Quiz 1

1 Which of the following statements about the inversion model are true?

XThe inversion distance depends only on the number of cycles in the relational diagram.
){Every bad component in the diagram is a hurdle.

@A good component can always be sorted with (safe) split inversions.

X A super hurdle can be optimally sorted with a neutral inversion.

E A diagram with an even number of bad components can be a fortress.



Topics of today:

Canonical inversion distance and sorting:

1. Component tree

2. Circularizing linear chromosomes

Singular DCJ-indel distance and sorting:

1. Indels: insertions and deletions
2. Relational graph of singular genomes

3. Runs



Chained and nested components on the relational diagram

Alternative to component separation: chaining and nesting relationships between components

sequence of components Ki, Ka, ..., Ky

Chain: the rightmost adjacency-edge of K; is succeeded by
the leftmost adjacency-edge of Kjy1, for 1 <i</?

Maximal chain: cannot be extended to the left nor to the right.

A maximal chain H is nested in a component K when the leftmost adjacency-edge of H is preceded by an
adjacency-edge of K and the rightmost adjacency-edge of H is succeeded by an adjacency-edge of K.
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Ki={a} K ={a} Ks = {c3} Ks = {ci} Ks = {c7} Ks = {cs, c6}

H1 = K1 > K5 ,

b = Kz < Ky (nested in component Ki) ,
H3 = K3 (nested in component K3) ,
Hs = Kg (nested in component Ks)

Maximal chains:



Chained component tree Ty (rooted)

Ki={a} K ={a} Kz = {c} Ko ={a} Ks = {cr} Ks={cs ¢}

H1 = K1 > K5 B

H, = K 1 Ky (nested in component Ki) ,
H3 = K3 (nested in component K3) ,

H, = Ko (nested in component Ks)

Maximal chains:

bad node (0): K; is a bad component;

1. One round node per component K;: . .
good node (®): K; is a trivial or a good component.

2. One square (m) node per maximal chain H;, whose children are the round nodes corresponding to the
components of H;. A square node is either the root or a child of the component in which Hj is nested.

Hy
T : K1 Ks

H He o p. path connecting two distinct round nodes u; and uy in Tm(A, B)
K>
H3

K3

Ky Ke round nodes in P\{u1, uz}: components that separate u; and up in RG(A, B).



Component tree T, (unrooted)

Max-flower: maximal connected subgraph composed of good and/or square nodes only.
Contraction of Tg into unrooted T,: for each max-flower F of Tn:
1. Replace F by a single good round node g, such that g is connected to all bad nodes connected to F
5 {Ifg has exactly two neighbors by and by: remove g from the tree and connect by to by;
If g is a leaf: simply remove g from the tree (all leaves in T, are bad).
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Cost of covering the component tree T,

path P in To: {

cost of path P: 7(P) {

short: contains a single bad node
long: contains at least two bad nodes

P is short : 7(P) =1 (cut a bad component)

P is long : 7(P) = 2 (merge two or more components)

Cover of To: set of paths P such that each bad node of T, is contained in at least one path P € P

Cost of cover P: 7(P) = 2 pep T(P)

Cost of an optimal cover of To:
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Covering the component tree T,

L: # of leaves in T5 ; Branching node of T,: any node whose degree is > 3

if £ < 2: the complete tree T,

Leaf-branch of To: ¢ if £ > 3: maximal path u1, w2, ..., Uy, such that uy is a leaf of T, and,
for i = 2, ..., k, the degree of internal node u; in T is two

A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of 1)

Traversal: path connecting two leaves of To

Suppose L = 2,4,6, ...:

P(To): smallest set of traversals covering all nodes of Ty : |B(To)| = %

COVERTREEWITHTRAVERSALS

Input: unrooted tree To with £ = 2n leaves
Output: set P of n traversals covering all nodes of T,

Based on any planar view of Ty, enumerate the leaves from 1 to 2n in circular order;

P=0;
for i=1to ndo
P. = P U {traversal connecting leaves i and i + n};

Return 7/7;;




Computing 7(T5)

Lower bound for the cost of an optimal cover of To:  7(To) > L
Each traversal T has cost 7(T) =2

If £ is even, B(To) is an optimal cover:
=7(T) =7 (ﬁ(n)) —2£—r

If £ is odd and T, has a short leaf-branch s (7(s) = 1):
= 7(To) =7 (B(To \5)) +7(s) =255 +1= £

If £ is odd and T, has no short leaf-branch (“fortress”); let £ be any long leaf-branch of T, (7(¢) = 2):
= 7(To) = T(ﬁ(n \e)) +r() =252 42=L41

The cost of any optimal cover of 15 is:

L+1 if L is odd and all leaf-branches are long ( “fortress”),
m(To) =

L otherwise.



Canonical inversion distance

dI]\'V(AyB) =n-— |C| =+ T

where

T« = T(To(A,B)) =h+f



Components are framed conserved intervals

Assuming that B=(1 2 3 ... 16), let us identify its framed conserved intervals with respect to

For given i > 1 and j > 1 such that i+j < n+41:

Conserved interval: interval of A composed of values i,i+1,...,i4+j (assuming n+1=1)

. direct: first element is /i and last elementis i+j; or
Framed conserved interval . . .3
reverse: first element is i+j and last element is i

Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13];[13..10], [16..10]

Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13]; [13..10]
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Components are framed conserved intervals
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[2.3] [16..13] [13..10]

The inversion distance can be computed in linear time, by efficiently identifying chains of framed conserved
intervals (Bergeron et al., 2002: Common intervals and sorting by reversals: a marriage of necessity)

An optimal inversion sorting scenario can be computed in subquadratic time.
(Tannier and Sagot, 2004: Sorting by reversals in subquadratic time)



Canonical inversion distance of linear chromosomes

Given canonical linear chromosomes A and B:

Add one new family (e.g. 0) and circularize chromosome B into B’ = (0 B)

dinv((0 A),B)

dINV(A' ]B) = min {dIN\"(((_) A)' Bl)

Example:

A=[51234 and B=[12345]
B'=(012345)
dn((051234),B)=3
dnv((051234),B)=2

diwv (A, B) = 2



Quiz 2

1 What is the bottleneck of the running time of inversion sorting?

A Finding inversions that fix bad components.
B Finding split inversions.

@Finding safe split inversions.

D Finding inversions that merge bad components.



DCJ and indels

» DCJ: structural rearrangements
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> Modifying the content: insertions and deletions (indels)
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Singular DCJ-indel model

Recall that G, = G(A) N G(B)

Let A = G(A)\ G« (set of genes exclusive to genome A)
B = G(B) \ G« (set of genes exclusive to genome B)

Restrictions for indel operations:
» At most one chromosome can be deleted or inserted at once
» Only genes of set A can be deleted

» Only genes of set B can be inserted



Singular DCJ-indel model

Given two singular genomes A and B,...

Singular DCJ-indel Distance Problem: Compute the minimum number of DCJ and indel operations
required to transform A into B.

Denote by dpv,; (A, B) the DCJ-indel distance of A and B.

Singular DCJ-indel Sorting Problem: Find a sequence of di,;(A, B) DCJ and indel operations
that transform A into B.

First upper bound:

divs (A, B) < dpes(Ac, Be) + |A] + |B]

where A is the genome obtained from A by simply removing the genes of A
B. is the genome obtained from B by simply removing the genes of B



Relational graph of singular genomes

Given two singular genomes A and B, their relational graph RG(A,B) = (V, E) is described as follows:

1. V=V((A)UV(EB)): thereis a vertex for each extremity of each gene in A

and a vertex for each extremity of each gene in B

Each vertex v has a label ¢(v), that corresponds to the extremity it represents.

2. E = Eq(A) UEs(B) U E¢ U Ep(A) U Eip(B), where:

Ea(A) ={uv:u,v e V(A)) and L(u)l(v) € a(A)}
Eo(B) ={uv:u v e V(B)) and £(u)é(v) € a(B)}

v

Adjacency edges: {

> Extremity edges: E; = {uv: u € V(§(A)) and v € V(§(B)) and £(u) = £(v)}

Ep(A) = {uv: ¢(u) =gt and £(v) = g" and g € A}
Epn(B) = {uv: f(u) = gt and £(v) = gh and g € B}

v

Indel edges: {



Relational graph of singular genomes
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components can be indel-inclosing or indel-free
n< \%#\

If Ac =B,

Every vertex has degree one or two:
RG(A, B) is a collection of paths and cycles

cycle with k edges in E¢: k-cycle or ¢,
path with k edges n E¢: k-path or pj

if k = 0 the component is a singleton

C = {ck : k>2} : set of cycles (k is even)
S = {ck : k=0} : set of circular singletons
sa = {pk : starts and ends in A} :
set of AA-paths (k is even)
Pee = {pk : starts and ends in B} :
set of BB-paths (k is even)
Par = {pk : starts in A and ends in B} :

set of AB-paths (k is odd)

|Pas| is even (E¢ has 2n edges)
[Pan| + |Per| + [Par| = w(A) + x(B)

RG(A,B) has only 2-cycles and 1-paths:

\Pm

2n=2|C| + [Pus| = n=lc|+ 2

Otherwise, if Ac # Bc:

P
n>\C|+‘ 2|




Runs of indel-edges
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Each run can be inserted/deleted at once
= Second upper bound:
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