Topics of today:

Canonical inversion distance and sorting:

1. Relational / Breakpoint diagram
2. Split / Neutral / Joining inversions
3. Good / bad components
4. Hurdles and fortress

Canonical inversion model - circular chromosomes

(Unichromosomal genomes \equiv chromosomes)

Given two canonical circular chromosomes \mathbb{A} and \mathbb{B}, \ldots

Canonical Inversion Distance Problem: Compute the minimum number of inversions required to transform \mathbb{A} into \mathbb{B}.

Denote by $d_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})$ the inversion distance of \mathbb{A} and \mathbb{B}.

Canonical Inversion Sorting Problem:
Find a sequence of $\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})$ inversions that transform \mathbb{A} into \mathbb{B}.

Relational diagram of canonical circular chromosomes

Given canonical circular chromosomes \mathbb{A} and \mathbb{B}, their relational diagram $R D(\mathbb{A}, \mathbb{B})=(V, E)$ is described as follows:

1. $\quad V=V(\xi(\mathbb{A})) \cup V(\xi(\mathbb{B}))$: there is a vertex for each extremity of each gene in \mathbb{A} and a vertex for each extremity of each gene in \mathbb{B}

The vertices corresponding to $\xi(\mathbb{A})$ are drawn in an upper line, while the vertices corresponding to $\xi(\mathbb{B})$ are drawn in a lower line.

In each line, the vertices must follow the same (circular) order of the corresponding extremities in the respective chromosome, according to one of the two reading directions.

Each vertex v has a label $\ell(v)$, that corresponds to the extremity it represents.
2. $E=E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B}) \cup E_{\xi}$, where:

- Adjacency edges: $\left\{\begin{array}{l}E_{\alpha}(\mathbb{A})=\{u v: u, v \in V(\xi(\mathbb{A})) \text { and } \ell(u) \ell(v) \in \alpha(\mathbb{A})\} \\ E_{\alpha}(\mathbb{B})=\{u v: u, v \in V(\xi(\mathbb{B})) \text { and } \ell(u) \ell(v) \in \alpha(\mathbb{B})\}\end{array}\right.$
- Extremity edges: $E_{\xi}=\{u v: u \in V(\xi(\mathbb{A}))$ and $v \in V(\xi(\mathbb{B}))$ and $\ell(u)=\ell(v)\}$

Note that:

- Let $n=\left|\mathcal{G}_{\star}\right|$. The number of edges in $E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$ is $2 n$ (n adjacency edges per chromosome).

Relational diagram of canonical circular chromosomes

$$
\begin{equation*}
\mathbb{A}= \tag{7}
\end{equation*}
$$

Every vertex has degree two:
$R D(\mathbb{A}, \mathbb{B})$ is a collection of (even) cycles (alternating edes in E_{ξ} and in $E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$) cycle with k edges in $E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$: k-cycle $\mathcal{C}=$ set of cycles in $R D(\mathbb{A}, \mathbb{B})$

If $\mathbb{A}=\mathbb{B}$,
$R G(\mathbb{A}, \mathbb{B})$ has only 2 -cycles:

$$
2 n=2|\mathcal{C}| \Rightarrow n=|\mathcal{C}|
$$

Otherwise, if $\mathbb{A} \neq \mathbb{B}$:

$$
n>|\mathcal{C}|
$$

Types of inversion and lower bound for the inversion distance

Assign one (arbitrary) direction to each cycle of $R D(\mathbb{A}, \mathbb{B})$

$$
\mathbb{B}=\quad(1234567)
$$

$\mathbb{B}=(1234567)$

Lower bound for the inversion distance: $\quad d_{\mathrm{INv}}(\mathbb{A}, \mathbb{B}) \geq n-|\mathcal{C}|$

Types of cycles

Trivial cycle: one adjacency in each chromosome
2-cycle (sorted)

Good cycle: $\left\{\begin{array}{l}\text { at least one pair of adjacencies with opposite directions in chromosome } \mathbb{A} \\ \text { at least one pair of adjacencies with opposite directions in chromosome } \mathbb{B}\end{array}\right.$
Can be split into two cycles by applying an inversion in \mathbb{A} or in \mathbb{B}

Types of cycles

Semi-good cycle: $\left\{\begin{array}{l}\text { at least one pair of adjacencies with opposite directions in one of the two chromosomes } \\ \text { all adjacencies have the same direction in the other chromosome }\end{array}\right.$
Can be split into two cycles by applying an inversion only in \mathbb{A} or only in \mathbb{B}

(1234567)
(17453 $\overline{6} \overline{2}$)

(1234567)

Types of cycles

Bad cycle: $\left\{\begin{array}{l}\text { all adjacencies in chromosome } \mathbb{A} \text { have the same direction } \\ \text { all adjacencies in chromosome } \mathbb{B} \text { have the same direction }\end{array}\right.$
Cannot be split into two cycles
(132)

(123)

Relational diagram \cong Breakpoint diagram

Relational diagram:

(1 $\overline{7} 453 \overline{6} \overline{2}$)

(1234567)

Looking either at the top line or at the bottom line of the diagram:

Two interleaving cycles: $c \ldots c^{\prime} \ldots c \ldots c^{\prime}$
Interleaving sequence of cycles: $c_{1}, c_{2}, \ldots, c_{k}$ such that c_{i} and c_{i+1} are interleaving for all $1 \leq i \leq k-1$
Interleaving component or simply component K :
$\left\{\begin{array}{l}\text { for each pair of cycles } c, c^{\prime} \in K \text { there is an } \\ \text { interleaving sequence from } c \text { to } c^{\prime} \\ K \text { is maximal }\end{array}\right.$

$$
c^{\prime} c c^{\prime} c c^{\prime \prime} c c^{\prime \prime}
$$

Breakpoint diagrams:

(1234567)

Types of (interleaving) components

Trivial component: only one trivial 2-cycle
Good component: at least one good or semi-good cycle
(17453 $\overline{\mathrm{F}} \overline{2}$)

(17453 $\overline{6} \overline{2}$)

$\sqrt{7}(1234567)$
Good

Types of (interleaving) components

Bad component: only bad cycles
(1432)

Quiz 1

1 Which of the following statements about the relational diagram are true?
Х A cycle can always be split into two cycles with an inversion.
2. A joining inversion cannot be optimal.

Х A split inversion is always optimal.
D It is always possible to split a good or a semi-good cycle into two.
(E) A bad cycle cannot be split by an inversion.

Unsafe inversions

A split inversion applied to a cycle of a good component can create bad components

Sorting a good component - finding safe split inversions

$\left(\begin{array}{llll}1 & 5 & 4 & 2 \\ 6 & 3\end{array}\right)$

$$
(123456)
$$

$\theta_{x y}$: sobgraph of θ composed of $x y$ and its adjacent vertices Effect of an inversion on the overlap graph θ :

IF $x y$ is bud: $\left\{\begin{array}{l}\left.1) \text { flip the types of the vertices of } \theta_{x y}-3 x y\right\}\end{array}\right.$
2) complement the edges of $\theta_{x y}-\{x y\}$

Ex: $x y=3^{h} y^{t}$

\Downarrow

if $x y$ is good $\left\{\right.$ 1) flip the typos of all vertices of $G_{x y}$ 2) complement the edges of $G_{x y}$
$\left(\begin{array}{lllll}1 & 5 & 4 & 2 & \overline{3}\end{array}\right)$

$\left(\begin{array}{ll}1 & 2\end{array} 3456\right)$

flip and T complement

7

Sorting a good component - finding safe split inversions
$G: \#$ of good adjucancics in $R D(A, B)$
$g(x y)$: \# of good adjacencios overlapping ry in RD (A, B)
$b(x y)$: \# of bad adjacencies overlapping $x y$ in $R D(A, B)$
$\operatorname{score}(x y): \#$ good adjacencies in the diagram offer fixing $x y$

$$
\operatorname{score}(x y)=G+b(x y)-g(x y)-1
$$

An inversion that fixes a good target adjacency with maximal score is SAFE. (doer not crate new bad components)

Sorting a bad component with a neutral inversion

Sorting bad components - hurdles

K_{1}, K_{2} and K_{3} are three distinct components in $R D(\mathbb{A}, \mathbb{B})$ so that $K_{3} \ldots K_{1} \ldots K_{1} \ldots K_{3} \ldots K_{2} \ldots K_{2}$ $\Rightarrow K_{3}$ separates K_{1} and K_{2}

(168792435)

(123456789)

By joining with an inversion two cycles c_{1} and c_{2}, that belong to two distinct components K_{1} and K_{2} respectively, we merge not only the components K_{1} and K_{2}, but also all components that separate K_{1} and K_{2}, into a single good component K.

Sorting bad components - simple hurdles and super hurdles
h : number of hurdles in $R D(\mathbb{A}, \mathbb{B})$
hurdle: had component that doer not separate 2 had components
super hurdle K : fixing K by a neutral inversion crater a new hurdle

Sorting bad components - simple hurdles and super hurdles

Sorting bad components - fortress

fortress:
: A) odd \# of hurdles
o) all hurdles are super hurdles

Canonical inversion distance of circular chromosomes

$$
\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+h+f
$$

\qquad

Quiz 2

1 Which of the following statements about the inversion model are true?

A The inversion distance depends only on the number of cycles in the relational diagram.
B Every bad component in the diagram is a hurdle.
C A good component can always be sorted with (safe) split inversions.
D A super hurdle can be optimally sorted with a neutral inversion.
E A diagram with an even number of bad components can be a fortress.

References

Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals (Sridhar Hannenhalli and Pavel A. Pevzner)
Journal of the ACM, Vol. 46, No. 1, pages. 1-27 (1999)

The Inversion Distance Problem
(Anne Bergeron, Julia Mixtacki and Jens Stoye)
In: Mathematics of Evolution and Phylogeny. Gascuel O (Ed); (2005)

