Topics of today:

1. NP-hardness of unichromosomal breakpoint median
2. Double-cut-and-join (DCJ) model
3. General DCJ halving

NP-hardness of unichromosomal breakpoint median

A unichromosomal circular genome \mathbb{C} can be represented as a simple directed cycle graph:
$\mathrm{Ex}: \mathbb{C}=(1 \overline{2} 3)$

Assume that the genes in three canonical circular genomes $\mathbb{C}_{1}, \mathbb{C}_{2}$ and \mathbb{C}_{3} have the same relative orientation and represent these three genomes in the same directed cycle graph:
Ex: $\mathbb{C}_{1}=(1234), \mathbb{C}_{2}=(2413), \mathbb{C}_{3}=(2314)$

NP-hardness of unichromosomal breakpoint median

The Problem of determining whether a directed graph G has a hamiltonian cycle is NP-complete, even if G has maximum indegree and maximum outdegree equal to 3 .

Reduction of this problem to the problem of computing a breakpoint median of three canonical circular genomes \mathbf{A}, \mathbf{B} and \mathbf{C} that have the same relative orientation:

We need to transform G into another directed graph $G^{\prime \prime}$, such that $G^{\prime \prime}$ is the union of three hamiltonian cycles (each one representing one input genome of the median problem)

NP-hardness of unichromosomal breakpoint median

Build a modified directed graph $G^{\prime \prime}$, such that $G^{\prime \prime}$ is the union of three hamiltonian cycles (each one representing one genome among \mathbf{A}, \mathbf{B} and \mathbf{C})
$G^{\prime \prime}$ has only adjacencies that occur in one or in two genomes
Let \mathbb{M} be a solution to the circular breakpoint median of \mathbf{A}, \mathbf{B} and \mathbf{C} :
\mathbb{M} contains all adjacencies common to two input genomes and no "new" adjacency \downarrow

Initial graph G has an hamiltonian cycle

Double-cut-and-join (DCJ) model

Double-cut-and-join (DCJ) operation: two cuts + two joins

- Cuts the genome twice and rejoins loose ends in a different way.
- Represents most large-scale genome rearrangements (inversions, translocations, fusions, fissions...)

DCJ model

Cases:

A. Each adjacency is in a distinct linear chromosome:

$$
\left.\quad\left[\begin{array}{lll}
1 \\
1 \\
\nabla \vee v
\end{array}\right) 23\right]\left[\begin{array}{lll}
4 \\
4 & w z v & 6
\end{array}\right]
$$

B. Both adjacencies are in the same chromosome, or one is in a circular chromosome:

DCJ model

DCJ operation

 involving one adjacency and one telomere
two possibilities
of rejoining
in a different way

Cases:

A. The adjacency and the telomere are in distinct linear chromosomes:

B. The adjacency is in the same linear chromosome, or in a circular chromosome:

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & \gtrless_{v}^{w} \\
5 & 6 \times v
\end{array}\right]
$$

inversion
 excision/ integration

```
[1 2 3 4 4v z \overline{\sigma}}\overline{5
```


DCJ model

Cases:

A. The adjacency is in a linear chromosome / the telomeres are in two distinct chromosomes:

B. The adjacency is in a circular chromosome / the telomeres are in the same chromosome:

(2345マス)

DCJ halving

DCJ Halving Distance Problem:

Compute the minimum number of DCJ operations required to transform
a (rearranged) duplicated genome \mathbb{D} into a perfectly duplicated genome $2 \cdot \mathbb{H}$.
Denote by $h_{\text {DCJ }}(\mathbb{D})$ the $D C J$ halving distance of \mathbb{D}.

DCJ Halving Problem:

Find a sequence of $\mathrm{h}_{\mathrm{DCJ}}(\mathbb{D}) \mathrm{DCJ}$ operations that transform
a (rearranged) duplicated genome \mathbb{D} into a perfectly duplicated genome $2 \cdot \mathbb{H}$.

Natural graph $N G(\mathbb{D})=(V, E)$ of a duplicated genome \mathbb{D} :

1. $\quad V=\alpha(\mathbb{D}) \cup \gamma(\mathbb{D}) \quad$ (each adjacency or telomere of \mathbb{D} is a vertex of $N G(\mathbb{D})$)
2. For each family $f \in \mathcal{F}(\mathbb{D})$, each pair of paralogous extremities is connected by an edge in $N G(\mathbb{D})$, i.e.:

- there is an edge connecting the vertex u that contain f_{1}^{h} and the vertex v that contain f_{2}^{h}
- there is an edge connecting the vertex u^{\prime} that contain f_{1}^{t} and the vertex v that contain f_{2}^{t}

Note that:

- There can be adjacencies/vertices of type $f_{1}^{h} f_{2}^{h}$ and/or $f_{1}^{t} f_{2}^{t} \quad(N G(\mathbb{D})$ can contain 1-cycles)
- Let $n=|\mathcal{F}(\mathbb{D})|=\frac{|\mathcal{G}(\mathbb{D})|}{2}$. The number of edges in $N G(\mathbb{D})=2 n$ (two edges per element of $\mathcal{F}(\mathbb{D})$).

Natural graph of a duplicated genome

Ex: $\quad \mathbb{D}=$
$\left[\begin{array}{lllll}\overline{4} & 1 & \overline{4} & \overline{3} & 2\end{array}\right]$
[lll $\left.\begin{array}{lll}2 & 3 & 1\end{array}\right]$
$\alpha(\mathbb{D}) \cup \gamma(\mathbb{D})=\left\{4_{1}^{h}, 4_{1}^{t} 1_{1}^{t}, 1_{1}^{h} 4_{2}^{h}, 4_{2}^{t} 3_{1}^{h}, 3_{1}^{t} 2_{1}^{t}, 2_{1}^{h}, 2_{2}^{h}, 22_{2}^{t} 3_{2}^{t}, 3_{2}^{h} 1_{2}^{t}, 1_{2}^{h}, 5_{1}^{t}, 5_{1}^{h} 5_{2}^{h}, 5_{2}^{t}\right\}$

$$
n=|\mathcal{F}(\mathbb{D})|=5 \quad \text { and } \quad \kappa(\mathbb{D})=3
$$

Every vertex has degree one or two: $N G(\mathbb{D})$ is a collection of paths and cycles cycle with k edges: k-cycle or c_{k} path with k edges: k-path or p_{k}
$\left\{\begin{array}{l}\mathcal{C}_{e}=\left\{c_{k}: k \text { is even }\right\}: \\ \mathcal{P}_{e}=\left\{p_{k}: k \text { is even }\right\}: \text { set of even cycles paths } \\ \mathcal{C}_{o}=\left\{c_{k}: k \text { is odd }\right\}: \text { set of odd cycles } \\ \mathcal{P}_{o}=\left\{p_{k}: k \text { is odd }\right\}: \text { set of odd paths }\end{array}\right.$
$\left|\mathcal{C}_{o}\right|+\left|\mathcal{P}_{o}\right|$ is even (NG has $2 n$ edges) $\left|\mathcal{P}_{e}\right|+\left|\mathcal{P}_{o}\right|=\kappa(\mathbb{D})$

For a perfectly duplicated genome $2 \cdot \mathbb{H}$, $N G(2 \cdot \mathbb{H})$ has only 2 -cycles and 1-paths:
$2 n=2\left|\mathcal{C}_{e}\right|+\left|\mathcal{P}_{o}\right| \Rightarrow n=\left|\mathcal{C}_{e}\right|+\frac{\left|\mathcal{P}_{o}\right|}{2}$
Otherwise, if a duplicated genome \mathbb{D} is not perfectly duplicated:

$$
n>\left|\mathcal{C}_{e}\right|+\left\lceil\frac{\left|\mathcal{P}_{0}\right|}{2}\right\rceil
$$

Types of DCJ operation

Let a DCJ operation transform a duplicated genome \mathbb{D}_{1} into another duplicated genome \mathbb{D}_{2} : $\left.\begin{array}{l}m_{1}: \# \text { of components in } N G\left(\mathbb{D}_{1}\right) \\ m_{2}: \# \text { of components in } N G\left(\mathbb{D}_{2}\right)\end{array}\right\} 0 \leq\left|m_{2}-m_{1}\right| \leq 1$

Goal: increase the number of even cycles $\left(\left|\mathcal{C}_{e}\right|\right)$ and/or the number of odd paths $\left(\left|\mathcal{P}_{\circ}\right|\right)$ in $N G$

Types of DCJ operation

Goal: increase the number of even cycles $\left(\left|\mathcal{C}_{e}\right|\right)$ and/or the number of odd paths $\left(\left|\mathcal{P}_{\circ}\right|\right)$ in $N G$

Types of DCJ operation

Goal: increase the number of even cycles $\left(\left|\mathcal{C}_{e}\right|\right)$ and/or odd paths $\left(\left|\mathcal{P}_{o}\right|\right)$ in $N G$

DCJ Halving \& Distance

Recall that, if the genome is perfectly duplicated, we have $n=\left|\mathcal{C}_{e}\right|+\frac{\left|\mathcal{P}_{o}\right|}{2}$, otherwise $n>\left|\mathcal{C}_{e}\right|+\left\lfloor\frac{\left|\mathcal{P}_{o}\right|}{2}\right\rfloor$
A DCJ operation ρ is called optimal if $\left\{\begin{array}{l}\rho \text { increases the number of even cycles by one, or } \\ \rho \text { increases the number of odd paths by two, or } \\ \text { the number of odd paths is odd and } \\ \rho \text { increases the number of odd paths by one } \\ \text { (can occur at most once) }\end{array}\right.$

Given a duplicated genome \mathbb{D}, it is possible to find an optimal DCJ operation at each sorting step. Therefore:

$$
\mathrm{h}_{\mathrm{DCJ}}(\mathbb{D})=n-\left|\mathcal{C}_{e}\right|-\left\lfloor\frac{\left|\mathcal{P}_{\mathrm{o}}\right|}{2}\right\rfloor
$$

DCJ Halving

Given a duplicated genome \mathbb{D},
with natural graph $N G(\mathbb{D})$,
and DCJ halving distance $h=\mathrm{h}_{\mathrm{DCJ}}(\mathbb{D})=n-\left|\mathcal{C}_{e}\right|-\left\lfloor\frac{\left|\mathcal{P}_{o}\right|}{2}\right\rfloor$:

1. For $i=1$ to h :

- Find and apply one optimal DCJ operation.

2. NG is now a simple collection of 2-cycles and 1-paths. Reconstruct the perfectly duplicated genome $2 \cdot \mathbb{H}$ from $N G$.

References

The complexity of the breakpoint median problem
(David Bryant)
Tech. Rep. CRM-2579, Centre de recherches mathématiques, Université de Montréal, 1998

Genome Halving under DCJ Revisited
(Julia Mixtacki)
LNCS, volume 5092, pages 276-286 (2008)

