
Topics of today:

1. NP-hardness of unichromosomal breakpoint median

2. Double-cut-and-join (DCJ) model

3. General DCJ halving



NP-hardness of unichromosomal breakpoint median

A unichromosomal circular genome C can be represented as a simple directed cycle graph:

Ex: C = (1 2̄ 3)

Assume that the genes in three canonical circular genomes C1, C2 and C3 have the same relative orientation
and represent these three genomes in the same directed cycle graph:

Ex: C1 = (1 2 3 4) , C2 = (2 4 1 3) , C3 = (2 3 1 4)
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NP-hardness of unichromosomal breakpoint median

The Problem of determining whether a directed graph G has a hamiltonian cycle is NP-complete, even if G has
maximum indegree and maximum outdegree equal to 3.

Reduction of this problem to the problem of computing a breakpoint median of three canonical circular genomes
A, B and C that have the same relative orientation:

We need to transform G into another directed graph G 00, such that G 00 is the union of three hamiltonian
cycles (each one representing one input genome of the median problem)
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NP-hardness of unichromosomal breakpoint median

Build a modified directed graph G 00, such that G 00 is the union of three hamiltonian cycles (each one
representing one genome among A, B and C)

G 00 has only adjacencies that occur in one or in two genomes

Let M be a solution to the circular
breakpoint median of A, B and C:

M contains all adjacencies common to two input genomes
and no ”new” adjacency

l
Initial graph G has an hamiltonian cycle
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Quiz 1

1 Which of the following statements are true?

A There is a polynomial time algorithm for solving the unichromosomal breakpoint median.

B There cannot be a polynomial time algorithm for solving the unichromosomal breakpoint
median.

C The unichromosomal breakpoint median is NP-hard because it can be reduced to the
hamiltonian cycle problem.

D The unichromosomal breakpoint median is NP-hard because the hamiltonian cycle
problem can be reduced to it.
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Double-cut-and-join (DCJ) model

Double-cut-and-join (DCJ) operation: two cuts + two joins

I Cuts the genome twice and rejoins loose ends in a di↵erent way.

I Represents most large-scale genome rearrangements (inversions, translocations, fusions, fissions... )

translocation (inter-chromosomal)

fusion (change # of chromosomes)

(intra-chromosomal) inversion



DCJ model

DCJ operation

involving

two adjacencies

xv + wz two possibilities

of rejoining
in a di↵erent way4

xz + wv xw + vz

Cases:

A. Each adjacency is in a distinct linear chromosome:
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DCJ model

DCJ operation

involving one adjacency

and one telomere

x + wz two possibilities

of rejoining
in a di↵erent way4

xz + w xw + z

Cases:

A. The adjacency and the telomere are in distinct linear chromosomes:
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B. The adjacency is in the same linear chromosome, or in a circular chromosome:
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DCJ model

DCJ operation

involving one adjacency

or two telomeres

x + z one possibility

of rejoining
in a di↵erent wayl

xz

Cases:

A. The adjacency is in a linear chromosome / the telomeres are in two distinct chromosomes:

[ 1 2 3 x
HH

] [
H

z
H
4 5 ]

fusion #" fission
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B. The adjacency is in a circular chromosome / the telomeres are in the same chromosome:
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Quiz 2

1 Which transformations can be done with a single DCJ operation?

A [1 2 3] [4 5] $ [1 2 4 5 3]

B [1 2 3] [4 5] $ [1 2 3 4 5]

C [1 2 3] [4 5] $ [1 2 5] [ 4 3]

D [1 2 3 4 5] $ [1 4̄ 3 2̄ 5]

E [1 2 3 4 5] $ [1 2 5̄ 4̄ 3̄]

F [1 2 3] (4 5) $ [1 2 4 5 3]

G [1 2 3] (4 5) $ [1 2 5 4 3]

H (1 2 3 4 5) $ [3 4 5 1 2]
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DCJ halving

DCJ Halving Distance Problem:

Compute the minimum number of DCJ operations required to transform
a (rearranged) duplicated genome D into a perfectly duplicated genome 2·H.

Denote by hdcj(D) the DCJ halving distance of D.

DCJ Halving Problem:

Find a sequence of hdcj(D) DCJ operations that transform
a (rearranged) duplicated genome D into a perfectly duplicated genome 2·H.

Natural graph NG(D) = (V ,E) of a duplicated genome D:

1. V = ↵(D) [ �(D) (each adjacency or telomere of D is a vertex of NG(D))

2. For each family f 2 F(D), each pair of paralogous extremities is connected by an edge in NG(D), i.e.:

I there is an edge connecting the vertex u that contain f h1 and the vertex v that contain f h2
I there is an edge connecting the vertex u0 that contain f t1 and the vertex v that contain f t2

Note that:

I There can be adjacencies/vertices of type f h1 f
h
2 and/or f t1 f

t
2 (NG(D) can contain 1-cycles)

I Let n = |F(D)| = |G(D)|
2 . The number of edges in NG(D) = 2n (two edges per element of F(D)).
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Natural graph of a duplicated genome

Ex: D = [ 4̄ 1 4̄ 3̄ 2 ] [ 2̄ 3 1 ] [ 5 5̄ ]

↵(D) [ �(D) = { 4h1 , 4t11t1 , 1h14h2 , 4t23h1 , 3t12t1 , 2h1 , 2h2 , 2t23t2 , 3h21t2 , 1h2 , 5t1 , 5h15h2 , 5t2 }

n = |F(D)| = 5 and (D) = 3
Every vertex has degree one or two:
NG(D) is a collection of paths and cycles

cycle with k edges: k-cycle or ck
path with k edges: k-path or pk
8
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Ce = {ck : k is even} : set of even cycles

Pe = {pk : k is even} : set of even paths

Co = {ck : k is odd} : set of odd cycles

Po = {pk : k is odd} : set of odd paths

|Co |+ |Po | is even (NG has 2n edges)

|Pe |+ |Po | = (D)

For a perfectly duplicated genome 2·H,
NG(2·H) has only 2-cycles and 1-paths:

2n = 2|Ce |+ |Po | ) n = |Ce |+
|Po |
2

Otherwise, if a duplicated genome D

is not perfectly duplicated:

n > |Ce |+
�
|Po |
2
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Types of DCJ operation

Let a DCJ operation transform a duplicated genome D1 into another duplicated genome D2:

m1 : # of components in NG(D1)

m2 : # of components in NG(D2)

)
0  |m2 �m1|  1

Goal: increase the number of even cycles (|Ce |) and/or the number of odd paths (|Po |) in NG
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Types of DCJ operation

Goal: increase the number of even cycles (|Ce |) and/or the number of odd paths (|Po |) in NG
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Types of DCJ operation

Goal: increase the number of even cycles (|Ce |) and/or odd paths (|Po |) in NG
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DCJ Halving & Distance

Recall that, if the genome is perfectly duplicated, we have n = |Ce |+ |Po |
2 , otherwise n > |Ce |+

j
|Po |
2

k

A DCJ operation ⇢ is called optimal if

8
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⇢ increases the number of even cycles by one, or

⇢ increases the number of odd paths by two, or

the number of odd paths is odd and

⇢ increases the number of odd paths by one

(can occur at most once)

Given a duplicated genome D, it is possible to find an optimal DCJ operation at each sorting step. Therefore:

hdcj(D) = n � |Ce |�
�
|Po |
2
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DCJ Halving

Given a duplicated genome D,

with natural graph NG(D),

and DCJ halving distance h = hdcj(D) = n � |Ce |�
j
|Po |
2

k
:

1. For i = 1 to h :

I Find and apply one optimal DCJ operation.

2. NG is now a simple collection of 2-cycles and 1-paths.

Reconstruct the perfectly duplicated genome 2·H from NG .
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DCJ Halving
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Quiz 3

1 Which of the following statements about the Natural Graph are true?

A Merging two odd cycles is always optimal.

B Breaking an odd cycle into an odd path cannot be optimal.

C Breaking an even path into two odd paths is always optimal.

D Breaking an even cycle into two cycles is always optimal.

E Recombining two even paths into two odd paths is always optimal.
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Genome Halving under DCJ Revisited

(Julia Mixtacki)

LNCS, volume 5092, pages 276-286 (2008)


