Algorithms in Genome Research

Winter 2019/2020

Exercises

Number 7, Discussion: 2020 January 10
Assume we have given 5 metagenomic reads R_{1}, \ldots, R_{6} and a database containing 10 entries E_{1}, \ldots, E_{10} from 6 different species S_{1}, \ldots, S_{6}. The following taxonomy is given for the genomes and the contained sequences:

Let the following be the BLAST output as pairs (entry, bit-score), when the reads are BLASTed against the database:

$$
\begin{aligned}
& R_{1}:\left(E_{8}, 50\right)\left(E_{10}, 47\right)\left(E_{6}, 43\right)\left(E_{9}, 42\right)\left(E_{3}, 42\right)\left(E_{5}, 34\right)\left(E_{1}, 33\right)\left(E_{2}, 27\right)\left(E_{7}, 24\right)\left(E_{4}, 23\right) \\
& R_{2}:\left(E_{7}, 74\right)\left(E_{5}, 69\right)\left(E_{9}, 64\right)\left(E_{6}, 63\right)\left(E_{10}, 61\right)\left(E_{4}, 61\right)\left(E_{1}, 59\right)\left(E_{2}, 54\right)\left(E_{8}, 34\right)\left(E_{3}, 33\right) \\
& R_{3}:\left(E_{3}, 60\right)\left(E_{4}, 60\right)\left(E_{1}, 58\right)\left(E_{2}, 55\right)\left(E_{7}, 53\right)\left(E_{8}, 51\right)\left(E_{6}, 50\right)\left(E_{9}, 47\right)\left(E_{5}, 45\right)\left(E_{10}, 38\right) \\
& R_{4}:\left(E_{5}, 37\right)\left(E_{4}, 35\right)\left(E_{6}, 34\right)\left(E_{7}, 34\right)\left(E_{10}, 33\right)\left(E_{1}, 28\right)\left(E_{8}, 27\right)\left(E_{2}, 25\right)\left(E_{9}, 23\right)\left(E_{3}, 18\right) \\
& R_{5}:\left(E_{2}, 87\right)\left(E_{4}, 41\right)\left(E_{1}, 40\right)\left(E_{3}, 39\right)\left(E_{6}, 39\right)\left(E_{8}, 37\right)\left(E_{10}, 33\right)\left(E_{9}, 32\right)\left(E_{7}, 30\right)\left(E_{5}, 29\right)
\end{aligned}
$$

1. What would be the predictions by MG-RAST?
2. What would be the predictions by MEGAN with threshold 10% ?
3. Assume another metagenomic read R_{6} for which entry E_{10} yields the best BLAST result and the BLAST hits of entries $E_{1}, E_{5}, E_{6}, E_{7}, E_{8}, E_{9}$ (and E_{10}) have a score above 90% of that best score. Both SOrt-ITEMS and CARMA3 now BLAST E_{10} against the database $\left\{R_{6}, E_{1}, E_{5}, E_{6}, E_{7}, E_{8}, E_{9}, E_{10}\right\}$. Assume the following output:
$E_{9}:\left(E_{10}, 140\right),\left(E_{8}, 130\right),\left(E_{7}, 120\right),\left(E_{9}, 100\right),\left(E_{6}, 90\right),\left(E_{5}, 80\right),\left(E_{1}, 50\right)$ and $\left(R_{6}, s\right)$
The taxonomic assignment of R_{6} depends on score s. Separate all possible values of s into appropriate ranges and specify the corresponding assignment by (a) SOrtITEMS and (b) CARMA3. (For SOrt-ITEMS, assume that all entries have been assigned to rank genus. Feel free to ignore borderline cases such as $s=50,80, \ldots$)
