respectively, then define:

wλ(a, b) = w(a, b)− 2λ, dλ = d+ λ, eλ = e+ λ.

The optimal score Smax
λ of (Pλ) is the solution scoremax

λ of the standard Smith-Waterman
alignment problem using wλ(a, b), dλ, eλ, minus λL : Smax

λ = scoremax
λ − λL.

174

G.1 Length-Normalized Alignment

Proof. Let A be any valid alignment. Its score in (Pλ) is

Sλ(A) = score(A)− λ ·
(
length(A) + L

)

=
[∑

(a,b)∈Σ2

na,b(A) · w(a, b)− g(A) · d− (b(A)− g(A)) · e
]

− λ
[

2 ·
∑

(a,b)∈Σ2

na,b(A) + b(A) + L
]

=
∑

(a,b)∈Σ2

na,b(A) ·
(
w(a, b)− 2λ

)
− g(A) · (d− e)− b(A) · (e+ λ)− λL.

=
∑

(a,b)∈Σ2

na,b(A) · wλ(a, b)− g(A) · dλ −
(
b(A)− g(A)

)
· eλ − λL

= scoreλ(A)− λL

where scoreλ(A) is the SW-score of A under the modified scoring scheme wλ(a, b), dλ and eλ.
Note that −λL is a constant, thus we need not consider it during maximization, therefore
the statement of the lemma holds. 2

Lemma G.3 For fixed λ, let Smax
λ be the solution of (Pλ), i.e.,

Smax
λ = max

A
score(A)− λ · (length(A) + L).

Let Smax be the solution of (P), i.e., Smax = maxA
score(A)

length(A)+L . Then the following holds:

Smax
λ = 0 ⇐⇒ Smax = λ,

Smax
λ < 0 ⇐⇒ Smax < λ,

Smax
λ > 0 ⇐⇒ Smax > λ.

Proof. First note that always length(A) + L > 0, since L > 0.

The definition of Smax = maxA
score(A)

length(A)+L is equivalent to stating that for all alignments A

score(A) − Smax · (length(A) + L) ≤ 0 and that there exists an alignment Amax for which
equality holds:

score(Amax)− Smax · (length(Amax) + L) = 0.

Thus for Smax = λ we have score(Amax)− λ(length(Amax) + L) = 0, and at the same time
Smax
λ = score(Amax)− λ · (length(Amax) + L), thus Smax

λ = 0.

Now consider that Smax < λ. Then for all alignments A, we have Sλ = score(A) − λ ·
(length(A) + L) < score(A)− Smax · (length(A) + L) ≤ 0. Thus also Smax

λ < 0.

Taking Smax > λ and considering Amax shows Smax
λ > 0.

This proves the three implications of the lemma in the ⇐ direction. But since the three
possibilities are exhaustive on each side, equivalence follows. 2

The lemma tells us that if the optimal score Smax
λ of the parameterized problem (which is

a Smith-Waterman alignment problem that we can solve) is zero, then we have found the
optimal normalized score Smax of the normalized alignment problem, namely the parameter
λ that led to the optimal score zero.

This suggests a simple bisection algorithm:

175

G Advanced Topics in Pairwise Alignment (Extended Material)

1. Identify an initial interval [l, u] such that l ≤ Smax ≤ u.

2. Compute the midpoint λ = (l + u)/2.

3. Solve (Pλ). Let S
max
λ be the optimal score.

4. If Smax
λ = 0, we have found Smax = λ and stop.

If Smax
λ < 0, then Smax < λ, so we set u := λ and continue searching in the lower half

interval; otherwise, we set l := λ and continue searching in the upper half interval: Go
back to 2.

When the algorithm stops, the current value of λ is Smax = NASL(s, t) and the last align-
ment computed in step 3 is the optimal normalized alignment.

It remains to find the initial interval in step 1: We claim that 0 ≤ Smax ≤ M/2 is a safe
choice, where M > 0 is the highest possible match score between characters. This is seen as
follows. For λ = 0, we compute the ordinary Smith-Waterman alignment without subtracting
a penalty of the length. This clearly has a nonnegative optimal score, thus Smax

0 ≥ 0, hence
Smax ≥ 0. If M is the highest positive match score, no alignment can score more than M
per column, or M/2 per aligned character, thus Smax ≤M/2.

Example G.4 Consider two strings s = GAGTT and t = AGT , let L = 2, and choose the
following scores: +2 for matches, 0 for mismatches and −1 for indels (linear homogeneous).
The task is to find the optimal normalized alignment score for s and t, in particular a value
of λ such that the optimal score Smax

λ is zero.

First, observe that M = +2 is the highest match score. Moreover, dλ = eλ because we use
homogeneous gap costs.

Phase 1:

1. [ℓ, u] = [0, M2] = [0, 1]

2. λ = 1
2(ℓ+ u) = 1

2 · 1 = 1
2

3. Modified scoring scheme:

2− 2 · λ, wλ(a, a)

0− 2 · λ, wλ(a, b)

−(1 + λ), dλ, eλ

⇒

2− 2 · 12 = 1, w1/2(a, a)

0− 2 · 12 = −1, w1/2(a, b)

−(1 + 1
2) = −3

2 , d1/2, e1/2

Smith-Waterman alignment:

ε G A G T T

ε 0 0 0 0 0 0
A 0 0 1 0 0 0
G 0 1 0 2 1/2 0
T 0 0 0 1/2 3 3/2

⇒ scoremax
1/2 = 3

Smax
λ = scoremax

λ − λ · L ⇒ Smax
1/2 = scoremax

1/2 − 1
2 · L = 3− 1

2 · 2 = 2
Smax

1/2 > 0 ⇒ ℓ = λ go to Phase 2

Phase 2:

176

G.1 Length-Normalized Alignment

1. [ℓ, u] = [λ, u] = [12 , 1]

2. λ = 1
2(ℓ+ u) = 1

2 · 32 = 3
4

3. Modified scoring scheme:

2− 2 · 34 = 1
2 , w3/4(a, a)

0− 2 · 34 = −3
2 , w3/4(a, b)

−(1 + 3
4) = −7

4 , d3/4, e3/4

Smith-Waterman alignment:

ε G A G T T

ε 0 0 0 0 0 0
A 0 0 1/2 0 0 0
G 0 1/2 0 1 0 0
T 0 0 0 0 3/2 1/2

⇒ scoremax
3/4 = 3

2

Smax
3/4 = scoremax

3/4 − 3
4 · L = 3

2 − 3
4 · 2 = 0

Smax
3/4 = 0 ⇒ Found λ = 3

4 .

Thus, we have found our λ = 3
4 and our optimal normalized alignment score for s and t in

only two recursions. �

Note. There are cases in which the algorithm takes infinitely many steps if calculated
precisely, for example for λ = 1

2 . In such cases, to reach numerical stability, after a certain
number of steps or when a satisfying precision is reached, the procedure should be stopped.

Algorithm G.1 Dinkelbach’s algorithm for normalized alignment; DANA(s, t, L): returns
NASL(s, t)

λ← 0, s← −∞
while s 6= 0 do

Solve (Pλ) to obtain optimal score Smax
λ and alignment A

λ← score(A)/(length(A) + L)
return λ

Note that s refers to the score under the modified scoring scheme using parameter λ, while
score(A) refers to the unmodified scoring scheme.

Another way to find Smax (instead of the bisection approach) is to use a method distantly
inspired by Newton’s method. Once we have an alignment A from step 3 with nonzero Smax

λ ,
we ask how we have to modify λ so that this alignment obtains a score of zero. Of course, we
expect that another alignment becomes optimal once we change λ. Nevertheless, choosing λ
in this way brings us closer and closer to the solution.

This latter technique of solving a fractional optimization problem by solving a series of linear
problems is known as Dinkelbach’s algorithm; see Algorithm G.1. We do not give a proof
of convergence, nor a worst-case analysis (which is not very good) of Dinkelbach’s algorithm.
In practice, Dinkelbach’s algorithm is efficient (more so than the bisection method) and
usually requires only 3–5 iterations and rarely more than 10. With a more complicated
algorithm (which we shall not discuss), it can be shown that the length-normalized local
sequence alignment problem can be solved in O(nm logn) time (i.e, in O(logn) iterations).

177

G Advanced Topics in Pairwise Alignment (Extended Material)

G.2 Parametric Alignment

G.2.1 Introduction to Parametric Alignment

Several parameters are involved in the computation of pairwise sequence alignments, and de-
pending on their values, different alignments may be optimal. In fact, the choice of alignment
parameters is crucial when we want to find biologically meaningful alignments. Section G.1
on normalized alignment has already given an indication of this: By changing the scoring
scheme appropriately, we were able to solve the length-normalized local alignment prob-
lem. The present section contains an approach for the systematic study of the relationship
between parameters and optimal alignments, the parametric sequence alignment.

The two most obvious parameter sets in pairwise alignment are

1. the substitution scores for every pair of symbols from the alphabet; these can often be
derived empirically as log-odds scores, as outlined in Section A.3;

2. the gap cost function; for practical and efficiency reasons, we almost always use affine
gap costs, where we have to specify the gap open penalty d and the gap extension
penalty e.

The gap parameters are particularly difficult to choose from a theoretical basis. In the fol-
lowing, we assume that the substitution scores are fixed and that d and e are free parameters.
Having only two parameters has the additional advantage that we can easily visualize the
whole parameter space as a two-dimensional plane.

The study of this parameter space is useful in various ways:

1. Choice of alignment parameters: Assume that two sequences are given, together with
their “correct” alignment. Then one can look at the above described plane and test if
this alignment occurs, and if it does, for which gap parameters. This way values for
the gap parameters can be found that (at least for the given pair of sequences) will
lead to a meaningful alignment.

2. Robustness test: The alignments that are found in the vicinity of the point in the (d, e)-
plane corresponding to the parameters used to obtain a certain optimal alignment A
give an idea about the robustness of that alignment, i.e., whether A would also be
optimal if the alignment parameters were chosen a bit differently.

3. Efficient computation of all co-optimal alignments: Knowledge of the shape of the
parameter space allows to avoid redundant computations if all co-optimal alignments
are seeked. Moreover, one can also restrict these computations to those alignments
that have support by wider ranges than just a single (almost arbitrary) point in the
parameter space (Gusfield, 1997).

But how is it possible to compute the vicinity of a certain point, or even to find out if and
where a given alignment occurs in the plane?

The first approach would probably be to sample the plane, for example by systematically
computing optimal alignments for many different parameter settings. This approach has its
disadvantages:

178

G.2 Parametric Alignment

• Even if many parameter values are tested, it is still possible that the parameters
giving the “true” alignment are not among the tested ones. This could lead to wrong
conclusions such as the one that a “biologically true” alignment can never be obtained
as a “mathematically optimal” alignment, although only the parameters for obtaining
the biologically correct one were not among those used in the sampling procedure.

• Many different parameter settings may yield the same optimal alignment, which is then
computed several times. By a more clever strategy, these redundant computations can
be avoided.

We will see in the following that there exists a more systematic way to compute the optimal
alignments for all parameter settings.

G.2.2 Theory of Parametric Alignment

Our description follows Gusfield (1997, Section 13.1). We first repeat a key observation from
Section G.1.

Consider any alignment A. It consists of a certain number na,b(A) of substitutions (or
identities) a → b, where (a, b) ∈ Σ2, of a certain number g(A) of contiguous gaps, and of
a certain number b(A) of blanks (gap characters). Again, we distinguish between the gap
characters (blanks) and the contiguous gaps, which consist of one or more blanks. For each
gap’s first blank, we pay an opening penalty of d, for each further blank, we pay an extension
penalty of e.

S(A) =
(∑

(a,b)∈Σ2

na,b(A) · score(a, b)
)

− g(A) · d−
(
b(A)− g(A)

)
· e.

Observation G.5 For a given alignment A, the score S(A) is a linear function of the param-
eters d and e; let us write SA(d, e) := S(A).

For a given alignment, consider the following set of points: P (A) := {(d, e, SA(d, e))}, where
the reasonable values of d and e define the parameter space. Since SA(d, e) is linear, this set
of points is a two-dimensional plane in three-dimensional space.

Lemma G.6 Let A and A′ be two alignments (of the same sequences). If P (A) and P (A′)
intersect and are distinct, then there is a line L in the (d, e)-plane along which A and A′

have equal score. If the planes do not intersect, then one of the two alignments has always
a better score than the other.

Proof. In 3D-space, two planes either intersect in a line or are parallel. If the P (A) and
P (A′) intersect, then SA(d, e) = SA′(d, e) by definition for each (d, e) along the intersection
line. If the planes are parallel (and hence do not intersect) and distint, always SA > SA′ or
vice versa in the whole parameter space. 2

The line L divides P (A) into two half-planes, inside one of which A has higher score than A′,
and in the other of which A′ has higher score. The region where A is an optimal alignment
is defined by the projection onto (d, e)-space of the intersection of many of such half-planes.
The resulting area is necessarily a convex polygon. Thus we have:

179

G Advanced Topics in Pairwise Alignment (Extended Material)

Observation G.7 If A is optimal for at least one point p in the (d, e)-plane, then it is optimal
either for only this point, or for a line through p, or for a convex polygon that contains p.

Putting things together, we obtain the following result, which is illustrated in Figure G.2.

Figure G.2: Illustration of the (d, e)-plane and its decomposition into convex polygons. The
picture was generated with XPARAL (see Section G.2.7 on page 185), with d at the x-axis
and e at the y-axis.

Theorem G.8 Given two strings s and t, the (d, e)-plane decomposes into convex polygons,
such that any alignment that is optimal for some point p0 = (d0, e0) in the interior of a
polygon P0, is optimal for all points in P0 and nowhere else.

After these analytical and geometrical considerations, we now formally state the algorithmic
problem we would like to solve:

Problem G.9 (Parametric Alignment Problem) Given two sequences s and t and fixed sub-
stitution scores, find the polygonal decomposition of the (d, e) parameter space, and for each
polygon, find one (or all) of its optimal alignments.

We will solve this problem in several steps. Essential in all of these steps will be a technique
called ray search, defined by the following problem statement:

Problem G.10 (Ray Search Problem) Given an alignment A, a point p where A is optimal,
and a ray h in the (d, e)-plane starting at p, find the furthest point (call it r∗) from p on
ray h where A remains optimal.

G.2.3 Solving the Ray Search Problem

Algorithm G.2 solves the Ray Search Problem. It also returns another alignment A′ that
has the same score as A in the boundary point r∗ and hence is co-optimal at this point.

In step 4, the point r is found first solving the equation SA(d, e) = SA′(d, e) for d and e,
yielding a line in the (d, e)-plane. The intersection point between this line and the ray h is
then r.

180

G.2 Parametric Alignment

Algorithm G.2 Newton’s ray search algorithm: For a given point p where the given align-
ment A is optimal and a direction (ray) h, it returns the furthest point r on h in (d, e)-space
for which A is still optimal. It also returns an alignment A′ that is co-optimal at point r.

1: set r to the point where h intersects the border of the parameter space
2: set A′ = ⊥ (undefined)
3: while A is not an optimal alignment at point r do
4: find an optimal Alignment A′ at point r
5: set r to the unique point on h where the value of A equals the value of A′

6: return (r, A′)

Example G.11 Given s = GAG and t = AATTG with fixed scores +3 for matches and −3
for mismatches (use −d − e · (ℓ − 1) for gaps of length ℓ), let p := (4, 2) be a point in the
(d, e)-parameter space. Let h be the ray defined by its origin p and the direction (−2.5,−1).
Calculate the optimal alignment A of s and t in p, as well as the farthest point on h, for
which A is still optimal.
We denote two consecutive single gaps (d+d) as -d-d and a long gap (d+e) as -d-e.

Given: Point p = (4, 2), line h(d) = 2
5d+

2
5 , see Figure G.3.

Figure G.3: Line h(d) with its origin p(4, 2) and its intersection with the y-axis r∗ = (0, 2
5)

Step 1: Calculate A1 in p(4, 2) and its score.

score4,2(A1) = score4,2

(
AATTG

GA-d-eG

)

= −3

score(A1) = 2 ·match + 1 ·mismatch− d− e

= 6− 3− d− e

= 3− d− e (i)

Set r∗ to the point where h intersects the border of the parameter space: r∗ = (0, 25)
and calculate optimal alignment A2 in r∗. Because A1 6= A2, we need to calculate the
score:

score0, 2
5
(A2) = score0, 2

5

(
A-dATTG

-dGA-d-dG

)

= 6

score(A2) = 2 ·match− 4 · d

181

G Advanced Topics in Pairwise Alignment (Extended Material)

= 6− 4 d (ii)

Set Score(A1) = Score(A2) ⇒ line h′ (all points, where A1 and A2 have the same
score)

score(A1) = score(A2)

(i) = (ii)

3− d− e = 6− 4 d

⇔ e = 3 d− 3 := h′(d) (iii)

Set h(d) = h′(d) ⇒ Intersection point r1 on h with score(A1) = score(A2)

h(d) = (iii)
2
5 d+

2
5 = 3 d− 3

⇔ 3·5
5 d− 2

5 d = 2
5 + 3·5

5

⇔ 13
5 d = 17

5

⇔ d = 17
13 ⇒ e = 3

(
17
13 − 1

)
= 12

13

⇒ r1 =

(
17

13
,
12

13

)

(iv)

Calculate optimal alignment in r1. However, neither A1 nor A2 are optima in r1!

Step 2: Continue searching for the correct A.
Let A3 be the calculated optimum at point r1. Calculate its score:

score 17
13

, 12
13
(A3) = score 17

13
, 12
13

(
-dAATTG

GA-d-e-eG

)

=
20

13
= 1

7

13

score(A3) = 2 ·match− d− d− 2 · e
= 6− 2 d− 2 e (v)

Set score(A1) = score(A3) ⇒ line h′′(d)

score(A1) = score(A3)

(i) = (v)

3− d− e = 6− 2 d− 2 e

⇔ e = −d+ 3 := h′′(d) (vi)

182

G.2 Parametric Alignment

Set h(d) = h′′(d) ⇒ intersection point r2 on h with score(A1) = score(A3)

h(d) = (vi)
2
5 d+

2
5 = −d+ 3

⇔ 2+5
5 d = 3·5

5 − 2
5

⇔ 7
5 d = 13

5

⇔ d = 13
7 ⇒ e = −13

7 + 3 = 8
7

⇒ r2 =

(
13

7
,
8

7

)

(vii)

Calculate optimum in r2 ⇒ A1,A3 are optima in r2

We found our point r2 =
(
13
7 ,

8
7

)
, farthest away from p, laying on h, at which A1 is still

optimal. �

G.2.4 Finding the Polygon Containing p

The next step is to find the polygon that contains a given point p in (d, e)-space. This is
done by Algorithm G.3 on page 183; see also Figure G.4.

Algorithm G.3 Finding the polygon containing p.

1: Start at p with optimal alignment A, whose polygon Poly(A) is to be determined.
2: Solve the ray search problem for an arbitrary ray h starting at p, yielding r∗ and a

co-optimal alignment A∗ in r∗

3: Assume this is no degenerate case (r∗ is not on a border of the parameter space and r∗

is not a vertex of the decomposition); otherwise see text.
4: The alignments A and A∗ define a line L∗ that contains the dividing edge between the

two polygons Poly(A) and Poly(A∗). The extent of the edge can be found by solving
Newton’s ray search problem two more times from the intersection point of h and L∗,
once in each direction of L∗.

5: The other edges of Poly(A) are found by more rays pointing from p in directions not inter-
secting with edges determined in earlier steps. Endpoints of edges have to be identified.
When the circle is closed, the procedure stops.

183

G Advanced Topics in Pairwise Alignment (Extended Material)

Figure G.4: Finding a whole polygon.

The two degenerate cases mentioned in step 3 of Algorithm G.3 are treated as follows.

1. r∗ is on a border of the parameter space: In this case the polygon Poly(A) touches
the border of the parameter space and the line L∗ will be that border. The two ray
searches in step 4 of Algorithm G.3 move along this border.

2. r∗ is a vertex of the polygonal decomposition. This will be recognized by the fact that
one or both of the ray searches in step 4 of the algorithm will not yield new points.
One simply continues with a new ray search from p.

G.2.5 Filling the Parameter Space

Finally, the whole parameter space is filled with polygons as described in Algorithm G.4 on
page 184.

Algorithm G.4 Filling the whole parameter space

1: Find an alignment A that is optimal in the interior of some (unknown) polygon (and not
just on a point or line); this is easily possible with two ray searches.

2: Store in a list L all alignments that share polygon edges with A, where (by identification
through the values (na,b(A), g(A) and b(A)) duplicates are identified and removed.

3: while there are unmarked elements in list L do
4: select an unmarked element A from L
5: compute its polygon, possibly adding further alignments to L
6: mark the element A

G.2.6 Analysis and Improvements

The parametric alignment procedure described above is remarkably efficient, especially when
a few little improvements are employed. (Details of the analysis can be found in (Gusfield,
1997), Section 13.1.)

184

G.2 Parametric Alignment

Let R be the number of polygons, E the number of edges, and V the number of vertices in
the decomposition of the parameter space.

To find the edges of a polygon Poly(A) by Algorithm G.3, at most 6EA ray searches are
necessary, where EA is the number of edges of Poly(A). (Up to 3EA ray searches may be
wasted by hitting vertices of the decomposition.) Since each of the E edges in the whole
decomposition is shared by two polygons, the overall number of ray searches for all polygons
is 12E.

Further, note that each ray search requires at most R fixed-parameter alignment computa-
tions, and hence an upper bound for the overall time complexity is O(ERmn), where m and
n are, as usual, the sequence lengths.

This can be improved by applying two ideas:

1. Modify Newton’s algorithm: Do not start with r∗ at the border of the parameter space
but at a closer point that can be determined from polygons computed in earlier steps.

2. Clever bookkeeping of already computed alignments, polygons, and edges.

This gives a time complexity of O(R2 +Rmn), which is O(R+mn) per polygon.

Further considerations show that often the number of polygons R is of the order mn, so
that the time to find each polygon is proportional to just the time for a single alignment
computation.

For the (d, e) parameter space, this last assertion R ∈ O(mn) can be seen as follows: As-
sociate to alignment A the triple (S(A), g(A), b(A)) where, as before, S(A) is the score of
alignment A and g(A) and b(A) are the numbers of gaps and blanks in A, respectively. Now
there exists another alignment A′ with g(A′) = g(A) and b(A′) = b(A), but S(A′) > S(A) for
all choices of (d, e). Then A can never be optimal at any point in (d, e)-space. Thus, among
all triples with g(A) and b(A) as second and third components in their triple, only one is
optimal at some point in the (d, e)-space. Moreover, there can be at most m+n blanks and
max{m,n}+ 1 gaps.

G.2.7 Parametric Alignment in Practice

Gusfield and Stelling (1996) developed a tool called XPARAL that implements the above
mentioned parametric alignment approach. An example can be seen in Figure G.2 on
page 180. The program can be downloaded at http://www.cs.ucdavis.edu/~gusfield/xparall/.

185

http://www.cs.ucdavis.edu/~gusfield/xparall/

G Advanced Topics in Pairwise Alignment (Extended Material)

186

APPENDIXH

Multiple Alignment in Practice: Mostly Progressive

Contents of this chapter: Progressive alignment, guide tree, aligning two align-
ments, segment-based alignment, segment identification, diagonal segments, se-
lection and assembly, software proposition.

The progressive alignment method is a fast heuristic multiple alignment method that is
motivated by the tree alignment approach. The most popular multiple alignment programs
follow this strategy.

H.1 Progressive Alignment

The basic idea of progressive alignment is that the multiple alignment is computed in a
progressive fashion. In its simplest version, the given sequences s1, s2, . . . , sk are added one
after the other to the growing multiple alignment, i.e., first an alignment of s1 and s2 is
computed, then s3 is added, then s4, and so on.

In order to proceed this way, a method is needed to align a sequence to an already given
alignment. Obviously, this is just a special case of aligning two alignments to each other,
and in Section H.1.1 we discuss a simple algorithm to do this.

In addition, the order in which the sequences are added to the growing alignment can be
determined more freely than just following the input order. Often, the most similar sequences
are aligned first in order to start with a well-supported, error-free alignment.

A more advanced version of progressive alignment that is motivated by the tree alignment
approach described in the previous chapter is the progressive alignment along the branches
of an alignment guide tree. Like in tree alignment, a phylogenetic tree is given that carries
the given sequences at its leaves. However, unlike in tree alignment, no global objective
function is optimized, but instead multiple alignments are assigned to the internal nodes in

187

H Multiple Alignment in Practice: Mostly Progressive

a greedy fashion, from the leaves towards the root of the tree. Figure H.1 illustrates this
procedure.

Figure H.1: Progressive alignment along the branches of a phylogenetic tree. Sequences s1
and s2 are aligned, giving alignment A(1,2). Sequences s4 and s5 give A(4,5) which then
is aligned with s3 giving A(3,4,5). Finally, aligning A(1,2) and A(3,4,5) gives the multiple
alignment of all sequences, A(1,2,3,4,5).

Benefits of the progressive approach are:

• The method is more efficient than the exact multiple sequence alignment algorithm.
Most algorithms following this strategy have a quadratic time complexity O(n2k2).

• Since the sequences near each other in the guide tree are supposed to be similar, in the
early stages of the algorithm alignments will be calculated where errors are unlikely.
This will reduce the overall error rate.

• Motifs that are family specific will be recognized early, and so they won’t be superposed
by errors of remote motifs.

However, there are also a few potential disadvantages:

• Early errors can not be revoked, even if further information becomes available in a
later step in the overall procedure, see Figure H.2. Feng and Doolittle (1987) coined
the term “once a gap, always a gap” to describe this effect.

• Because of its procedural definition, the progressive alignment approach does not opti-
mize a well-founded global objective function. This means that it is difficult to evaluate
the quality of the result, since there is not a single value that is to be maximized or
minimized and can be compared to the result of heuristic approaches.

• The method relies on the alignment guide tree. The tree must be known (or computed)
before the method can start, and an error in the tree can make a large difference
in the resulting alignment. Since multiple alignments are often used as a basis for
construction of phylogenetic trees, here we have a typical “chicken and egg” problem,
and in phylogenetic analyses one should be especially careful not to obtain trivial
results with progressive alignments.

188

H.1 Progressive Alignment

Figure H.2: In a strict bottom-up progressive computation, it cannot be decided at the time

of computing the alignment denoted with the asterisk (∗) if it should be
(

A − C G
A T T G

)

or
(

A C − G
A T T G

)

. Only the rest of the tree indicates that the second variant is probably the

correct one.

H.1.1 Aligning Two Alignments

An important subprocedure of the progressive alignment method is to align two existing
multiple alignments.

Since the two alignments are fixed, this is a pairwise alignment procedure, with the only
extension that the two entities to be aligned are not sequences of letters but sequences of
alignment columns.

Therefore, it is necessary to provide a score for the alignment of two alignment columns.
One way to define such an extended score is to add the scores of all pairwise (letter-letter)
scores between the two columns.

For example, consider the two alignment columns

A
G
T
−

and

(
A
G

)

.

In a unit cost scenario with matches of cost cost(c, c) = 0 and mismatches and indels of cost
cost(c, c′) = 1 for c 6= c′, c, c′ ∈ Σ∪{−}, an alignment of these two columns would be scored
cost(A,A) + cost(A,G) + cost(G,A) + cost(G,G) + cost(T,A) + cost(T,G) + cost(−, A) +
cost(−, G) = 0 + 1 + 1 + 0 + 1 + 1 + 1 + 1 = 6. In general, the cost of aligning a column Ai

of an alignment A with kA rows and a column Bj of an alignment B with kB rows is

cost(Ai, Bj) =
∑

x∈{1,...,kA}
y∈{1,...,kB}

cost(Ai[x], Bj [y]).

Based on such a column-column score, the dynamic programming algorithm can be per-
formed as in the case of the alignment for two sequences.

189

H Multiple Alignment in Practice: Mostly Progressive

The following example illustrates the procedure for the alignment of

A1 =

(
T A G
G − C

)

and A2 =

(
A T C A G
A G C − G

)

using the unit cost model described above.

−
−

A
A

T
G

C
C

A
−

G
G

−
− 0 4 8 12 14 18

T
G

4 4 6 10 12 16

A
− 6 6 8 . . .

G
C

10

The total time complexity of the algorithm is O(nAnBkAkB) where nA and nB are the
alignment lengths and, as above, kA and kB are the numbers of rows in the alignments A and
B, respectively. However, it can be reduced to O(nAnB) if the alphabet Σ = (c1, c2, . . . , cE)
is of constant size E and an alignment column Ai is stored as a vector (ac1 , ac2 , . . . , acE , a–)
where ac is the number of occurrences of character c in Ai, such that the cost of aligning
two columns Ai = (ac1 , ac2 , . . . , acE , a–) and Bj = (bc1 , bc2 , . . . , bcE , b–) can be written as

cost(Ai, Bj) =
∑

c,c′∈Σ∪{–}

ac · bc′ · cost(c, c′).

Adding affine gap costs is possible, but the exact treatment is rather complicated, in fact
NP-hard (Kececioglu and Starrett, 2004). That is why usually heuristic approaches are used
for affine gap costs in the alignment of two alignments.

H.2 Segment-Based Alignment

The global multiple alignment methods mentioned so far, like the progressive methods or
the simultaneous method DCA, have properties that are not necessarily desirable in all
applications.

In particular, the alignment depends on many parameters, like the cost function or sub-
stitution matrix, gap penalties, and a scoring function (e.g. sum of pairs) for the multiple
alignment. Apart from the problem that these parameters need to be chosen in advance,
the global methods have the well-known weakness that local similarities may be aligned in
a wrong way if they are not significant in a global context.

190

H.2 Segment-Based Alignment

For example, the following alignment shows a potential misalignment that may be caused
by the choice of the affine gap penalties:

A =

(
A F A T C A T C A
A C A T − − − − A

)

.

If instead of individual positions, whole units of local similarities are compared and used
to build a global multiple alignment, the result will depend much less on the particular
alignment parameters, and instead reflect more the local similarities in the data, like in the
following example:

A′ =

(
A F A T C A T C A
A − − − C A T − A

)

.

This is the idea of segment-based sequence alignment.

H.2.1 Segment Identification

The first step in a segment-based alignment approach is to identify the segments. There are
different possibilities to obtain segments.

The possibly simplest strategy, followed by the program TWOALIGN Abdeddäım (1997)
is to use local alignments like they are computed by the Smith-Waterman algorithm. A
disadvantage of this approach is that the local alignment computation also requires the
usual alignment parameters like score function and gap penalties.

An alternative approach is to use gap-free local alignments. In this case, the segments corre-
spond to diagonal segments of the edit matrix. Since gap-free alignments can be computed
faster than gapped alignments, more time can be spent on the computation of their score.
The approach followed by Morgenstern et al. (Morgenstern et al., 1996; Morgenstern, 1999)
in the DIALIGN method is to use a statistical objective function that assigns the score
PD(lD, sD) to a diagonal D of length lD with sD matches.

This score is the probability that a random segment of length lD has at least sD matches:

PD(lD, sD) =

lD∑

i=sD

(
lD
i

)

pi (1− p)lD−i,

where p = 0.25 for nucleotides and p = 0.05 for amino acids. The weight wD of a diagonal
D is then defined as the negative logarithm of its score,

wD = − ln(PD).

(In more statistical terms, the score would be called the p-value of the diagonal, and the
weight would be called the score.)

The time to compute all diagonals is O(n3), but this can be reduced to O(n2) if the maximal
length of a diagonal segment is bounded by a constant.

191

H Multiple Alignment in Practice: Mostly Progressive

H.2.2 Segment Selection and Assembly

After a set of segments is identified, it is not necessarily possible to assemble them into a
global alignment, since they might be inconsistent, i.e. the inclusion of some of the segments
does not allow the inclusion of other segments into the alignment. In the case of two se-
quences, this is the case if and only if two segments “cross” as the two segments “ON” and
“ANA” shown in Figure H.3.

Figure H.3: Inconsistent pairwise alignment segments.

More generally, a set of segments of multiple sequences s1, s2, . . . , sk is inconsistent if there
exists no multiple alignment of these sequences that induces all these segments. Several
methods exist to select from a set of segments a subset of consistent segments.

For example, the methods TWOALIGN and DIALIGN employ a greedy algorithm that con-
siders one maximum scoring pairwise local alignment after the other (in order of decreasing
alignment weight) and, if it is consistent with the previously assembled segments, adds it to
the solution.

Given a set of consistent segments, in general there will still remain unaligned characters
that are not contained in any of the consistent segments. In order to arrive at a global
multiple alignment, it is desirable to also add these characters to the alignment. Different
strategies can be followed.

The DIALIGN method simply fills the remaining regions with gaps, letting those characters
unaligned that are not contained in any segment. Another possibility is to re-align the
regions between the segments. This is not so easy, though, because the region “between the
segments” is not clearly defined.

In any case, a global alignment is to be computed that respects the segments as fixed anchors,
while for the remaining characters freedom is still given, as long as the resulting alignment
is consistent with the segments. It has been suggested to align the sequences progressively
(Myers, 1996) or simultaneously (Sammeth et al., 2003a).

H.3 Software for Progressive and Segment-Based Alignment

H.3.1 The Program Clustal W

The series of Clustal programs was developed by Julie Thompson and Des Higgins. The ini-
tial version was Clustal V (Higgins and Sharp, 1992), followed by Clustal W (Thompson et al.,

192

H.3 Software for Progressive and Segment-Based Alignment

1994). Later, an X windows interface was introduced, the package now being called Clustal X
(Thompson et al., 1997). The newest member of this family is Clustal Ω (Sievers et al.,
2011).

In principle, the Clustal algorithm follows quite precisely the idea of progressive multiple
alignment along a guide tree as described above, although the actual implementation is
enhanced by several features regarding the optimized computation of a reasonable guide tree
and the automatic selection of scoring schemes, which we do not discuss here.

The steps of the algorithm are the following:

1. By pairwise comparison of all input sequences s1, s2, . . . , sk, compute all pairwise op-
timal alignment similarity scores s(si, sj).

2. From these scores, compute an alignment guide tree using the Neighbor Joining algo-
rithm (Saitou and Nei, 1987).

3. Finally, progressively compute the multiple alignment, guided by the branching order
of the tree.

Clustal W includes much expert knowledge (optimized use of different protein scoring ma-
trices, affine gap costs, etc.), so that the alignments are not only quickly computed but also
of high quality, often better than those just optimized under some theoretical objective func-
tion. This and its easy-to-use interface are probably the main reasons for the great success
of the program.

H.3.2 T-COFFEE

Another method to compute high-quality multiple alignments that is becoming more and
more popular is the program T-COFFEE (Notredame et al., 2000). The procedure consists
of three steps.

In the first step, a primary library of local and/or global alignments is computed. These
alignments can be created in any way. Sequences can be contained in several alignments,
and the different alignments do not need to be consistent with each other. The primary
library can consist, for example, of optimal pairwise global alignments, optimal pairwise local
alignments, suboptimal local alignments, heuristic multiple alignments, possibly several ones
computed with different scoring schemes, etc. In the default setting, T-COFFEE uses Clustal
W to create one global multiple alignment and also to compute global pairwise alignments
for all pairs of sequences.

Then, in the second phase, the alignments from the primary library are combined to produce
a position-specific library that tells for each pair of aligned sequence positions from the
primary library the strength of its weight, i.e., the number of alignments of the primary
library that support the pairing of these two positions. An advantage is that in this extension
phase no substitution matrix is used, and so different scoring schemes from the construction
of the primary library will not lose their influence on the final result.

193

H Multiple Alignment in Practice: Mostly Progressive

In the third phase, ideally one would like to compute a maximum weight alignment (Kececioglu,
1993) from the (weighted) alignments of the extended library. Unfortunately this is a com-
putationally hard problem. This is why a heuristic is used that is similar to the progressive
alignment strategy described in the previous section.

H.3.3 DIALIGN

DIALIGN is a practical implementation of segment-based alignment, enhanced in several
ways.

By taking into account the information from various sequences during the selection of con-
sistent segments, DIALIGN uses an optimized objective function in order to enhance the
score of diagonals with a weak, but consistent signal over many sequences. The overlap
weight of a diagonal D is defined as

olw(D) = wD +
∑

E∈D

w̃(D,E),

where D is the set of all diagonals and w̃(D1, D2) := wD3 is the weight of the (implied)
overlap D3 of the two diagonals D1 and D2.

For coding DNA sequences, it is possible that the program automatically translates the
codons into amino acids and then scores the diagonal with the amino acid scoring scheme.

In its second version, DIALIGN 2.0, the statistical score for diagonals was changed in order
to upweight longer diagonals.

Also, the algorithm for consistency checking and greedy addition of diagonals into the grow-
ing multiple alignment has been improved several times.

H.3.4 MUSCLE

MUSCLE is public domain multiple alignment software for protein and nucleotide sequences.
MUSCLE stands for Multiple Sequence Comparison by Log-Expectation. It was designed
by Robert C. Edgar (Edgar (2004a), Edgar (2004b)) and can be found at http://www.drive5.com/muscle/.

MUSCLE performs an iterated progressive alignment strategy and works in three stages.
At the completion of each stage, a multiple alignment is available and the algorithm can be
terminated.

Stage 1: Draft progressive The first stage builds a progressive alignment, similar to Clustal.

Similarity measure The similarity of each pair of input sequences is computed, ei-
ther using k-mer counting or by constructing a global alignment of the pair and
determining the fractional identity.

Distance estimate A triangular distance matrix D1 is computed from the pairwise
similarities.

Tree construction A tree T1 is constructed from D1 using UPGMA or neighbor-
joining, and a root is identified.

194

http://www.drive5.com/muscle/

H.3 Software for Progressive and Segment-Based Alignment

Progressive alignment A progressive alignment is built by a post-order traversal of
T1, yielding a multiple alignment MSA1 of all input sequences at the root.

Stage 2: Improved progressive The second stage attempts to improve the tree and builds
a new progressive alignment according to this tree. This stage may be iterated.
The main source of error in the draft progressive stage is the approximate kmer distance
measure, which results in a suboptimal tree. MUSCLE therefore re-estimates the tree
using the Kimura distance, which is more accurate but requires an alignment.

Similarity measure The similarity of each pair of sequences is computed using frac-
tional identity computed from their mutual alignment in the current multiple
alignment.

Tree construction A tree T2 is constructed by computing a Kimura distance matrix
D2 (Kimura distance for each pair of input sequences from MSA1) and applying
a clustering method (UPGMA) to this matrix.

Tree comparison Compare T1 and T2, identifying the set of internal nodes for which
the branching order has changed. If Stage 2 has executed more than once, and
the number of changed nodes has not decreased, the process of improving the tree
is considered to have converged and iteration terminates.

Progressive alignment A new progressive alignment is built. The existing alignment
is retained of each subtree for which the branching order is unchanged; new align-
ments are created for the (possibly empty) set of changed nodes. When the align-
ment at the root (MSA2) is completed, the algorithm may terminate, repeat this
stage or go to Stage 3.

Stage 3: Refinement The third stage performs iterative refinement using a variant of tree-
dependent restricted partitioning (Hirosawa et al., 1995).

Choice of bipartition An edge is deleted from T2, dividing the sequences into two
disjoint subsets (a bipartition). (Bottom-up traversal)

Profile extraction The multiple alignment of each subset is extracted from the cur-
rent multiple alignment. Columns containing no characters (i.e., indels only) are
discarded.

Re-alignment A new multiple alignment is produced by re-aligning the two multi-
ple alignments to each other using the technique described in Section H.1.1 on
page 189 (Aligning two Alignments).

Accept/reject The SP -score of the multiple alignment implied by the new alignment
is computed.

MSA2 =

{

MSA2 (accept), if SSP (MSA2) > SSP (MSA1)

MSA1 (discard), otherwise.

Stage 3 is repeated until convergence or until a user-defined limit is reached.
Visiting edges in order of decreasing distance from the root has the effect of first
realigning individual sequences, then closely related groups

195

H Multiple Alignment in Practice: Mostly Progressive

We refer to the first two stages alone as MUSCLE-p, which produces MSA2. MUSCLE-p
has time complexity O(N2L+NL2) and space complexity O(N2 +NL+ L2). Refinement
adds an O(N3L) term to the time complexity.

H.3.5 QAlign

A comfortable system that includes several alignment algorithms and a flexible alignment
editor is QAlign (Sammeth et al., 2003b), respectively its latest version, QAlign2 (panta
rhei). It can be found at http://gi.cebitec.uni-bielefeld.de/QAlign.

196

http://gi.cebitec.uni-bielefeld.de/QAlign

Bibliography

S. Abdeddäım. On incremental computation of transitive closure and greedy alignment.
In Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching, CPM
1997, volume 1264 of LNCS, pages 167–179, 1997.

D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform: Data Compres-
sion, Suffix Arrays, and Pattern Matching. Springer Verlag, 2008.

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic Local Alignment Search
Tool (BLAST). Journal of Molecular Biology, 215:403–410, 1990.

S. F. Altschul. Gap costs for multiple sequence alignment. J. Theor. Biol., 138:297–309,
1989.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lip-
man. Gapped blast and psi-blast: a new generation of protein database search programs.
Nucleic Acids Res, 25(17):3389–3402, Sep 1997.

A. N. Arslan, O. Egecioglu, and P. A. Pevzner. A new approach to sequence comparison:
normalized sequence alignment. Bioinformatics, 17(4):327–337, 2001.

V. Bafna, E. L. Lawler, and P. A. Pevzner. Approximation algorithms for multiple se-
quence alignment. In Proceedings of the 5th Annual Symposium on Combinatorial Pattern
Matching, CPM 1994, volume 807 of LNCS, pages 43–53, 1994.

S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron. q-gram
based database searching using a suffix array (QUASAR). In Proc. of the Third Annual
International Conference on Computational Molecular Biology, RECOMB 1999, pages
77–83, 1999.

H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM J.
Appl. Math., 48(5):1073–1082, 1988.

P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak. An applications-focused review of compar-
ative genomics tools: Capabilities, limitations and future challenges. Briefings in Bioin-
formatics, 4(2):105–123, 2003.

197

Bibliography

J.-M. Claverie and C. Notredame. BIoinformatics for Dummies. John Wiley & Sons (For
Dummies series), 2nd edition, 2007.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2nd edition, 2001.

A. C. E. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve: Multiple alignment of
conserved genomic sequence with rearrangements. Genome Res., 14(7):1394–1403, 2004.

A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.
Alignment of whole genomes. Nucleic Acids Res., 27(11):2369–2376, 1999.

A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms for large-scale
genome alignment and comparison. Nucleic Acids Res., 30(11):2478–2483, 2002.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge
University Press, 1998.

R. C. Edgar. Muscle: a multiple sequence alignment method with reduced time and space
complexity. BMC Bioinformatics, 5:113, Aug 2004a.

R. C. Edgar. Muscle: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Res, 32(5):1792–1797, 2004b.

D.-F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J. Mol. Evol., 25:351–360, 1987.

W. M. Fitch. Toward defining the course of evolution: Minimum change for a specific tree
topology. Syst. Zool., 20(4):406–416, 1971.

Y. Frid and D. Gusfield. A simple, practical and complete o(n3

logn)-time algorithm for RNA
folding using the Four-Russians speedup. In Proceedings of WABI 2009, volume 5724 of
LNBI, pages 97–107, 2009.

O. Gascuel, editor. Mathematics of Evolution and Phylogeny. Oxford University Press, 2005.

O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol., 162:
705–708, 1982.

A. K. Gupta. On a ”square” functional equation. Pacific Journal of Mathematics, 50(2):
449–454, 1974.

S. K. Gupta, J. D. Kececioglu, and A. A. Schäffer. Improving the practical space and time
efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. J.
Comp. Biol., 2(3):459–472, 1995.

D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–28, 1991.

D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed error bounds.
Bull. Math. Biol., 55(1):141–154, 1993.

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, 1997.

198

Bibliography

D. Gusfield and P. Stelling. Parametric and inverse-parametric sequence alignment with
xparal. Methods Enzymol, 266:481–494, 1996.

D. G. Higgins and P. M. Sharp. Clustal V: Improved software for multiple sequence align-
ment. CABIOS, 8:189–191, 1992.

M. Hirosawa, Y. Totoki, M. Hoshida, and M. Ishikawa. Comprehensive study on iterative
algorithms of multiple sequence alignment. Comput Appl Biosci, 11(1):13–18, Feb 1995.

M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment. Bioinformatics,
18(Suppl. 1):312–320, 2002. (Proceedings of ISMB 2002).

X. Huang and W. Miller. A time-efficient, linear-space local similarity algorithm. Adv. Appl.
Math., 12:337–357, 1991.

T. J. P. Hubbard, A. M. Lesk, and A. Tramontano. Gathering them into the fold. Nature
Structural Biology, 4:313, 1996.

T. Jiang, E. L. Lawler, and L. Wang. Aligning sequences via an evolutionary tree: Complex-
ity and approxiamtion. In Conf. Proc. 26th Annu. ACM Symp. Theory Comput., STOC
1994, pages 760–769, 1994.

J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Proceedings of
the 13th International Conference on Automata, Languages and Programming (ICALP),
volume 2719 of LNCS, pages 943–955, 2003.

R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. In Conf. Proc. 4th Annu. ACM Symp. Theory Comput., STOC
1972, pages 125–136, 1972.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-prefix
computation in suffix arrays and its applications. In Proceedings of the 12th Symposium
con Combinatorial Pattern Matching (CPM), volume 2089 of LNCS, pages 181–192, 2001.

J. Kececioglu. The maximum weight trace problem in multiple sequence alignment. In
Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching, CPM 1993,
volume 684 of LNCS, pages 106–119, 1993.

J. Kececioglu and D. Starrett. Aligning alignments exactly. In Proc. of the Eighth Annual
International Conference on Computational Molecular Biology, RECOMB 2004, pages
85–96, 2004.

W. J. Kent. Blat–the blast-like alignment tool. Genome Res, 12(4):656–664, Apr 2002.

B. Knudsen. Optimal multiple parsimony alignment with affine gap cost using a phylogenetic
tree. In Proceedings of the Third International Workshop on Algorithms in Bioinformatics,
WABI 2003, volume 2812 of LNBI, pages 433–446, 2003.

S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S. L.
Salzberg. Versatile and open software for comparing large genomes. Genome Biol., 5:R
12, 2004.

J. Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. Theor. Comput. Sci.,
387(3):249–257, 2007.

199

Bibliography

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biol., 10:R 25, 2009.

H. T. Laquer. Asmyptotic limits for a two-dimensional recursion. Stud. Appl. Math., 64:
271–277, 1981.

H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler trans-
form. Bioinformatics, 25(14):1754–1760, 2009.

H. Li and R. Durbin. Fast and accurate long-read alignment with burrows-wheeler transform.
Bioinformatics, 26(5):589–595, 2010.

U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.
In Proceedings of the first annual ACM-SIAM Symposium on Discrete Algorithms, pages
319–327. SIAM, January 1990.

E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM, 23(2):
262–272, 1976.

B. Morgenstern. DIALIGN 2: Improvement of the segment-to-segment approach to multiple
sequence alignment. Bioinformatics, 15(3):211–218, 1999.

B. Morgenstern, A. W. M. Dress, and T. Werner. Multiple DNA and protein sequence
alignment based on segment-to-segment comparison. Proc. Natl. Acad. Sci. USA, 93(22):
12098–12103, 1996.

D. W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Labo-
ratory Press, 2nd edition, 2004.

T. Müller, S. Rahmann, and M. Rehmsmeier. Non-symmetric score matrices and the detec-
tion of homologous transmembrane proteins. Bioinformatics, 17(Suppl 1):182–189, 2001.

E. W. Myers. Approximate matching of network expressions with spacers. J. Comp. Biol.,
3(1):33–51, 1996.

E. W. Myers and W. Miller. Optimal alignments in linear space. Comput Appl Biosci, 4(1):
11–17, Mar 1988.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453, 1970.

C. Notredame, D. G. Higgins, and J. Heringa. T-Coffee: A novel method for fast and
accurate multiple sequence alignment. J. Mol. Biol., 302:205–217, 2000.

R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure of
single-stranded RNA. Proc Natl Acad Sci USA, 77:6903–6913, 1980.

K. Rasmussen, J. Stoye, and E. W. Myers. Efficient q-gram filters for finding all ǫ-matches
over a given length. J. Comp. Biol., 13(2):296–308, 2006.

N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol. Biol. Evol., 4(4):406–425, 1987.

200

Bibliography

M. Sammeth, B. Morgenstern, and J. Stoye. Divide-and-conquer multiple alignment with
segment-based constraints. Bioinformatics, 19(Suppl. 2):ii189–ii195, 2003a. (Proceedings
of ECCB 2003).

M. Sammeth, J. Rothgänger, W. Esser, J. Albert, J. Stoye, and D. Harmsen. QAlign:
Quality-based multiple alignments with dynamic phylogenetic analysis. Bioinformatics,
19(12):1592–1593, 2003b.

D. Sankoff. Minimal mutation trees of sequences. SIAM J. Appl. Math., 28(1):35–42, 1975.

B. Schwikowski and M. Vingron. The deferred path heuristic for the generalized tree align-
ment problem. J. Comp. Biol., 4(3):415–431, 1997.

P. H. Sellers. Theory and computation of evolutionary distances: Pattern recognition. J.
Algorithms, 1:359–373, 1980.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam,
M. Remmert, J. Söding, et al. Fast, scalable generation of high-quality protein multiple
sequence alignments using clustal omega. Mol. Syst. Biol., 7(1), 2011.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J Mol
Biol, 147(1):195–197, Mar 1981.

J. Stoye. Multiple sequence alignment with the divide-and-conquer method. Gene, 211(2):
GC45–GC56, 1998.

W. R. Taylor and D. T. Jones. Deriving an amino acid distance matrix. J Theor Biol, 164
(1):65–83, Sep 1993.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res., 22(22):4673–4680, 1994.

J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. The
ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Res., 24:4876–4882, 1997.

E. Ukkonen. Finding approximate patterns in strings. J. Algorithms, 6:132–137, 1985.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–60, 1995.

M. Vingron and A. von Haeseler. Towards integration of multiple alignment and phylogenetic
tree construction. J. Comp. Biol., 4(1):23–34, 1997.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comp. Biol.,
1(4):337–348, 1994.

L. Wang, T. Jiang, and E. L. Lawler. Approximation algorithms for tree alignment with a
given phylogeny. Algorithmica, 16:302–315, 1996.

M. S. Waterman and M. Eggert. A new algorithm for best subsequence alignments with
application to tRNA-rRNA comparisons. J. Mol. Biol., 197:723–728, 1987.

201

Bibliography

M. S. Waterman, T. F. Smith, and W. A. Beyer. Some biological sequence metrics. Adv.
Math., 20:367–387, 1976.

M. S. Waterman, S. Tavaré, and R. C. Deonier. Computational Genome Analysis: An
Introduction. Springer, 2nd edition, 2005.

202

	Overview
	Application Areas of Sequence Analysis
	A Small Selection of Problems on Sequences

	Basic Definitions
	Sets and Basic Combinatorics
	Asymptotics
	Alphabets and Sequences
	Graph Theory
	Review of Elementary Probability Theory

	Metrics on Sequences
	Problem Motivation
	Definition of a Metric
	Transformation Distances
	Metrics on Sequences of the Same Length
	Edit Distances for Sequences
	An Efficient Algorithm to Compute Edit Distances
	The q-gram Distance
	The Maximal Matches Distance
	Filtering

	Pairwise Sequence Alignment
	Definition of Alignment
	The Alignment Score
	The Alignment Graph
	A Universal Alignment Algorithm
	Alignment Types: Global, Free End Gaps, Local
	Gap Cost Variations for Alignments

	Advanced Topics in Pairwise Alignment
	Suboptimal Alignments
	Approximate String Matching
	The Forward-Backward Technique
	Pairwise Alignment in Linear Space

	Pairwise Alignment in Practice
	Alignment Visualization with Dot Plots
	Fundamentals of Rapid Database Search Methods
	BLAST: A fast Database Search Method

	Suffix Trees
	Motivation
	An Informal Introduction to Suffix Trees
	A Formal Introduction to Suffix Trees
	Space requirements of Suffix Trees
	Suffix Tree Construction: The WOTD Algorithm
	Linear-Time Suffix Tree Construction Algorithm
	Applications of Suffix Trees
	Exact String Matching
	The Shortest Unique Substring
	Maximal Repeats
	Maximal Unique Matches

	Suffix Arrays
	Motivation
	Basic Definitions
	Suffix Array Construction Algorithms
	Linear-Time Construction using a Suffix Tree
	Direct Construction
	Construction of the rank and lcp Arrays

	Applications of Suffix Arrays

	Burrows-Wheeler Transformation
	Introduction
	Transformation and Retransformation
	Exact String Matching
	Other Applications
	Compression with Run-Length Encoding

	Multiple Sequence Alignment
	Basic Definitions
	Why multiple sequence comparison?
	Sum-of-Pairs Alignment
	Multiple Alignment Problem
	Digression: NP-completeness

	Algorithms for Sum-of-Pairs Multiple Alignment
	A Guide to Multiple Sequence Alignment Algorithms
	An Exact Algorithm
	The Basic Algorithm
	Variations of the Basic Algorithm

	Carrillo and Lipman's Search Space Reduction
	The Center-Star Approximation
	Divide-and-Conquer Alignment

	Algorithms for Tree Alignments
	The Tree Alignment
	Sankoff's Algorithm
	Generalized Tree Alignment
	Greedy Three-Way Tree Alignment Construction
	The Deferred Path Heuristic

	Whole Genome Alignment
	Filter Algorithms
	General Strategy for Multiple Genome Alignment (MUMmer)
	Multiple Genome Alignment (MUMmer 1/2 and MUMmer 3)
	Multiple Genome Alignment with Rearrangements (MAUVE)

	Distances versus Similarity Measures on Sequences
	Biologically Inspired Distances
	From Distance to Similarity
	Log-Odds Score Matrices
	Score and Cost Variations for Alignments

	Pairwise Sequence Alignment (Extended Material)
	The Number of Global Alignments

	Pairwise Alignment in Practice (Extended Material)
	Fast Implementations of the Smith-Waterman Algorithm
	FASTA: An On-line Database Search Method
	Index-based Database Search Methods
	Software

	Alignment Statistics
	Preliminaries
	Statistics of q-gram Matches and FASTA Scores
	Statistics of Local Alignments

	Basic RNA Secondary Structure Prediction
	Introduction
	The Optimization Problem
	Context-Free Grammars
	The Nussinov Algorithm

	Suffix Tree (Extended Material)
	Memory Representations of Suffix Trees

	Advanced Topics in Pairwise Alignment (Extended Material)
	Length-Normalized Alignment
	A Problem with Alignment Scores
	A Length-Normalized Scoring Function for Local Alignment
	Finding an Optimal Normalized Alignment

	Parametric Alignment
	Introduction to Parametric Alignment
	Theory of Parametric Alignment
	Solving the Ray Search Problem
	Finding the Polygon Containing p
	Filling the Parameter Space
	Analysis and Improvements
	Parametric Alignment in Practice

	Multiple Alignment in Practice: Mostly Progressive
	Progressive Alignment
	Aligning Two Alignments

	Segment-Based Alignment
	Segment Identification
	Segment Selection and Assembly

	Software for Progressive and Segment-Based Alignment
	The Program Clustal W
	T-COFFEE
	DIALIGN
	MUSCLE
	QAlign

	Bibliography

