Algorithms in Genome Research
 Winter 2020/2021

Exercises

Number 12, Discussion: 2021 January 12

1. Obviously there exist bijective mappings between the numbers $1,2, \ldots, n$! and the (unsigned) permutations over $\{1,2, \ldots, n\}$. Find such a mapping that is computable in both directions in polynomial time.
2. Given two linear genomes (represented as sequences of gene families):

$$
\begin{aligned}
& A=[1,4,7,6,5,4,5,1,4,3,2] \\
& B=[1,2,3,4,3,4,5,7]
\end{aligned}
$$

(a) Find all maximal common intervals of A and B of size at least 2 .
(b) Find all maximal median gene clusters of A and B of size at least 3 with a symmetric set distance of at most 1 .
3. A common interval C is called a nested common interval of two genomes if either $|C|=2$, or if $|C|>2$ and it contains a nested common interval of size $|C|-1$.
A nested common interval of size ℓ is maximal if it is not contained in a nested common interval of size $\ell+1$.
(a) Find all maximal nested common intervals in the following two linear genomes:

$$
\begin{aligned}
& A=[4,6,5,7,3,1,2] \\
& B=[1,2,3,4,5,6,7]
\end{aligned}
$$

(b) Develop an algorithm to find all maximal nested common intervals in two permutations.
4. Given two linear genomes (represented as indeterminate strings):

$$
\begin{aligned}
& A=[\{9\},\{3,7,10\},\{8,13\},\{4,6\},\{11\},\{1,9\},\{2\}] \\
& B=[\{5\},\{7\},\{10\},\{4,8,12\},\{6\},\{3\},\{2,10\},\{1\},\{12\}]
\end{aligned}
$$

Find all weak common intervals of A and B of size at least 2.

