Topics of today:

1. NP-hardness of unichromosomal breakpoint median

2. Double-cut-and-join (DCJ) model

3. General DCJ halving

NP-hardness of unichromosomal breakpoint median

A unichromosomal circular genome ${\mathbb C}$ can be represented as a simple directed cycle graph:

Ex: $\mathbb{C} = (1\bar{2}3)$

Assume that the genes in three canonical circular genomes \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 have the same relative orientation and represent these three genomes in the same directed cycle graph:

Ex:
$$\mathbb{C}_1 = (1\,2\,3\,4)$$
 , $\mathbb{C}_2 = (2\,4\,1\,3)$, $\mathbb{C}_3 = (2\,3\,1\,4)$

NP-hardness of unichromosomal breakpoint median

The Problem of determining whether a directed graph G has a hamiltonian cycle is NP-complete, even if G has maximum indegree and maximum outdegree equal to 3.

Reduction of this problem to the problem of computing a breakpoint median of three canonical circular genomes A, B and C that have the same relative orientation:

We need to transform G into another directed graph G'', such that G'' is the union of three hamiltonian cycles (each one representing one input genome of the median problem)

NP-hardness of unichromosomal breakpoint median

Build a modified directed graph G'', such that G'' is the union of three hamiltonian cycles (each one representing one genome among A, B and C)

 $G^{\prime\prime}$ has only adjacencies that occur in one or in two genomes

Let $\mathbb M$ be a solution to the circular breakpoint median of $\mathbf A,\, \mathbf B$ and $\mathbf C$:

 ${\mathbb M}$ contains all adjacencies common to two input genomes and no "new" adjacency

Initial graph G has an hamiltonian cycle

Quiz 1

Double-cut-and-join (DCJ) model

Double-cut-and-join (DCJ) operation: two cuts + two joins

- Cuts the genome twice and rejoins loose ends in a different way.
- ▶ Represents most large-scale genome rearrangements (inversions, translocations, fusions, fissions...)

DCJ model

DCJ operation involving two adjacencies

two possibilities of rejoining in a different way

Cases:

A. Each adjacency is in a distinct linear chromosome:

B. Both adjacencies are in the same chromosome, or one is in a circular chromosome:

DCJ model

DCJ operation involving one adjacency and one telomere

two possibilities of rejoining in a different way

Cases:

A. The adjacency and the telomere are in distinct linear chromosomes:

B. The adjacency is in the same linear chromosome, or in a circular chromosome:

DCJ model

DCJ operation involving one adjacency or two telomeres

one possibility of rejoining in a different way

Cases:

A. The adjacency is in a linear chromosome / the telomeres are in two distinct chromosomes:

$$\begin{bmatrix} 1 & 2 & 3 \overset{\vee}{\checkmark} & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \overset{\vee}{\checkmark} & 4 & 5 \end{bmatrix}$$
fusion $\downarrow \uparrow$ fission
$$\begin{bmatrix} 1 & 2 & 3 \overset{\vee}{\checkmark} & 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 3 & 4 & 5 \end{bmatrix}$$

B. The adjacency is in a circular chromosome / the telomeres are in the same chromosome:

$$\begin{bmatrix} \begin{bmatrix} \checkmark & 1 & 2 & 3 & 4 & 5 & \checkmark & \end{bmatrix} \\ \text{circularization} & & \uparrow \uparrow \\ & & \downarrow \uparrow \uparrow \\ & & (2 & 3 & 4 & 5 & \checkmark & 1) \end{bmatrix} \begin{bmatrix} \checkmark & \lor \end{bmatrix}$$

Quiz 2

1 Which transformations can be done with a single DCJ operation?

$$\bigcirc$$
 [1 $\frac{1}{3}$] [4 $\frac{1}{5}$] \leftrightarrow [125] [43]

$$\times$$
 [12345] \leftrightarrow [14325]

$$6$$
[123] (45) \leftrightarrow [12543]

$$H(12345) \leftrightarrow [34512]$$

DCJ halving

DCJ Halving Distance Problem:

Compute the minimum number of DCJ operations required to transform a (rearranged) duplicated genome $\mathbb D$ into a perfectly duplicated genome $2 \cdot \mathbb H$. Denote by $h_{DCJ}(\mathbb D)$ the DCJ halving distance of $\mathbb D$.

DCJ Halving Problem:

Find a sequence of $h_{DCJ}(\mathbb{D})$ DCJ operations that transform a (rearranged) duplicated genome \mathbb{D} into a perfectly duplicated genome $2 \cdot \mathbb{H}$.

Natural graph $NG(\mathbb{D}) = (V, E)$ of a duplicated genome \mathbb{D} :

- 1. $V = \alpha(\mathbb{D}) \cup \gamma(\mathbb{D})$ (each adjacency or telomere of \mathbb{D} is a vertex of $NG(\mathbb{D})$)
- 2. For each family $f \in \mathcal{F}(\mathbb{D})$, each pair of paralogous extremities is connected by an edge in $NG(\mathbb{D})$, i.e.:
 - \blacktriangleright there is an edge connecting the vertex u that contain f_1^h and the vertex v that contain f_2^h
 - \blacktriangleright there is an edge connecting the vertex u' that contain f_1^t and the vertex v that contain f_2^t

Note that:

- ▶ There can be adjacencies/vertices of type $f_1^h f_2^h$ and/or $f_1^t f_2^t$ (NG($\mathbb D$) can contain 1-cycles)
- Let $n = |\mathcal{F}(\mathbb{D})| = \frac{|\mathcal{G}(\mathbb{D})|}{2}$. The number of edges in $NG(\mathbb{D}) = 2n$ (two edges per element of $\mathcal{F}(\mathbb{D})$).

Natural graph of a duplicated genome

For a perfectly duplicated genome $2 \cdot \mathbb{H}$, $NG(2 \cdot \mathbb{H})$ has only 2-cycles and 1-paths: $2n = 2|\mathcal{C}_e| + |\mathcal{P}_o| \implies n = |\mathcal{C}_e| + \frac{|\mathcal{P}_o|}{2}$

Otherwise, if a duplicated genome $\mathbb D$ is not perfectly duplicated:

$$n > |\mathcal{C}_e| + \left\lfloor \frac{|\mathcal{P}_o|}{2} \right\rfloor$$

Types of DCJ operation

Let a DCJ operation transform a duplicated genome \mathbb{D}_1 into another duplicated genome \mathbb{D}_2 :

```
egin{aligned} m_1: \# & 	ext{ of components in } NG(\mathbb{D}_1) \ m_2: \# & 	ext{ of components in } NG(\mathbb{D}_2) \end{aligned} 
ight\} \quad 0 \leq |m_2-m_1| \leq 1
```


Goal: increase the number of even cycles ($|\mathcal{C}_e|$) and/or the number of odd paths ($|\mathcal{P}_o|$) in NG

Types of DCJ operation

Goal: increase the number of even cycles $(|\mathcal{C}_e|)$ and/or the number of odd paths $(|\mathcal{P}_o|)$ in NG

Types of DCJ operation

Goal: increase the number of even cycles ($|\mathcal{C}_e|$) and/or odd paths ($|\mathcal{P}_o|$) in NG

DCJ Halving & Distance

Recall that, if the genome is perfectly duplicated, we have $n = |\mathcal{C}_e| + \frac{|\mathcal{P}_o|}{2}$, otherwise $n > |\mathcal{C}_e| + \left\lfloor \frac{|\mathcal{P}_o|}{2} \right\rfloor$

25 +1

12

A DCJ operation ρ is called **optimal** if

 $\begin{cases} \rho \text{ increases the number of even cycles by one, or} \\ \rho \text{ increases the number of odd paths by two, or} \\ \text{the number of odd paths is odd and} \\ \rho \text{ increases the number of odd paths by one} \\ \text{(can occur at most once)} \end{cases}$

Given a duplicated genome \mathbb{D} , it is possible to find an optimal DCJ operation at each sorting step. Therefore:

$$\mathsf{h}_{ ext{DCJ}}(\mathbb{D}) = n - |\mathcal{C}_{\mathsf{e}}| - \left\lfloor \frac{|\mathcal{P}_{\mathsf{o}}|}{2} \right
floor$$

DCJ Halving

Given a duplicated genome \mathbb{D} ,

with natural graph $NG(\mathbb{D})$,

and DCJ halving distance
$$h = h_{\text{DCJ}}(\mathbb{D}) = n - |\mathcal{C}_e| - \left\lfloor \frac{|\mathcal{P}_o|}{2} \right\rfloor$$
:

- 1. For i = 1 to h
 - Find and apply one optimal DCJ operation.
- 2. NG is now a simple collection of 2-cycles and 1-paths. Reconstruct the perfectly duplicated genome 2- $\mathbb H$ from NG.

DCJ Halving

Quiz 3

1 Which of the following statements about the Natural Graph are true?

References

The complexity of the breakpoint median problem

(David Bryant)

Tech. Rep. CRM-2579, Centre de recherches mathématiques, Université de Montréal, 1998

Genome Halving under DCJ Revisited

(Julia Mixtacki)

LNCS, volume 5092, pages 276-286 (2008)