
Quiz 1

1 Which of the following statements about the inversion model are true?

A The inversion distance depends only on the number of cycles in the relational diagram.

B Every bad component in the diagram is a hurdle.

C A good component can always be sorted with (safe) split inversions.

D A super hurdle can be optimally sorted with a neutral inversion.

E A diagram with an even number of bad components can be a fortress.

¥
×



Topics of today:

Canonical inversion distance and sorting:

1. Component tree

2. Circularizing linear chromosomes

Singular DCJ-indel distance and sorting:

1. Indels: insertions and deletions

2. Relational graph of singular genomes

3. Runs



Chained and nested components on the relational diagram

Alternative to component separation: chaining and nesting relationships between components

Chain:

8
><

>:

sequence of components K1,K2, ...,K`

the rightmost adjacency-edge of Ki is succeeded by

the leftmost adjacency-edge of Ki+1, for 1  i  `

Maximal chain: cannot be extended to the left nor to the right.

A maximal chain H is nested in a component K when the leftmost adjacency-edge of H is preceded by an

adjacency-edge of K and the rightmost adjacency-edge of H is succeeded by an adjacency-edge of K .

c1 c2 c3 c4 c5

c7

c6

K1 = {c1} K2 = {c2} K3 = {c3} K4 = {c4} K5 = {c5, c6}K6 = {c7}

r-r r-r r-r r-r r-r r-r r� r r� r r-r r-r r-r r-r r-r r-r r-rA : 1
h
10

t
10

h
2
t

2
h

4
t

4
h

6
t

6
h

5
t

5
h

7
t

7
h

3
h

3
t

8
t

8
h

9
t

9
h
11

t
11

h
15

t
15

h
14

t
14

h
12

t
12

h
13

t
13

h
1
t

r� r r� r r� r r� r r� r r� r r-r r� r r� r r� r r� r r� r r� r r� r r� r
B : 1

h
2
t

2
h

3
t

3
h

4
t

4
h

5
t

5
h

6
t

6
h

7
t

7
h

8
t

8
h

9
t

9
h
10

t
10

h
11

t
11

h
12

t
12

h
13

t
13

h
14

t
14

h
15

t
15

h
1
t

Maximal chains:

8
>>><

>>>:

H1 = K1 ./ K5 ,

H2 = K2 ./ K4 (nested in component K1) ,

H3 = K3 (nested in component K2) ,

H4 = K6 (nested in component K5)



Chained component tree ⌥⌅ (rooted)

c1 c2 c3 c4 c5

c7

c6

K1 = {c1} K2 = {c2} K3 = {c3} K4 = {c4} K5 = {c5, c6}K6 = {c7}

r-r r-r r-r r-r r-r r-r r�r r�r r-r r-r r-r r-r r-r r-r r-r
r�r r�r r�r r�r r�r r�r r-r r�r r�r r�r r�r r�r r�r r�r r�r

Maximal chains:

8
>>><

>>>:

H1 = K1 ./ K5 ,

H2 = K2 ./ K4 (nested in component K1) ,

H3 = K3 (nested in component K2) ,

H4 = K6 (nested in component K5)

1. One round node per component Ki :

(
bad node (�): Ki is a bad component;

good node (•): Ki is a trivial or a good component.

2. One square (⌅) node per maximal chain Hi , whose children are the round nodes corresponding to the

components of Hi . A square node is either the root or a child of the component in which H1 is nested.

⌥⌅ : ⌘⌘ QQ
⌅H1wgK1

��@@
⌅H2wK2

⌅H3 wgK3

w
K4

wgK5

⌅H4w
K6

P: path connecting two distinct round nodes u1 and u2 in ⌥⌅(A,B)
round nodes in P\{u1, u2}: components that separate u1 and u2 in RG(A,B).



Component tree ⌥� (unrooted)
Max-flower: maximal connected subgraph composed of good and/or square nodes only.

Contraction of ⌥⌅ into unrooted ⌥�: for each max-flower F of ⌥⌅:

1. Replace F by a single good round node g , such that g is connected to all bad nodes connected to F

2.

(
If g has exactly two neighbors b1 and b2: remove g from the tree and connect b1 to b2;

If g is a leaf: simply remove g from the tree (all leaves in ⌥� are bad).

⌥⌅ ⌥�

⌘⌘ QQ
⌅H1wgK1

��@@
⌅H2wK2

⌅H3 wgK3

w
K4

wgK5

⌅H4w
K6

!
⌘⌘ QQ
wwgK1wwg

K3

wgK5w ! wgK1wg
K3

wgK5

⌘⌘ QQ
⌅w

��AA
⌅w

��AA
⌅w w

wg
v1

wgv2
��AA
⌅wg
⌅wgv3

wg
⌅wgv4

!
wwg
v1

wgv2
��AA
wwgwwg

v3

wgwwg
v4

!
wgv1 wgv2

��AA
wwgwg

v3

wgwg
v4



Cost of covering the component tree ⌥�

path P in ⌥�:

(
short: contains a single bad node

long: contains at least two bad nodes

cost of path P: ⌧(P)

(
P is short : ⌧(P) = 1 (cut a bad component)

P is long : ⌧(P) = 2 (merge two or more components)

Cover of ⌥�: set of paths bP such that each bad node of ⌥� is contained in at least one path P 2 bP

Cost of cover bP: ⌧( bP) =
P

P2 bP ⌧(P)

Cost of an optimal cover of ⌥�: ⌧(⌥�) = min
bP is a cover of ⌥�

⌧( bP)

⌥⌅ ⌥� ⌥⌅ ⌥�

⌘⌘ QQ
⌅H1wgK1

��@@
⌅H2wK2

⌅H3 wgK3

w
K4

wgK5

⌅H4w
K6

! wgK1wg
K3

wgK5 ⌘⌘ QQ
⌅w

��AA
⌅w

��AA
⌅w w

wg
v1

wgv2
��AA
⌅wg

⌅wgv3

wg
⌅wgv4

!
wgv1 wgv2

��AA
wwgwg

v3

wgwg
v4

⌧(⌥⌅) = ⌧(⌥�)



Covering the component tree ⌥�

L: # of leaves in ⌥� ; Branching node of ⌥�: any node whose degree is � 3

Leaf-branch of ⌥�:

8
>><

>>:

if L  2: the complete tree ⌥�

if L � 3: maximal path u1, u2, ..., uk , such that u1 is a leaf of ⌥� and,

for i = 2, ..., k, the degree of internal node ui in T is two

A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of ⌥�)

Traversal: path connecting two leaves of ⌥�

Suppose L = 2, 4, 6, ...:

bPt(⌥�): smallest set of traversals covering all nodes of ⌥� : | bPt(⌥�)| = L
2

CoverTreeWithTraversals

Input: unrooted tree ⌥� with L = 2n leaves

Output: set bPt of n traversals covering all nodes of ⌥�

Based on any planar view of ⌥�, enumerate the leaves from 1 to 2n in circular order;

bPt = ;;
for i = 1 to n do

bPt = bPt [ {traversal connecting leaves i and i + n};
Return bPt;



Computing ⌧(⌥�)

Lower bound for the cost of an optimal cover of ⌥�: ⌧(⌥�) � L

Each traversal T has cost ⌧(T ) = 2

If L is even, bPt(⌥�) is an optimal cover:

) ⌧(⌥�) = ⌧
⇣
bPt(⌥�)

⌘
= 2

L
2
= L

If L is odd and ⌥� has a short leaf-branch s (⌧(s) = 1):

) ⌧(⌥�) = ⌧
⇣
bPt(⌥� \ s)

⌘
+ ⌧(s) = 2

L�1

2
+ 1 = L

If L is odd and ⌥� has no short leaf-branch (“fortress”); let ` be any long leaf-branch of ⌥� (⌧(`) = 2):

) ⌧(⌥�) = ⌧
⇣
bPt(⌥� \ `)

⌘
+ ⌧(`) = 2

L�1

2
+ 2 = L+ 1

The cost of any optimal cover of ⌥� is:

⌧(⌥�) =

(
L+ 1 if L is odd and all leaf-branches are long (“fortress”),

L otherwise.



Canonical inversion distance

dinv(A,B) = n � |C|+ ⌧⇤

where

⌧⇤ = ⌧(⌥�(A,B)) = h + f



Components are framed conserved intervals

Assuming that B = (1 2 3 ... 16), let us identify its framed conserved intervals with respect to

A = (1 4 2 3 5 7 6 8 16 14 15 13 11 12 10 9)

For given i � 1 and j � 1 such that i+j  n+1:

Conserved interval: interval of A composed of values i , i+1, ... , i+j (assuming n+1 ⌘ 1)

Framed conserved interval

(
direct: first element is i and last element is i+j ; or

reverse: first element is i+j and last element is i

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10], [16..10]

Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10]

1

z }| {
4 2

z}|{
3 5

z }| {
7 6 8

z }| {

16
z }| {

14 15 13
z }| {

11 12 10 9 17⌘1

g
1
h�� g

4
h g

4
t�� g

2
t i

2
h�� i

3
t g

3
h�� g

5
t g

5
h�� g

7
t g

7
h�� g

6
t g

6
h�� i

8
t g

8
h�� i

16
h i

16
t�� i

14
h i

14
t�� i

15
h i

15
t�� i

13
h i

13
t�� i

11
h i

11
t�� i

12
h i

12
t�� i

10
h i

10
t�� g

9
t g

9
h�� g

1
t



Components are framed conserved intervals

1

z }| {
4 2

z}|{
3 5

z }| {
7 6 8

z }| {

16
z }| {

14 15 13
z }| {

11 12 10 9 17⌘1

g
1
h�� g

4
h g

4
t�� g

2
t i

2
h�� i

3
t g

3
h�� g

5
t g

5
h�� g

7
t g

7
h�� g

6
t g

6
h�� i

8
t g

8
h�� i

16
h i

16
t�� i

14
h i

14
t�� i

15
h i

15
t�� i

13
h i

13
t�� i

11
h i

11
t�� i

12
h i

12
t�� i

10
h i

10
t�� g

9
t g

9
h�� g

1
t

⇣⇣⇣⇣⇣
PPPPP
⌅z[1..5]

⌅z
[2..3]

zj
[5..8]

z[8..17]

�� @@
⌅zj

[16..13]

zj
[13..10]

The inversion distance can be computed in linear time, by e�ciently identifying chains of framed conserved

intervals (Bergeron et al., 2002: Common intervals and sorting by reversals: a marriage of necessity)

An optimal inversion sorting scenario can be computed in subquadratic time.

(Tannier and Sagot, 2004: Sorting by reversals in subquadratic time)



Canonical inversion distance of linear chromosomes
Given canonical linear chromosomes A and B:

Add one new family (e.g. 0) and circularize chromosome B into B0 = (0 B)

dinv(A,B) = min

(
dinv((0 A),B0)

dinv((0̄ A),B0)

Example:

A = [5̄ 1 2 3̄ 4] and B = [1 2 3 4 5]

B0
= (0 1 2 3 4 5)

dinv((0 5̄ 1 2 3̄ 4),B0
) = 3

dinv((0̄ 5̄ 1 2 3̄ 4),B0
) = 2

dinv(A,B) = 2



Quiz 2

1 What is the bottleneck of the running time of inversion sorting?

A Finding inversions that fix bad components.

B Finding split inversions.

C Finding safe split inversions.

D Finding inversions that merge bad components.

0



DCJ and indels

I DCJ: structural rearrangements

# translocation (DCJ)

# fusion (DCJ)

# inversion (DCJ)

I Modifying the content: insertions and deletions (indels)

# deletion



Singular DCJ-indel model

Recall that G? = G(A) \ G(B)

Let

(
A = G(A) \ G? (set of genes exclusive to genome A)
B = G(B) \ G? (set of genes exclusive to genome B)

Restrictions for indel operations:

I At most one chromosome can be deleted or inserted at once

I Only genes of set A can be deleted

I Only genes of set B can be inserted



Singular DCJ-indel model

Given two singular genomes A and B,...

Singular DCJ-indel Distance Problem: Compute the minimum number of DCJ and indel operations

required to transform A into B.

Denote by d
id
dcj(A,B) the DCJ-indel distance of A and B.

Singular DCJ-indel Sorting Problem: Find a sequence of d
id
dcj(A,B) DCJ and indel operations

that transform A into B.

First upper bound:

d
id
dcj(A,B)  ddcj(Ac,Bc) + |A|+ |B|

where

(
Ac is the genome obtained from A by simply removing the genes of A
Bc is the genome obtained from B by simply removing the genes of B



Relational graph of singular genomes

Given two singular genomes A and B, their relational graph RG(A,B) = (V ,E) is described as follows:

1. V = V (⇠(A)) [ V (⇠(B)) : there is a vertex for each extremity of each gene in A

and a vertex for each extremity of each gene in B

Each vertex v has a label `(v), that corresponds to the extremity it represents.

2. E = E↵(A) [ E↵(B) [ E⇠ [ Eid(A) [ Eid(B), where:

I Adjacency edges:

(
E↵(A) = {uv : u, v 2 V (⇠(A)) and `(u)`(v) 2 ↵(A)}

E↵(B) = {uv : u, v 2 V (⇠(B)) and `(u)`(v) 2 ↵(B)}

I Extremity edges: E⇠ = {uv : u 2 V (⇠(A)) and v 2 V (⇠(B)) and `(u) = `(v)}

I Indel edges:

(
Eid(A) = {uv : `(u) = g

t and `(v) = g
h and g 2 A}

Eid(B) = {uv : `(u) = g
t and `(v) = g

h and g 2 B}



Relational graph of singular genomes

components can be indel-inclosing or indel-free

Every vertex has degree one or two:

RG(A,B) is a collection of paths and cycles

cycle with k edges in E⇠: k-cycle or ck

path with k edges n E⇠: k-path or pk

if k = 0 the component is a singleton

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

C = {ck : k�2} : set of cycles (k is even)

S = {ck : k=0} : set of circular singletons

PAA = {pk : starts and ends in A} :

set of AA-paths (k is even)

PBB = {pk : starts and ends in B} :

set of BB-paths (k is even)

PAB = {pk : starts in A and ends in B} :

set of AB-paths (k is odd)

|PAB| is even (E⇠ has 2n edges)

|PAA|+ |PBB|+ |PAB| = (A) + (B)

If Ac = Bc,

RG(A,B) has only 2-cycles and 1-paths:

2n = 2|C|+ |PAB| ) n = |C|+
|PAB|
2

Otherwise, if Ac 6= Bc:

n > |C|+
|PAB|
2

÷Ee o - cycle or singletons

•=EEE§
O - path : BB - path

in -18*1



Runs of indel-edges

One indel-enclosing cycle:

⇤⇥ ��~
⇤⇥ �� ⇤⇥ ��

⇤⇥ �� ⇤⇥ ��{
q q q q q r r q q q q r q q q q r q q q
q q r q q q q q q r r q q q q r q q q q ⇤ = 4

indel edges , runs

⇤(C) is the number of runs in component C

⇤

0 cycles or paths

1 cycles, paths and singletons

2 cycles, paths

3 paths

4 cycles, paths

5 paths

6 cycles, paths

.

.

.

.

.

.

Each run can be inserted/deleted at once

) Second upper bound:

d
id
dcj(A,B)  n � |C|�

|PAB|
2

+

X

C2RG

⇤(C)

"

a

'

t t
.

. .

. . .

ladel-free

} aided - enclosing



References

The Inversion Distance Problem

(Anne Bergeron, Julia Mixtacki and Jens Stoye)

In: Mathematics of Evolution and Phylogeny. Gascuel O (Ed); (2005)

Double Cut and Join with Insertions and Deletions

(Maŕılia D.V. Braga, Eyla Willing and Jens Stoye)

JCB, Vol. 18, No. 9 (2011)


