
Topics of today:

1. Formalizing the number of occurrences (�) of families/adjacencies/telomeres

2. Revisiting breakpoint and SCJ double distances

3. SCJ median, halving and guided halving

4. Breakpoint median, halving and guided halving



Occurrences of families

Given a family f and a genome G, let �(f ,G) be the number of occurrences of family f in G.

If S is singular, then �(f , S) = 1 for each f 2 F(S).

If D is duplicated, then �(f ,D) = 2 for each f 2 F(D).

If C1 and C2 are canonical, then F? = F(C1) = F(C2) and �(f ,C1) = �(f ,C2) = 1 for each f 2 F?.

If B1 and B2 are balanced, then F? = F(B1) = F(B2) and �(f ,B1) = �(f ,B2) for each f 2 F?.
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Occurrences of adjacencies

Given an adjacency xy and a canonical genome C, let �(xy ,C) =

(
1, xy 2 ↵(C),

0, xy /2 ↵(C).

Given an adjacency xy and a duplicated genome D,

let �(xy ,D) be the number of occurrences of adjacencies of type xi yj in ↵(D).

Note that �(xy ,D) 2 {0, 1, 2}.

Given an adjacency xy and k genomes G1,G2, ... ,Gk ,

let �(xy ,G1,G2, ... ,Gk) = �(xy ,G1..k) =
Pk

i=1
�(xy ,Gi).
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Occurrences of telomeres

Given a telomere x and a canonical genome C, let �(x ,C) =

(
1, x 2 �(C),

0, x /2 �(C).

Given a telomere x and a duplicated genome D,

let �(x ,D) be the number of occurrences of telomeres of type x[i ] in �(D).

Note that �(x ,D) 2 {0, 1, 2}.

Given a telomere x and k genomes G1,G2, ... ,Gk ,

let �(x ,G1,G2, ... ,Gk) = �(x ,G1..k) =
Pk

i=1
�(x ,Gi).
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Quiz 1

Given genomes D = (1 2 3 4) [1 5̄ 4̄ 5 3̄ 2̄] , C1 = [1 2 3 4 5] and C2 = [2̄ 1̄] [4̄ 3̄ 5] :

1 Which are the values of

�(3h5t,D), �(2h3t,D), �(4h1t,D), �(1t,D)?

A 1, 1, 2, 0

B 0, 2, 0, 2

C 0, 2, 1, 1

D 1, 2, 0, 2

2 Which are the values of

�(3h5t,C1,C2), �(2h3t,C1,C2), �(1h2t,C1,C2), �(1t,C1,C2)?

A 0, 1, 1, 2

B 0, 1, 2, 2

C 1, 1, 2, 0

D 1, 2, 0, 2
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Breakpoint model - distance and double distance

Breakpoint distance of canonical genomes C1 and C2, with n = |G?|, a = |↵?| and t = |�?|:

dbp(C1,C2) = n � a �
t

2
.

Breakpoint double distance of sing-dup-canonical genomes S and D, with G? = G(S) \ G(D) and n = |G?|:

d
2
bp(S,D) = dbp(2·S,D) = n0 � a0 �

t0

2
= 2n � a0 �

t0

2
,

where n0 = |G(2·S) \ G(D)| = 2|G?| = 2n, a0 = |↵(2·S) \ ↵(D)| and t0 = |�(2·S) \ �(D)|.

Since it is possible to find a matching that fulfills each candidate adjacency/telomere between 2·S and D:

a0 =
X

xy2↵(S)

�(xy ,D) and

t0 =
X

x2�(S)

�(x ,D)
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SCJ model - distance and double distance

SCJ distance of canonical genomes C1 and C2, with n = |G?| and a = |↵?|:

dscj(C1,C2) = 2n � 2a � (C1) � (C2) .

SCJ double distance of sing-dup-canonical genomes S and D, with G? = G(S) \ G(D) and n = |G?|:

d
2
scj(S,D) = dscj(2·S,D) = 2n0 � 2a0 � (2·S) � (D) = 4n � 2a0 � 2(S) � (D)

where n0 = |G(2·S) \ G(D)| = 2|G?| = 2n and a0 = |↵(2·S) \ ↵(D)|.

Since it is possible to find a matching that fulfills each candidate adjacency between 2·S and D:

a0 =
X

xy2↵(S)

�(xy ,D)O_O



SCJ median of canonical genomes

Given three canonical genomes C1, C2 and C3, find another canonical genome M that minimizes the sum:

sscj(M) = dscj(M,C1) + dscj(M,C2) + dscj(M,C3)

Recall that:

dscj(M,Ci) = |↵(M) \ ↵(Ci)| + |↵(Ci) \ ↵(M)|

=
P

xy2↵(M)
(1� �(xy ,Ci)) +

P
xy /2↵(M)

�(xy ,Ci)

Therefore:

sscj(M) =
P

xy2↵(M)
[ 1� �(xy ,C1)) + (1� �(xy ,C2)) + (1� �(xy ,C3) ]

+
P

xy /2↵(M)
[ �(xy ,C1) + �(xy ,C2) + �(xy ,C3) ]

=
P

xy2↵(M)
(3� �(xy ,C1..3)) +

P
xy /2↵(M)

�(xy ,C1..3)

=
P

xy [ �(xy ,M) · (3� �(xy ,C1..3)) + (1� �(xy ,M)) · �(xy ,C1..3) ]

=
P

xy [ 3 · �(xy ,M)� �(xy ,M) · �(xy ,C1..3) + �(xy ,C1..3)� �(xy ,M) · �(xy ,C1..3) ]

= |↵(C1)|+ |↵(C2)|+ |↵(C3)| +
P

xy [ �(xy ,M)(3� 2 · �(xy ,C1..3)) ]

= |↵(C1)|+ |↵(C2)|+ |↵(C3)| +
P

xy2↵(M)
(3� 2 · �(xy ,C1..3))
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SCJ median of canonical genomes

sscj(M) = |↵(C1)|+ |↵(C2)|+ |↵(C3)| +
P

xy2↵(M)
(3� 2 · �(xy ,C1..3))

= |↵(C1)|+ |↵(C2)|+ |↵(C3)| + !(M)

Since |↵(C1)|+ |↵(C2)|+ |↵(C3)| is given (does not depend on M), for minimizing sscj(M) we need to minimize:

!(M) =

X

xy2↵(M)

!(xy) =

X

xy2↵(M)

(3� 2 · �(xy ,C1..3))

where !(xy) = 3� 2 · �(xy ,C1..3) 2 {�3,�1,+1,+3}.

For minimizing !(M):

I Do not add to M any adjacency xz that have !(xz) > 0:

this happens when �(xz,C1..3)  1 (xz occurs in at most one genome among C1, C2 and C3).

I Add to M any adjacency xy that have !(xy) < 0:

this happens when �(xy ,C1..3) � 2 (xy occurs in at least two genomes among C1, C2 and C3).

I For z 6= y : !(xz) > 0 , !(xy) < 0.

There is no adjacency xy with !(xy) = 0. Therefore, the SCJ median problem has a unique solution:

↵(M) = {xy : �(xy ,C1..3) � 2}
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SCJ median of canonical genomes - intuition

Let F? = G? = {1, 2, 3, ..., n}
and start with M = [1] [2] ... [n]

↵(M) = ; and sscj(M) = |↵(C1)| + |↵(C2)| + |↵(C3)|

E↵ect of adding an adjacency xy to M:

1. If xy is not present in any genome among {C1,C2,C3}, then �sscj = +3.

2. If xy is present in exactly one genome among {C1,C2,C3}, then �sscj = +1.

(�dscj(M,Ci) = �1, but 2⇥�dscj(M,Ci) = +1)

3. If xy is present in exactly two genomes among {C1,C2,C3}, then �sscj = �1.

(2⇥�dscj(M,Ci) = �1, but �dscj(M,Ci) = +1)

4. If xy is present in all three genomes {C1,C2,C3}, then �sscj = �3.



SCJ median of k canonical genomes

Given k canonical genomes C1, C2, . . .Ck, find another canonical genome M that minimizes the sum:

sscj(M) = dscj(M,C1) + dscj(M,C2) + ... + dscj(M,Ck)

= |↵(C1)|+ |↵(C2)|+ ... + |↵(Ck)| + !(M)

Analogously to the median of three genomes, we need to minimize:

!(M) =

X

xy2↵(M)

!(xy)

where !(xy) = k � 2 · �(xy ,C1..k) 2 {�k,�k + 2, ... , +k � 2,+k}.

For minimizing !(M):

I Do not add to M any adjacency xz that have !(xz) > 0:

this happens when �(xz,C1..k) <
k
2
(xz occurs in less than half of the genomes among C1, C2, . . . , Ck).

I Add to M any adjacency xy that have !(xy) < 0:

this happens when �(xy ,C1..3) >
k
2
(xy occurs in more than half of the genomes among C1, C2, . . . , Ck).

I For z 6= y : !(xz) > 0 , !(xy) < 0.

I Any adjacency xy with !(xy) = 0 is optional (can be added to the median or not). If there is no such an

adjacency (e.g., if k is odd), the SCJ median problem has a unique solution.

In general, the following set of adjacencies define a SCJ median of k genomes:

↵(M) =

⇢
xy : �(xy ,C1..k) >

k

2
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SCJ median of k canonical linear genomes

1. Compute the general SCJ median M as described above.

2. For each circular chromosome in M, remove one adjacency xy with smallest weight !(xy).
-



SCJ halving of a duplicated genome

Given a duplicated genome D, find a singular genome H that minimizes the SCJ double distance:

d
2
scj(H,D) = dscj(2·H,D)

Therefore:

dscj(2·H,D) = |↵(2·H) \ ↵(D)| + |↵(D) \ ↵(2·H)|

=
P

xy2↵(H)
(2� �(xy ,D)) +

P
xy /2↵(H)

�(xy ,D)

=
P

xy [ �(xy ,H) · (2� �(xy ,D)) + (1� �(xy ,H)) · �(xy ,D) ]

=
P

xy [ 2 · �(xy ,H)� �(xy ,H) · �(xy ,D) + �(xy ,D)� �(xy ,H) · �(xy ,D) ]

= |↵(D)| +
P

xy [ �(xy ,H)(2� 2 · �(xy ,D)) ]

= |↵(D)| +
P

xy2↵(H)
(2� 2 · �(xy ,D))
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SCJ halving of a duplicated genome

d
2
scj(H,D) = |↵(D)| +

P
xy2↵(H)

(2� 2 · �(xy ,D))

= |↵(D)| + !(H)

Since |↵(D)| is given (does not depend on H), for minimizing d
2
scj(H,D) we need to minimize:

!(H) =

X

xy2↵(H)

!(xy) =

X

xy2↵(H)

(2� 2 · �(xy ,D))

where !(xy) = 2� 2 · �(xy ,D) 2 {�2, 0,+2}.

For minimizing !(H):

I Do not add to H any adjacency xz that have !(xz) > 0:

this happens when �(xz,D) = 0 (xz does not occur in D).

I Add to H any adjacency xy that have !(xy) < 0:

this happens when �(xy ,D) = 2 (xy occurs twice in D).

I For z 6= y : !(xz) > 0 , !(xy) < 0.

I Any adjacency xy with !(xy) = 0 (occurs once in D) is optional (can be added to H or not).

Solution with the minimum number of adjacencies: ↵(H) = {xy : �(xy ,D) = 2}



SCJ aliquoting of a k-folded genome

Given a k-folded genome K, find a singular genome A that minimizes the SCJ k-folded distance:

d
k
scj(A,K) = dscj(k·A,K)

Therefore:

dscj(k·A,K) = |↵(k·A) \ ↵(K)| + |↵(K) \ ↵(k·A)|

=
P

xy2↵(A)
(k � �(xy ,K)) +

P
xy /2↵(A)

�(xy ,K)

=
P

xy [ �(xy ,A) · (k � �(xy ,K)) + (1� �(xy ,A)) · �(xy ,K) ]

=
P

xy [ k · �(xy ,A)� �(xy ,A) · �(xy ,K) + �(xy ,K)� �(xy ,A) · �(xy ,K) ]

= |↵(K)| +
P

xy [ �(xy ,A)(k � 2 · �(xy ,K)) ]

= |↵(K)| +
P

xy2↵(A)
(k � 2 · �(xy ,K))

The solution for the SCJ aliquoting problem of a k-folded genome is:

↵(A) =

⇢
xy : �(xy ,K) >

k

2

�
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SCJ guided halving/aliquoting of a k-folded genome

Given a k-folded genome K and a canonical genome C find a canonical genome A that minimizes the sum:

gascj(A) = d
k
scj(A,K) + dscj(A,C) = dscj(k·A,K) + dscj(A,C)

Therefore:

gascj(A)) = |↵(k·A) \ ↵(K)| + |↵(K) \ ↵(k·A)| + |↵(A) \ ↵(C)| + |↵(C) \ ↵(A)|

=
P

xy2↵(A)
(k � �(xy ,K)) +

P
xy /2↵(A)

�(xy ,K) +
P

xy2↵(A)
(1� �(xy ,C)) +

P
xy /2↵(A)

�(xy ,C)

=
P

xy2↵(A)
(k + 1� �(xy ,K,C)) +

P
xy /2↵(A)

�(xy ,K,C)

=
P

xy [ �(xy ,A) · (k + 1� �(xy ,K,C)) + (1� �(xy ,A)) · �(xy ,K,C) ]

=
P

xy [ (k + 1) · �(xy ,A)� �(xy ,A) · �(xy ,K,C) + �(xy ,K,C)� �(xy ,A) · �(xy ,K,C) ]

= |↵(K)| + |↵(C)| +
P

xy [ �(xy ,A)(k + 1� 2 · �(xy ,K,C)) ]

= |↵(K)| +
P

xy2↵(A)
(k + 1� 2 · �(xy ,K,C))

The solution for the guided SCJ aliquoting problem of a k-folded genome is:

↵(A) =

⇢
xy : �(xy ,K,C) >

k + 1

2

�
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Quiz 2

1 Which of the following statements are true?

A The SCJ median of four canonical genomes is always unique.

B The SCJ median of four canonical genomes cannot be unique.

C The SCJ median of three canonical genomes is always unique.

D The SCJ linear median of three canonical linear genomes is always unique.

E The SCJ guided halving problem is equivalent to the SCJ aliquoting problem.

F The SCJ aliquoting problem can be constrained to linear genomes only.
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Perfect matching and circular canonical genomes

For a given set N = {1, 2, ... , n},
let G be a complete graph with vertices V (G) = {gh : g 2 N} [ {gt : g 2 N}

A perfect matching M in G corresponds to |M| = n adjacencies and, consequently,

defines a circular canonical genome C, with F(C) = G(C) = N and ↵(C) = M.

Perfect
-mang :
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SCJ median of k canonical circular genomes

Given k canonical circular genomes C1, C2, . . .Ck, find a canonical circular genome M that minimizes the sum:

sscj(M) = dscj(M,C1) + dscj(M,C2) + ... + dscj(M,Ck)

= |↵(C1)|+ |↵(C2)|+ ... + |↵(Ck)| + !(M)

= 3n + !(M)

Again, we need to minimize !(M) =
P

xy2↵(M)
!(xy) , where !(xy) = k � 2 · �(xy ,C1..k).

1. Build the complete graph G with vertices V (G) = {gh : g 2 G?} [ {gt : g 2 G?}
2. Assign weights to each edge xy of G : !(xy) = k � 2 · �(xy ,C1..k).

Perfect matching M in G , Circular genome M ; with !(M) = !(M)

Minimum weight matching M gives a minimum weight circular SCJ median M

-
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Breakpoint median of canonical circular genomes

Given canonical circular genomes C1, C2 and C3, find a canonical circular genome M that minimizes the sum:

sbp(M) = dbp(M,C1) + dbp(M,C2) + dbp(M,Ck)

= n �
P

xy2↵(M)
�(xy ,C1) + n �

P
xy2↵(M)

�(xy ,C2) + n �
P

xy2↵(M)
�(xy ,C3)

= 3n �
P

xy2↵(M)
�(xy ,C1..3)

= 3n � !0(M)

Now we need to maximize !0(M) =
P

xy2↵(M)
!0(xy) , where !0(xy) = �(xy ,C1..3).

1. Build the complete graph G with vertices V (G) = {gh : g 2 G?} [ {gt : g 2 G?}
2. Assign weights to each edge xy of G : !0(xy) = �(xy ,C1..k).

Perfect matching M in G , Circular genome M ; with !0(M) = !0(M)

Maximum weight matching M gives a minimum weight circular breakpoint median M
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Breakpoint median of canonical genomes

Given canonical genomes C1, C2 and C3, find a canonical genome M that minimizes the sum:

sbp(M) = dbp(M,C1) + dbp(M,C2) + dbp(M,Ck)

= n �
P

xy2↵(M)
�(xy ,C1)�

P
x2�(M)

�(x ,C1)

2
+ n �

P
xy2↵(M)

�(xy ,C2)

�
P

x2�(M)

�(x ,C2)

2
+ n �

P
xy2↵(M)

�(xy ,C3)�
P

x2�(M)

�(x ,C3)

2

= 3n �
P

xy2↵(M)
�(xy ,C1..3) �

P
x2�(M)

�(x ,C1..3)

2

= 3n � !0(M)

Now we need to maximize !0(M) =
P

xy2↵(M)
!0(xy) +

P
x2�(M)

!0(x) ,

where !0(xy) = �(xy ,C1..3) and !0(x) = �(x ,C1..3)

2
.

1. Build the complete graph G with vertices V (G) = {gh : g 2 G?} [ {gt : g 2 G?}
2. Assign weights to each edge xy of G : !0(xy) = �(xy ,C1..k).

3. Build the complete graph Gt with vertices V (Gt) = {tgh : g 2 G?} [ {tgt : g 2 G?}
4. Assign weight 0 to each edge of Gt

5. Add one edge connecting each vertex x in G to the corresponding vertex tx in Gt , with weight

!0(xtx ) =
�(x ,C1..k)

2

Perfect matching M in G + Gt , Genome M ; with !0(M) = !0(M)

Maximum weight matching M gives a minimum weight breakpoint median M
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Quiz 3

1 Which of the following statements are true?

A The SCJ aliquoting problem can be constrained to circular genomes only.

B The breakpoint median can only be computed for circular genomes.

C The circular SCJ median is equivalent to the circular breakpoint median of three canonical

circular genomes.

D The breakpoint guided halving is NP-hard.

E The problem of computing a circular breakpoint halving of a circular duplicated genome is

polynomial.
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