Topics of today:

1. Formalizing the number of occurrences (¢) of families/adjacencies/telomeres
2. Revisiting breakpoint and SCJ double distances

3. SCJ median, halving and guided halving

~

. Breakpoint median, halving and guided halving



Occurrences of families

Given a family f and a genome G, let ¢(f, G) be the number of occurrences of family f in G.
— -

If S is singular, then ¢(f,S) = 1 for each f € F(S).

—

If D is duplicated, then ¢(f, D) = 2 for each f € F(D).
-~

Cmm——

If C1 and C; are canonical, then F, = F(C1) = F(Cz) and ¢(f,C1) = ¢(f,Cz) = 1 for each f € F,.
—_—

If By and By are balanced, then F, = F(B1) = F(B2) and ¢(f, B1) = ¢(f,B2) for each f € F.

r~ —_—



Occurrences of adjacencies

Given an adjacency xy and a canonical genome C, let ¢(xy, C) =

1, xy € a(C),
0, xy ¢ a(C).

b — o=

Given an adjacency xy and a duplicated genome D,
—

let ¢(xy, D) be the number of occurrences of adjacencies of type x;y; in a(DD).
G—

Note that ¢(xy,D) € {0, 1, 2}.

e

Given an adjacency xy and k genomes Gy, Gg, ..., Gx ,

let ¢(xy, G1,Ga, ..., Gx) = d(xy, G1..x) = S5, ¢(xy, G1).
 — S- ——




Occurrences of telomeres

1, x e v(C),

Given a telomere x and a canonical genome C, let ¢(x,C) = {0 ¢ +(C)
, x & ~(C).

Given a telomere x and a duplicated genome D,

let ¢(x, D) be the number of occurrences of telomeres of type x;; in v(D).

Note that ¢(x,D) € {0, 1, 2}.

—

Given a telomere x and k genomes G1, Ga, ..., Gy ,

let ¢(x, G1,Ga, ..., Gx) = d(x, G1..x) = 1K, ¢(x,Gy).

.



Quiz 1

Given genomes D = (1234) [154532], C; =[12345] and C, =[21] [435]:
- v . . o k [2d » N

1 Which are the values of 2 Which are the values of
$(3"5D), $(2"3.D), $(4"1:D), ¢(1D)? $(3"54C1 Cz), $(2"3C1,C2), $(1124C1,C2), $(11,C1.C2)?
2 2 ) ) @ ) 2. 2
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Breakpoint model - distance and double distance

Breakpoint distance of canonical genomes Cy1 and Ca, with n = |Gy|, a = |ax| and t = |y4]:

dBP((Cly(C2) = n — a — 5

Breakpoint double distance of sing-dup-canonical genomes S and D, with G, = G(S) N G(D) and n = |G.|:

/

d2,(SD) = dgp(2:S,D) = o —a — = = 2n — 4 — >

where n’ = |G(2-S) N G(D)| = 2|G«| = 2n, @’ = |a(2:S) N a(D)| and t' = |[y(2-S) Ny(D)|.

Since it is possible to find a matching that fulfills each candidate adjacency/telomere between 2-S and D:

a = Z b(xy, D)/ and

xy€a(S
)
x€v(S)



SCJ model - distance and double distance

SCJ distance of canonical genomes Cy and Cp, with n = |G| and a = |a.|:

dsc‘]((c1,CQ) = 2n — 2a — H((C1) — I{(CQ).

SCJ double distance of sing-dup-canonical genomes S and D, with G, = G(S) N G(D) and n = |G,|:

d2,(S,D) = dses(2:S,D) = 20 — 23’ — k(2:S) — k(D) = 4n — 23 — 2k(S) — w(D)

where n’ = |G(2-S) N G(D)| = 2|G«| = 2n and &’ = |a(2-S) N a(D)].

Since it is possible to find a matching that fulfills each candidate adjacency between 2-S and D:

P
xy€a(S)



SCJ median of canonical genomes

Given three canonical genomes C;, C and Cs, find another canonical genome M that minimizes the sum:

—
sscs (M) = dsoy (M, C1) + dscy (M, C2) + dscy (M, C3)
— — — —
Recall that:
dsei(M, Ci) = (M) \ o(Cs)] + lo(C1) \ (M)
- - — — — —
Yweamn(I =8y, Ci))  + X gamn 20y, Cs)
Therefore:
SSCJ(M) =

ZXyEQ M)[
+ nyéa(M + ¢(Xy (CQ

= nyéa( 3 ¢(Xy (Cl 3)) + nyéa (M) ¢(Xy (Ci 3

Tl oy el o)+ (- oy ) 2o )
5o/ 600 T — 600 TD) - 9, C1..5) + B0y, Cr..a) — G0, M) - $(xy. Cr..0) |

[a(Co)| + [a(C2)| + [a(Ca)V 4+ 32, [ o0y, M)(3 —2- ¢(xy, C1..3)) ]

= [adCOI+[a(Co)[ + [(Ca)l + XiycamnB—2-d(xy, Ci..3))




SCJ median of canonical genomes

sscs (M) [a(Cy)[ + [a(C)l + |a(C3)| +\Zyea@n(3 =2 ¢(xy, Ci..3))

— gm—

[a(Co)| + [a(C2)| + |a(Cs)| +

Since |a(C1)| + |(C2)| 4+ |a(C3)]| is given (does not depend on M), for minimizing ssc; (M) we need to minimize:
wM) = > wly) = > (3-2-¢(x.Ci.3))
xy € o (M) xy € (M)
where w(xy) =3 —2- ¢(xy,Cy..3) € {-3,—-1,+1, +3}.

For minimizing w(M):
» Do not add to M any adjacency xz that have w(xz) > 0:
this happens when ¢(xz, C1..3) <1 (xz occurs in at most one genome among C1, C2 and Cs).

» Add to M any adjacency xy that have w(xy) < O:
this happens when ¢(xy, C1..3) > 2 (xy occurs in at least two genomes among Cy, Cz and Cs).

> Forz # y: w(xz) >0 w(xy) <0.
There is no adjacency xy with w(xy) = 0. Therefore, the SCJ median problem has a unique solution:

a(M) = {xy : ¢(xy,Cy1..3) > 2}



SCJ median of canonical genomes - intuition

Let Fi =Gy = {1,2,3, . n}
and start with M =[1] [2] ... [n]

a(M) =0 and sy;(M) = |a(Cy1)] + |a(C2)| + |a(Cs)l

Effect of adding an adjacency xy to M:

1. If xy is not present in any genome among {C1, Cg, C3}, then Asgc; = +3.

2. If xy is present in exactly one genome among {Cy, C, C3}, then Asgc; = +1.
(Adses (M, C;) = —1, but 2 x Adses (M, C) = +1)

3. If xy is present in exactly two genomes among {Cy, Co, C3}, then Asge; = —1.
(2 X Adses (M, Ci) = —1, but Adses(M, Ci) = +1)

4. If xy is present in all three genomes {C;, Cz, Cs}, then Asgc; = —3.



SCJ median of k canonical genomes

Given k canonical genomes Cq, Co, ...Cx, find another canonical genome M that minimizes the sum:
A
—
sscy (M) = dsas(M, Cy1) + dses (M, Cz) + ... + dscs (M, Cx)
’ . - .

= |a(C)| + [C)| + ... + |a(Ck)| + w(M)

—

- - . « o -

Analogously to the median of three genomes, we need to minimize:

w(M) = Z w(xy) ’L-; (( Il &2‘ =+ 9

xy € a(M)
where w(xy) = k —2- ¢(xy, C1. k) € {—k, —k+2, ..., +k—2,+k}.  |lee S ;-g,»Sr—‘l,-H,GSﬂJ'

For minimizing w(M):
» Do not add to M any adjacency xz that have w(xz) > 0:
this happens when ¢(xz, C1. x) < g (xz occurs in less than half of the genomes among Cy, Co, ..., Ck).

> Add to M any adjacency xy that have w(xy) < O:
this happens when ¢(xy, C1..3) > % (xy occurs in more than half of the genomes among Cy, Ca, ..., Cx).

> For z # y: w(xz) >0« w(xy) <O.

> Any adjacency xy with w(xy) = 0 is optional (can be added to the median or not). If there is no such an
adjacency (e.g., if k is oddyJ, the SCJ median problem has a unique solution.

In general, the following set of adjacencies define a SCJ median of k genomes:

a(M) = {xy s o(xy,Cy. k) > g}



SCJ median of k canonical linear genomes

1. Compute the general SCJ median M as described above.

2. For each circular chromosome in M, remove one adjacency xy with smallest weight w(xy).

rm— ————




SCJ halving of a duplicated genome Lk

[
Given a duplicated genome D, find a singular genome H that minimizes the SCJ doz:l‘);e distance:
o— —— pu——
dsz‘c.l(Hv D) = dsc;(2-H, D)
e~ —

Therefore:
dscs(2-H,D) = lo(2-H)\ (D)]  +  |o(D) \ x(2-H)]|
e _—— = S —

= 2sycam)(2—d(xy, D)) + Exyga(m) d(xy. D)+ Zﬁd (1.&10)

=y ’
Sl 00y, H) - (2= 90, D)) + (1= 600, H)) (. D) ] ’
Sl 2+ 60y, 7 60 H) - 60y. D)+ (0. D)~ 6y H) - 69, D) | 4 - -

Ve
la(@)] 4+ >0, [ oy, H)(2 =2 ¢(xy, D)) ]

‘O((]D))‘ + nyEoc(]HI)(2 -2 ¢(va D))




SCJ halving of a duplicated genome

dZc, (H, D)

= |(X(D)| + nyGa(]HI)(2 -2 ¢(va D))

la@)] +  w(H)

Since |a(D)] is given (does not depend on H), for minimizing d2.,(H, D) we need to minimize:

wH) = > wly) = > (2-2-¢(x,D))

xy€a(H) xy€a(H)

where w(xy) =2 —2-¢(xy,D) € {-2,0, +2}.

For minimizing w(H):

» Do not add to H any adjacency xz that have w(xz) > 0:
this happens when ¢(xz, D) = 0 (xz does not occur in D).

> Add to H any adjacency xy that have w(xy) < 0:
this happens when ¢(xy, D) = 2 (xy occurs twice in D).

> For z # y: w(xz) >0 < w(xy) <O0.

> Any adjacency xy with w(xy) = 0 (occurs once in D) is optional (can be added to H or not).

Solution with the minimum number of adjacencies: a(H) = {xy : ¢(xy, D) = 2}



—
SCJ aliquoting of a:k-folded genome K - foresch ‘Pe*(K)/ ¢@,ﬂ()z K
Given a k-folded genome K, find a singular genome A that minimizes the SCJ k-folded distance:
KeA: endh awl)’u:u\ o

-blmwfu 0(
uﬁﬂﬁff | 3V 3
la(k-A)\ (K)| 4+ [e(K) \ eu(k-A)]|

= nyEa(A)(k - ¢(Xy! K)) + ny¢a(A) ¢(Xyr K) +&z¢(zllk)

Yyl ol 8) - (k= d(xy. K)) + (1-o(xy,A)) ¢(xy, K)] .-

déC.](A' K) = dscs(k-A, K)

Therefore:

dscs (k-A, K)

Sl k oy, A) = d(xy, A) - d(xy. K) + o(xy,K) —d(xy,A) - o(xy.K) | & -+ -

la(®)] + > [ o0y, A)(k—2-¢(xy,K)) ]

()] + Xyean)k—2- ¢, K))

The solution for the SCJ aliquoting problem of a k-folded genome is:

a(w) = {o: 009,10 > £ }



SCJ guided halving/aliquoting of a k-folded genome

Given a k-folded genome K and a canonical genome C find a canonical genome A that minimizes the sum:
8350 (A) = dicy (A K) + dscs (A, C) = dscu(k-A, K) + dses (A, C)

Therefore:

8as0s(A))

o8 Vo] + o)\t a(\a(O) + 1a(C)\ k)
ek — 605, X 0, KV‘W (1= 60.©) + T gagny . )
= Yyeaw)kt+1—9 (XyKC)\Zr Yygan) 2y, K, C)

- 3 L9094 - (k41— 60 K ONA (1 000 4) - 909, K. ©) ]

= 2yl (k+1)-o(xy, A) — ¢(xy, A) - ¢(xy, K, C)V+ d(xy K, C) — ¢(xy, A) - o(xy, K, C) |

la®)] + [a(C)] + X [0y A)(k+1-2-(xy K C))]

ld(c)‘* la(K)l + Cyeam)k+1-2-6(xv.K, C))

The solution for the guided SCJ aliquoting problem of a k-folded genome is:

a(A) = {Xy o(xy. K,C) > %}



Quiz 2

1 Which of the following statements are true?

¢
-4 w(z_r)e)) -9-2,0

@ The SCJ median of four canonical genomes is always unique. 2 ('j

@' The SCJ median of four canonical genomes cannot be unique.
@Fhe SCJ median of three canonical genomes is always unique. 0\'(%7) € % ‘(jj
6 The SCJ linear median of three canonical linear genomes is always unique.

@The SCJ guided halving problem is equivalent to the SCJ aliquoting problem.

@The SCJ aliquoting problem can be constrained to linear genomes only.



Perfect matching and circular canonical genomes W

For a given set N = {1,2, ..., n},
let G be a complete graph with vertices V(G) = {gh: g e N} U {gt : g € N} —_—

5:.1' o& non _'mc'wﬁus'

m%c,s avcrmj
M g hes

Ex . N:9023]
(12) (3)
(2 2 3)

A perfect matching M in G corresponds to |M| = n adjacencies and, consequently,
defines a circular canonical genome C, with 7(C) = G(C) = N and «(C) =



SCJ median of k canonical circular genomes
Given k canonical circular genomes Cy, Cs, ...Cx, find a canonical circular genome M that minimizes the sum:
sscs (M) = dses(M, C1) + dscs(M, Cz) + ... + dscs (M, Cx)
[a(COl+ [a(C)l + - + [a(C)| + w(M)

3n + w(M) /0(6)‘4)[: L

Again, we need to minimize w(M) = 37, ., w(xy), where w(xy) = k —2- ¢(xy, Cy. x).

& @) @)@ ®)
1. Build the complete graph G with vertices V(G) = {g": g € G.} U{g' : g € Gx} —-QI—Z‘a»rZ‘ -t‘|

]
2. Assign weights to each edge xy of G: w(xy) = k — 2 ¢(xy, Cy. x).

t
€x: Cc-'("'a) " '

Cz C3 7-0') 2
(3 0.2 ) .u("-( ) ArCY
- (3.230) ‘/\

Perfect matchlng Min G & Clrcular genome M ;  with w(M) = w(M)

eCB

Minimum weight matching M gives a minimum weight circular SCJ median M



Breakpoint median of canonical circular genomes
Given canonical circular genomes Cy, C, and Cs, find a canonical circular genome M that minimizes the sum:
sepp(M) = dpp(M, C1) 4 dpp(M, Co) + dpp(M, Cx)
= =2 ecapn P00 C) + 0 =30 caqn 2O, C2) + 0 =3 e 20w, Ca)
= 3n = Ygyean 0. Ci..3)
= 3n — w'(M)
Now we need to maximize w'(M) = 3, ¢ o @' (xy) , where /(xy) = ¢(xy, Ci. 3).

1. Build the complete graph G with vertices V(G) = {g" : g € G.} U {g! : g € G+} 0(1-7)6 )'o‘l’Z'S}
2. Assign weights to each edge xy of G: w’(xy) = ¢(xy, C1. x).

C'_‘ (113‘0) ) ‘
C,_:("')(g'?—) . )

cg: C').’-al)C%) . .

Perfect matching M in G < Circular genome M ;  with w'(M) = w’(M)

Maximum weight matching M gives a minimum weight circular breakpoint median M



Breakpoint median of canonical genomes

Given canonical genomes Cy, C2 and Cs, find a canonical genome M that minimizes the sum:

spr (M) = dgp(M,Ci) + dppe(M,C2) + due(M,Ck)

= = Cean 907.C) = Tecoon D5+ 1= T caqu 902y, C2)
x,C. x,C.
~ Yreron 52+ 01— T can 9. Ca) = ¥y 252

= 30 = Yyean 00 Ciis) = ey W
= 3n — W(M)
Now we need to maximize w'(M) = 3, ¢, @ (xv) + X e on @' (%),

where w’(xy) = ¢(xy, Cy..3) and w’(x) = W

Build the complete graph G with vertices V(G) = {g" : g € G.} U {gt : g € G}
Assign weights to each edge xy of G: w’'(xy) = ¢(xy, C1. x).

Build the complete graph G with vertices V(Ge) = {t,n : g € Gu} U {tyr : g € Gu}
Assign weight 0 to each edge of G;

g > o=

Add one edge connecting each vertex x in G to the corresponding vertex tx in G, with weight

W (xty) = ¢(Xrgluk)

Perfect matching M in G + Gy < Genome M ; with w'(M) = w’'(M)

Maximum weight matching M gives a minimum weight breakpoint median M



Ct:“:t}? Q—_\
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C,: .1193






Quiz 3

1 Which of the following statements are true?

@ The SCJ aliquoting problem can be constrained to circular genomes only.
XThe breakpoint median can only be computed for circular genomes.

@The circular SCJ median is equivalent to the circular breakpoint median of three canonical

circular genggnes.
% TheQreakpoint guided halving is NP-hard.

@The problem of computing a circular breakpoint halving of a circular duplicated genome is
polynomial.
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