Topics of today:

Singular DCJ-indel distance and sorting:

1. Indel-potential
2. Deducting path recombinations
3. Restricted DCJ-indel model
4. The diameter of the DCJ-indel distance
5. Establishing the triangular inequality

Runs of indel-edges

One indel-enclosing cycle:

$\Lambda(C)$ is the number of runs in component C

\wedge	
0	cycles or paths
1	cycles, paths and singletons
2	cycles, paths
3	paths
4	cycles, paths
5	paths
6	cycles, paths

Runs of indel-edges

Types of DCJ operation $\left\{\begin{array}{l}\Delta_{\text {DCJ }}=0 \text { (gaining): creates one cycle or two } \mathbb{A} \mathbb{B} \text {-paths } \\ \Delta_{\text {DCJ }}=1 \text { (neutral): does not change the number of cycles nor of } \mathbb{A B} \text {-paths } \\ \Delta_{\text {DCJ }}=2 \text { (losing): destroys one cycle or two } \mathbb{A} \mathbb{B} \text {-paths }\end{array}\right.$
Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once
\Rightarrow Second upper bound:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}+\sum_{C \in R G} \Lambda(C)
$$

DCJ operations can modify the number of runs:

A DCJ operation can have $\begin{cases}\Delta_{\Lambda}=-2 & \text { (merges two pairs of runs) } \\ \Delta_{\Lambda}=-1 & \text { (merges one pair of runs) } \\ \Delta_{\Lambda}=0 & \text { (preserves the runs) } \\ \Delta_{\Lambda}=1 & \text { (splits ono run) } \\ \Delta_{\Lambda}=2 & \text { (spritc two runs) }\end{cases}$

Runs can be merged and accumulated in both genomes

A sequence of 3 operations sorting \mathbb{A} into $\mathbb{I}=\left[\begin{array}{ll}1 & 2\end{array}\right]$

A sequence of 5 operations sorting \mathbb{A} into \mathbb{B}

A sequence of 2 operations sorting \mathbb{B} into $\mathbb{I}=\left[\begin{array}{lll}\overline{1} & 2 & 3\end{array}\right]$

Merging runs with "internal" gaining DCJ operations

An gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component can decrease the number of runs:

$\Lambda=4 \quad \rightsquigarrow \quad 2+1=3\left(\Delta_{\Lambda}=-1\right)$

DCJ-sorted (or short) components: 2-cycles and 1-paths (and 0-cycles and 0-paths)

Long components: k-cycles (with $k \geq 4$) and k-paths (with $k \geq 2$)

DCJ-sorting a long component C : transforming C into a set of DCJ-sorted components

Indel-potential $\lambda(C)$ of a component C :
minimum number of runs that we can obtain by DCJ-sorting C with gaining DCJ operations

Indel-potential λ^{\prime} of a cycle C

$\Lambda(C)=0,1,2,4,6,8, \ldots$
We will show that $\lambda^{\prime}(C)$ depends only on the value $\Lambda(C)$: denote $\lambda^{\prime}(C)=\lambda^{\prime}(\Lambda(C))$

$$
\begin{aligned}
& \Lambda(C)=1 \Rightarrow \lambda^{\prime}(1)=1 \\
& \Lambda(C)=2 \Rightarrow \lambda^{\prime}(2)=2 \\
& \Lambda(C) \geq 4: \Lambda(C)=o_{1}+o_{2} \text { such that } o_{1} \text { and } o_{2} \text { are odd, and assume } o_{1} \geq o_{2}
\end{aligned}
$$

$$
\text { two resulting cycles: }\left\{\begin{array}{l}
\text { one with } o_{1}-1 \text { runs } \\
\text { one with either } 1 \text { run (if } o_{2}=1 \text {) or with } o_{2}-1 \text { runs (if } o_{2} \geq 3 \text {) }
\end{array}\right.
$$

$$
\begin{aligned}
& \Rightarrow \lambda^{\prime}(4)=\lambda^{\prime}(2)+\lambda^{\prime}(1)=2+1=3 \\
& \Rightarrow \lambda^{\prime}(6)=\left\{\begin{array}{l}
\lambda^{\prime}(2)+\lambda^{\prime}(2)=2+2=4 \\
\lambda^{\prime}(4)+\lambda^{\prime}(1)=3+1=4
\end{array}\right. \\
& \Rightarrow \lambda^{\prime}(8)=\left\{\begin{array}{l}
\lambda^{\prime}(4)+\lambda^{\prime}(2)=3+2=5 \\
\lambda^{\prime}(6)+\lambda^{\prime}(1)=4+1=5
\end{array}\right.
\end{aligned}
$$

Λ	λ^{\prime}
0	0
1	1
2	2
4	3
6	4
8	5
\vdots	\vdots

Induction: $\left\{\begin{array}{l}\text { hypothesis: } \lambda^{\prime}(\Lambda(C))=\frac{\Lambda(C)}{2}+1 \\ \text { base cases: } \lambda^{\prime}(1)=1 \text { and } \lambda^{\prime}(2)=2\end{array}\right.$
Induction step: in general, for $\Lambda(C) \geq 4$, we can state $\lambda^{\prime}(\Lambda(C))=\lambda^{\prime}(\Lambda(C)-2)+\lambda^{\prime}(1)$

$$
\begin{aligned}
& =\left(\frac{\Lambda(C)-2}{2}+1\right)+1 \\
& =\frac{\Lambda(C)}{2}+1
\end{aligned}
$$

Indel-potential $\lambda^{\prime \prime}$ of a path P

$$
\Lambda(P)=0,1,2,3,4,5,6,7,8, \ldots
$$

We will show that $\lambda^{\prime \prime}(P)$ depends only on the value $\Lambda(P)$: denote $\lambda^{\prime \prime}(P)=\lambda^{\prime \prime}(\Lambda(P))$

$$
\begin{aligned}
& \Lambda(P)=1 \Rightarrow \lambda^{\prime \prime}(1)=1 \\
& \Lambda(P)=2 \Rightarrow \lambda^{\prime \prime}(2)=2 \\
& \Lambda(P) \geq 3: \Lambda(P)=o_{1}+o_{2} \text { such that } o_{1} \geq 1 \text { and } o_{2} \text { is odd }
\end{aligned}
$$

$$
\text { two resulting components: }\left\{\begin{array}{l}
\text { one path with either } 1 \text { run (if } o_{1}=1 \text {) or with } o_{1}-1 \text { runs (if } o_{1} \geq 2 \text {) } \\
\text { one cycle with either } 1 \text { run (if } o_{2}=1 \text {) or with } o_{2}-1 \text { runs (if } o_{2} \in\{3,5, \ldots\} \text {) }
\end{array}\right.
$$ but we can get the same indel-potential if we extract all runs into a cycle:

$$
\left.\begin{array}{ll}
\lambda^{\prime \prime}(3)=\left\{\begin{aligned}
\lambda^{\prime \prime}(1)+\lambda^{\prime}(1) & =1+1=2 \\
\lambda^{\prime}(2) & =2
\end{aligned}\right. \\
\lambda^{\prime \prime}(4)=\left\{\begin{aligned}
\lambda^{\prime \prime}(2)+\lambda^{\prime}(1) & =2+1=3 \\
\lambda^{\prime \prime}(1)+\lambda^{\prime}(2) & =1+2=3 \\
\lambda^{\prime}(4) & =3
\end{aligned}\right. & \lambda^{\prime \prime}(5)=\left\{\begin{aligned}
& \lambda^{\prime \prime}(3)+\lambda^{\prime}(1)=2+1=3 \\
& \lambda^{\prime \prime}(1)+\lambda^{\prime}(2)=1+2=3 \\
& \lambda^{\prime}(4)=3
\end{aligned}\right. \\
\ldots \\
\lambda^{\prime}(6)=4
\end{array}\right]\left\{\begin{aligned}
\end{aligned}\right.
$$

Λ	$\lambda^{\prime \prime}$
0	0
1	1
2	2
3	2
4	3
5	3
6	4
7	4
\vdots	\vdots

In general, for $\Lambda(P) \geq 2$, we can state $\lambda^{\prime \prime}(\Lambda(P))= \begin{cases}\lambda^{\prime}(\Lambda(P)) & \text { if } \Lambda(P) \text { is even } \\ \lambda^{\prime}(\Lambda(P)-1) & \text { if } \Lambda(P) \text { is odd }\end{cases}$

$$
\lambda^{\prime \prime}(\Lambda(P))=\left\lceil\frac{\Lambda(P)+1}{2}\right\rceil
$$

Indel-potential λ of a component C

If C is a singleton: $\lambda(C)=1$
If C is a cycle:

$$
\lambda(C)=\left\{\begin{array}{cl}
0 & \text { if } \Lambda(C)=0(C \text { is indel-free }) \\
1 & \text { if } \Lambda(C)=1 \\
\frac{\Lambda(C)}{2}+1 & \text { if } \Lambda(C) \geq 2
\end{array}\right.
$$

If C is a path:

$$
\lambda(C)=\left\{\begin{array}{cl}
0 & \text { if } \Lambda(C)=0(C \text { is indel-free }) \\
\left\lceil\frac{\Lambda(C)+1}{2}\right\rceil & \text { if } \Lambda(C) \geq 1
\end{array}\right.
$$

\wedge	λ	
0	0	paths and cycles
1	1	paths, cycles and singletons
2	2	paths and cycles
3	2	paths
4	3	paths and cycles
5	3	paths
6	4	paths and cycles
7	4	paths

In general, for any component C :

$$
\lambda(C)=\left\{\begin{array}{cl}
0 & \text { if } \Lambda(C)=0(C \text { is indel-free }) \\
\left\lceil\frac{\Lambda(C)+1}{2}\right\rceil & \text { if } \Lambda(C) \geq 1
\end{array}\right.
$$

Third upper bound: $\quad d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathbb{A} B}\right|}{2}+\sum_{C \in R G} \lambda(C)$

Types of DCJ operation

DCJ-types of DCJ operation $\left\{\begin{array}{l}\Delta_{\mathrm{DCJ}}=0 \text { (gaining): creates one cycle or two } \mathbb{A} \mathbb{B} \text {-paths } \\ \Delta_{\mathrm{DCJ}}=1 \text { (neutral): does not change the number of cycles nor of } \mathbb{A} \mathbb{B} \text {-paths } \\ \Delta_{\mathrm{DCJ}}=2 \text { (losing): destroys one cycle or two } \mathbb{A} \mathbb{B} \text {-paths }\end{array}\right.$

Indel-types of DCJ operation $\begin{cases}\Delta_{\lambda}=-2 & \text { : decreases the overall indel-potential by two } \\ \Delta_{\lambda}=-1 & \text { : decreases the overall indel-potential by one } \\ \Delta_{\lambda}= & 0 \\ \Delta_{\lambda}= & \text { does not change the overall indel-potential } \\ \Delta_{\lambda}= & 2 \\ \text { : increases the overall indelpotential by one }\end{cases}$
Effect of a DCJ operation ρ on the third upper bound: $\Delta_{\text {DCJ }}^{\lambda}(\rho)=\Delta_{\text {DCJ }}(\rho)+\Delta_{\lambda}(\rho)$
DCJ Operations that can decrease the third upper bound: $\left\{\begin{array}{l}\Delta_{\mathrm{DCJ}}=0 \text { (gaining) and } \Delta_{\lambda}=-2: \Delta_{\mathrm{DCJ}}^{\lambda}=-2 \\ \Delta_{\mathrm{DCJ}}=0 \text { (gaining) and } \Delta_{\lambda}=-1: \Delta_{\mathrm{DCJ}}^{\lambda}=-1 \\ \Delta_{\mathrm{DCJ}}=1 \text { (neutral) and } \Delta_{\lambda}=-2: \Delta_{\mathrm{DCJ}}^{\lambda}=-1\end{array}\right.$

- By definition: any "internal" gaining DCJ operation ρ (applied to a single component) has $\Delta_{\lambda}(\rho) \geq 0$ and, consequentely, $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$
- Any losing DCJ operation ρ has $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$

DCJ operations involving cycles

- Any DCJ operation involving two cycles is losing and has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)
- A DCJ operation ρ applied to a single cycle C can be:
- Gaining, with $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$ (cannot decrease the DCJ-indel distance)
- Neutral $\left(\Delta_{\text {DCJ }}(\rho)=1\right)$:

If $\Lambda(C) \geq 4$, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\wedge}(\rho) \geq-2$ and $\Delta_{\lambda}(\rho) \geq-1$ \Rightarrow Any neutral DCJ operation applied to a single cycle has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$
(cannot decrease the DCJ-indel distance)

If singular genomes \mathbb{A} and \mathbb{B} are circular, the graph $R G(\mathbb{A}, \mathbb{B})$ has only cycles (and eventually singletons).
In this case:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+\sum_{C \in R G} \lambda(C)
$$

Quiz 1

1 Which of the following statements about the DCJ-indel model are true?

A Any gaining DCJ operation applied to a single component has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$.

* Any gaining DCJ operation has $\Delta_{\mathrm{DCJ}}^{\lambda} \geq 0$.

XAny DCJ operation has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$.
D Any DCJ that decreases the number of runs has $\Delta_{\lambda}<0$.
E If the input genomes are circular, we can obtain an optimal sequence of DCJ operations and indels that sort each component of the relational graph separately.

DCJ operations involving paths

- Any DCJ operation involving a path and a cycle is losing and has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

Λ	λ
0	0
1	1
2	2
3	2
4	3
5	3
6	4
7	4
\vdots	\vdots

- A DCJ operation ρ applied to a single path P can be:
- Gaining, with $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$ (cannot decrease the DCJ-indel distance)
- Neutral $\left(\Delta_{\mathrm{DCJ}}(\rho)=1\right)$:

If $\Lambda(P) \geq 4$, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\wedge}(\rho) \geq-2$ and $\Delta_{\lambda}(\rho) \geq-1$
\Rightarrow Any neutral DCJ operation applied to a single path has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

Path recombinations can have $\Delta_{\mathrm{DCJ}}^{\lambda} \leq-1$

A gaining (deducting) path recombination with $\Delta_{\text {DCJ }}^{\lambda}=-2$:

Sources

Resultants

$\left(\sum \lambda=2+2=4\right)$

$\mathbb{A} \mathbb{A}$	+	$\mathbb{B} \mathbb{B}$
2 runs	+	2 runs

$$
\left(\sum \lambda=2+0=2\right)
$$

$\mathbb{A} B$	+
3 runs	+
no run	

$$
\mathbb{A}_{\mathcal{B A}}+\mathbb{B B}_{\mathcal{A B}}=\left\{\begin{array}{c}
\mathbb{A B}_{\mathcal{B A \mathcal { B }}}+\mathbb{A B}_{\varepsilon} \\
\left.\left(\mathbb{B}_{\mathcal{A B A}}+\mathbb{A B}_{\varepsilon}\right) \quad \text { (all variants have } \Delta_{\mathrm{DCJ}}^{\lambda}=-2\right) \text {) } \quad\left(\mathbb{B}_{\mathcal{A}}+\mathbb{A B}_{\mathcal{B}}\right)
\end{array} \quad\right. \text { (}
$$

Deducting path recombinations
have $\Delta_{\text {DCJ }}^{\lambda} \leq-1$

General DCJ-indel distance formula:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathbb{A B}}\right|}{2}+\sum_{C \in R G} \lambda(C)-\delta
$$

where δ is the value obtained by optimizing deducting path recombinations

Optimizing deducting path recombinations (for computing δ)

Run-type of a path $\left\{\begin{array}{clcl}\varepsilon & \equiv & \varepsilon & \text { (empty) } \\ \mathcal{A B A B} \ldots \mathcal{A} & \equiv & \mathcal{A} & \text { (odd) } \\ \mathcal{B} \mathcal{A B A} \ldots \mathcal{B} & \equiv & \mathcal{B} \text { (odd) } \\ \mathcal{A} \mathcal{A B} \ldots \mathcal{A B} & \equiv \mathcal{A B} & \text { (even) } \\ \mathcal{B} \mathcal{A B A} \ldots \mathcal{B} \mathcal{A} & \equiv \mathcal{B A} \text { (even) }\end{array}\right.$
Path types $\left\{\begin{array}{l}\mathbb{A}_{\varepsilon}, \mathbb{A}_{\mathcal{A}}, \mathbb{A}_{\mathcal{B}}, \mathbb{A}_{\mathcal{A B}}\left(\equiv \mathbb{A}_{\mathbb{A}_{\mathcal{B}}}\right) \\ \mathbb{B} \mathbb{B}_{\varepsilon}, \mathbb{B B}_{\mathcal{A}}, \mathbb{B} \mathbb{B}_{\mathcal{B}}, \mathbb{B B}_{\mathcal{A B}}\left(\equiv \mathbb{B} \mathbb{B}_{\mathcal{B A}}\right) \\ \mathbb{A B}_{\varepsilon}, \mathbb{A}_{\mathcal{A}}, \mathbb{A} \mathbb{B}_{\mathcal{B}}, \mathbb{A B}_{\mathcal{A B}}, \mathbb{A B}_{\mathcal{B A}}\end{array}\right.$ \Rightarrow an $\mathbb{A} \mathbb{B}$-path is always read from \mathbb{A} to \mathbb{B}

Deducting path recombinations that allow the best reuse of the resultants:

sources	resultants	Δ_{λ}	$\Delta_{\text {DC, }}$	$\Delta_{\text {DCJ }}^{\lambda}$
$\mathbb{A N}_{\mathbb{A}_{\mathcal{A B}}}+\mathbb{B B}_{\mathcal{A B}}$	\bullet	-2	0	-2
$\overline{\mathbb{A N}_{\mathcal{A} \mathcal{A}}+\mathbb{B B}_{\mathcal{A}}}$	- $+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	-1	0	-1
$\mathbb{A A}_{\mathbb{A}_{\mathcal{A}}}+\mathbb{B B}_{\mathbb{B}_{\mathcal{B}}}$	- $+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	-1	0	1
$\mathbb{A N A}_{\mathcal{A}}+\mathbb{B}_{\mathbb{B}_{\mathcal{A B}}}$	$\bullet+\mathbb{A B}_{\mathcal{A B}}$	-1	0	-1
$\mathbb{A d}_{\mathcal{B}}+\mathbb{B B}_{\mathcal{B}_{\mathcal{A B}}}$	$\bullet+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	-1	0	1
$\mathbb{A N A}_{\mathcal{A}}+\mathbb{B B}_{\mathcal{A}}$	+	-1	0	-1
$\underline{\mathbb{A}_{\mathcal{B}}}+\mathbb{B}_{\mathbb{B}_{\mathcal{B}}}$	$\bullet+$	-1	0	-1

sources	resultants	Δ_{λ}	$\Delta_{\text {DCJ }}$	$\Delta_{\text {DCJ }}^{\lambda}$
$\overline{\mathbb{A}_{\mathcal{A} \mathcal{A}}+\mathbb{A N}_{\mathcal{A} \mathcal{B}}}$	$\mathbb{A N}_{\mathcal{A}}+\mathbb{A N}_{\mathcal{B}}$	-2	+1	-1
$\mathbb{B B}_{\mathcal{A B}}+\mathbb{B B}_{\mathcal{A B}}$	$\mathbb{B B}_{\mathcal{A}}+\mathbb{B B}_{\mathcal{B}}$	-2	+1	-1
	- $+\mathbb{A}_{\mathbb{A}_{\mathcal{A}}}$	-2	+1	-1
$\mathbb{A N}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{B} \mathcal{A}}$	- $+\mathbb{A N}_{\mathcal{B}}$	-2	+1	-1
$\mathbb{B B}_{\mathcal{A B}}+\mathbb{A B}_{\mathcal{A B}}$	- $+\mathbb{B B}_{\mathcal{B}}$	-2	+1	-1
$\mathbb{B B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	- $+\mathbb{B B}_{\mathcal{B}}$	-2	+1	-1
$\mathbb{A B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$\bullet+$ -	-2	+1	-1

Path recombinations with $\Delta_{\mathrm{DCJ}}^{\lambda}=0$ creating resultants that can be used in deducting recombinations:

sources	resultants	Δ_{λ}	$\Delta_{\text {DCJ }}$	$\Delta_{\text {DCJ }}^{\lambda}$
$\mathbb{A}_{\mathcal{A}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$\bullet+\mathbb{A} \mathbb{A}_{\mathcal{A B}}$	-1	+1	0
$\mathbb{A} \mathbb{A}_{\mathcal{B}}+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	$\bullet+\mathbb{A} \mathbb{A}_{\mathcal{A B}}$	-1	+1	0
$\mathbb{\mathbb { B } _ { \mathcal { A } } + \mathbb { A } \mathbb { B } _ { \mathcal { A B } }}$	$\bullet+\mathbb{B} \mathbb{B}_{\mathcal{A B}}$	-1	+1	0
$\mathbb{B} \mathbb{B}_{\mathcal{B}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$\bullet+\mathbb{B} \mathbb{B}_{\mathcal{A B}}$	-1	+1	0

sources	resultants	Δ_{λ}	$\Delta_{\text {DCJ }}$	$\Delta_{\text {DCJ }}^{\lambda}$	
$\mathbb{A} \mathbb{A}_{\mathcal{A}}+\mathbb{B} \mathbb{B}_{\mathcal{B}}$	\bullet	$+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	0	0	0
$\mathbb{A}_{\mathcal{B}}+\mathbb{B} \mathbb{B}_{\mathcal{A}}$	\bullet	$+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	0	0	0
$\mathbb{A B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	$\mathbb{A A}_{\mathcal{A}}+\mathbb{B} \mathbb{B}_{\mathcal{B}}$	-2	+2	0	
$\mathbb{A} \mathbb{B}_{\mathcal{B A}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$\mathbb{A}_{\mathcal{B}}+\mathbb{B} \mathbb{B}_{\mathcal{A}}$	-2	+2	0	

Sources:
$\mathrm{W}: \mathbb{A}_{\mathcal{A B}}$
$\overline{\mathrm{W}}: \mathbb{A N}_{\mathcal{A}}$
$\underline{\mathrm{W}}: \mathbb{A}_{\mathcal{B}}$
$\mathrm{M}: \mathbb{B}_{\mathbb{B}_{\mathcal{A B}}}$
$\overline{\mathrm{M}}: \mathbb{B}_{\mathbb{B}_{\mathcal{A}}}$
$\underline{\mathrm{M}}: \mathbb{B B}_{\mathcal{B}}$
$\mathrm{Z}: \mathbb{A}_{\mathbb{B}_{\mathcal{A B}}}$
$\mathrm{N}: \mathbb{A B}_{\mathcal{B A}}$

Optimizing deducting path recombinations (for computing δ)

Deducting chain of path recombinations $\left\{\begin{array}{cl}\text { transforming } & 2 \times \mathbb{A A}_{\mathcal{A B}}+\mathbb{B B}_{\mathcal{A}}+\mathbb{B B}_{\mathcal{B}} \\ \text { into } & 3 \times \mathbb{A B}_{\varepsilon}+\mathbb{A B}_{\mathcal{B}} \\ \text { with } & \text { overall } \Delta_{\text {DCJ }}^{\lambda}=-3\end{array}\right.$

id	sources			resultants				$\Delta_{\text {DCJ }}^{\lambda}$	scr
\mathcal{M} ZZW̄ \bar{M} NNW̄M	$\mathbb{A N}_{\mathcal{B}}$	$\mathbb{B B}_{\mathcal{A}}$	$2 \times \mathbb{A B}_{\mathcal{A B}}$	-	-	-	$4 \times$ -	-2	-1/2
	$\mathbb{A N}_{\mathcal{A}}$	$\mathbb{B B}_{\mathcal{B}}$	$2 \times \mathbb{A B}_{\mathcal{B} \mathcal{A}}$	-	-	-	$4 \times$ -	-2	-1/2
$\mathcal{N} \quad \mathrm{ZW} \overline{\mathrm{M}}$	$\mathbb{A N}_{\mathcal{B}}$	$\mathbb{B B}_{\mathcal{A}}$	$\mathbb{A B}_{\mathcal{A B}}$			$\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$2 \times$ •	-1	-1/3
ZZW	$\mathbb{A N}_{\mathcal{B}}$	-	$2 \times \mathbb{A B}_{\mathcal{A B}}$	$\mathbb{A A}_{\mathcal{A}}$	-	-	$2 \times$ •	-1	-1/3
ZZM	-	$\mathbb{B B}_{\mathcal{A}}$	$2 \times \mathbb{A B}_{\mathcal{A B}}$	-	$\mathbb{B B}_{\mathcal{B}}$	-	$2 \times$ •	-1	-1/3
Nप̄M	$\mathbb{A N A}_{\mathcal{A}}$	$\mathbb{B B}_{\mathcal{B}}$	$\mathbb{A B}_{\mathbb{B}_{\mathcal{B}}}$	-	-	$\mathbb{A B}_{\mathcal{A B}}$	$2 \times$	-1	-1/3
NNW	$\mathbb{A N}_{\mathcal{A}}$	-	$2 \times \mathbb{A B}_{\mathcal{B A}}$	$\mathbb{A N}_{\mathcal{B}}$		-	$2 \times$ -	-1	$-1 / 3$
NNM	-	$\mathbb{B B}_{\mathcal{B}}$	$2 \times \mathbb{A B}_{\mathcal{B A}}$	-	$\mathbb{B B}_{\mathcal{A}}$	-	$2 \times$ •	-1	-1/3

Sources:

$\mathrm{W}: \mathbb{A}_{\mathcal{A} \mathcal{B}}$
$\overline{\mathrm{W}}: \mathbb{A}_{\mathcal{A}}$
$\underline{\mathrm{W}}: \mathbb{A}_{\mathbb{A}_{\mathcal{B}}}$
$\mathrm{M}: \mathbb{B}_{\mathbb{B}_{\mathcal{A B}}}$
$\overline{\mathrm{M}}: \mathbb{B B}_{\mathcal{A}}$
$\underline{M}: \mathbb{B B}_{\mathcal{B}}$
$\mathrm{Z}: \mathbb{A}_{\mathbb{B}_{\mathcal{A B}}}$
$\mathrm{N}: \mathbb{A B}_{\mathcal{B A}}$

DCJ-indel distance formula:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathbb{A B}}\right|}{2}+\sum_{C \in R G} \lambda(C)-\delta,
$$

where δ is the value obtained by optimizing deducting path recombinations:

$$
\delta=2 \mathcal{P}+3 \mathcal{Q}+2 \mathcal{T}+\mathcal{S}+2 \mathcal{M}+\mathcal{N}
$$

the values $\mathcal{P}, \mathcal{Q}, \mathcal{T}, \mathcal{S}, \mathcal{M}$ and \mathcal{N} refer to the corresponding number of chains of deducting path recombinations of each type and can be obtained by a greedy approach (simple top-down screening of the table)

Singular DCJ-indel model - summary

DCJ-indel distance: $\quad d_{\mathrm{DCJ}}^{\mathrm{D}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}+\sum_{C \in R G} \lambda(C)-\delta, \quad \begin{aligned} & \text { where } \delta \text { is the value obtained by opti- } \\ & \text { mizing deducting path recombinations }\end{aligned}$
\mathbb{A} and \mathbb{B} are circular: $\quad d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+\sum_{C \in R G} \lambda(C)$

Sorting genome \mathbb{A} into genome \mathbb{B} (with a minimum number of DCJs):

1. Apply all $\mathcal{P}, \mathcal{Q}, \mathcal{T}, \mathcal{S}, \mathcal{M}$ and \mathcal{N} chains of deducting path recombinations, in this order.
2. For each component $C \in R G(\mathbb{A}, \mathbb{B})$:
2.1 Split C with gaining $D C J s$ (that have $\boldsymbol{\Delta}_{\boldsymbol{\lambda}}=\mathbf{0}$) until only components with at most two runs are obtained and the total number of runs in all new components is equal to $\lambda(C)$.
2.2 Accumulate all runs in the smaller components derived from C with gaining DCJ operations (that have $\Delta_{\lambda}=0$).
2.3 Apply gaining DCJ operations (that have $\boldsymbol{\Delta}_{\boldsymbol{\lambda}}=\mathbf{0}$) in the smaller components derived from C until only DCJ-sorted components exist.
2.4 Delete all runs in the DCJ-sorted components derived from C.

Computing the distance and sorting can be done in linear time.

Singular DCJ-indel sorting: trade-off between DCJ and indels

The presented sorting algorithm maximizes gaining DCJs with $\Delta_{\lambda}=0$ (minimizing indels).

However, these gaining DCJs can often be replaced by $\left\{\begin{array}{l}\text { neutral DCJs with } \Delta_{\lambda}=-1 \\ \text { losing DCJs with } \Delta_{\lambda}=-2\end{array}\right.$
\Downarrow

There is a big range of possibilities between the presented sorting algorithm and a sorting algorithm that minimizes gaining DCJs with $\Delta_{\lambda}=0$ (maximizingindels)

Restricted DCJ-indel-distance (singular linear genomes)
general DCJ-indel sorting

restricted DCJ-indel sorting

$$
\xrightarrow{a} \mid \xrightarrow[\downarrow]{b} \underset{\text { inversion }}{c} \xrightarrow{c} \xrightarrow{\text { c. }} \xrightarrow{\text { g }} \xrightarrow{e}
$$

$$
\xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \mid \stackrel{\leftrightarrow}{u} \xrightarrow[\text { exision }]{g} \xrightarrow{f} \xrightarrow{e} \stackrel{\text { l }}{ }_{v} \mid \xrightarrow{d}
$$

$\xrightarrow{a} \xrightarrow{b_{l}} \xrightarrow{y} \xrightarrow{c} \xrightarrow{d} \xrightarrow{e} \xrightarrow{g}$

In any sorting sequence, it is always possible to $\left\{\begin{array}{l}\text { move deletions down } \\ \text { move insertions up }\end{array}\right.$
S : general sequence of DCJ and indel operations sorting linear \mathbb{A} into linear \mathbb{B} $S \quad \rightsquigarrow \quad S^{\prime}=S_{\mathrm{INS}} \oplus S_{\mathrm{DCJ}} \oplus S_{\mathrm{DEL}} \quad \rightsquigarrow \quad R=S_{\mathrm{INS}} \oplus R_{\mathrm{DCJ}} \oplus S_{\mathrm{DEL}} \quad$ and $\quad|S|=\left|S^{\prime}\right|=|R|$

The diameter $\mathrm{D}_{\mathrm{DCJ}}^{\mathrm{ID}}$ of the DCJ-indel-distance

For a given component C in a relational graph, let a segment of C be

$$
\left\{\begin{array}{l}
C \text { itself (if } C \text { is a } 0 \text {-cycle or a 0-path) } \\
\text { a minimal path flanked by two extremity-edges } \\
\text { a minimal path at the extremity of a path and connected to an extremity edge }
\end{array}\right.
$$

$\mathrm{s}(C)$: number of segments in component C
$\left.\begin{array}{cccc}\hline \mathrm{s}(C) & \mathrm{d}_{\mathrm{DCJ}}(C) & \Lambda_{\mathrm{MAX}}(C) & \lambda_{\mathrm{MAX}}(C) \\ \hline 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 3 & 1 & 3 & 2 \\ 4 & 1 & 4 & 3\end{array}\right)$
Let $\begin{cases}\kappa(\mathbb{A}): & \# \text { linear chromosomes in } \mathbb{A} \\ \mathcal{S}(\mathbb{A}): & \# \text { (circular) singletons in } \mathbb{A} \\ \kappa(\mathbb{B}): & \# \text { linear chromosomes in } \mathbb{B} \\ \mathcal{S}(\mathbb{B}): & \# \text { (circular }) \text { singletons in } \mathbb{B}\end{cases}$

The number of segments in $R G(\mathbb{A}, \mathbb{B})$ is $\mathrm{s}(R G(\mathbb{A}, \mathbb{B}))=2 n+\kappa(\mathbb{A})+\mathcal{S}(\mathbb{A})+\kappa(\mathbb{B})+\mathcal{S}(\mathbb{B})$

$$
\mathrm{D}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=\sum_{C \in R G(\mathbb{A}, \mathbb{B})}\left(\mathrm{d}_{\mathrm{DCJ}}(C)+\lambda_{\mathrm{MAX}}(C)\right)
$$

$$
s(C) \quad\left\lfloor\frac{s(C)-1}{2}\right\rfloor \quad s(C) \quad\left\lceil\frac{s(C)+1}{2}\right\rceil
$$

$$
\begin{aligned}
& \text { if } \mathrm{s}(C) \text { is odd: } \\
& \mathrm{d}_{\mathrm{DCJ}}(C)+\lambda_{\mathrm{MAX}}(C)=\frac{\mathrm{s}(C)-1}{2}+\frac{\mathrm{s}(C)+1}{2}=\mathrm{s}(C)
\end{aligned}
$$

if $s(C)$ is even:

$$
\mathrm{d}_{\mathrm{DCJ}}(C)+\lambda_{\mathrm{MAX}}(C)=\frac{\mathrm{s}(C)-2}{2}+\frac{\mathrm{s}(C)+2}{2}=\mathrm{s}(C)
$$

$$
\mathrm{D}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=2 n+\kappa(\mathbb{A})+\mathcal{S}(\mathbb{A})+\kappa(\mathbb{B})+\mathcal{S}(\mathbb{B})
$$

The triangular inequality does not hold for the DCJ-indel distance

$$
\begin{gathered}
\text { The triangular inequality } \\
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{D}}(\mathbb{A}, \mathbb{C})+\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C}) \\
\text { does not hold }
\end{gathered}\left\{\begin{array}{l}
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=3 \\
\mathrm{~d}_{\mathrm{DCJ}}^{\mathrm{D}}(\mathbb{A}, \mathbb{C})=1 \\
\mathrm{~d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})=1
\end{array}\right.
$$

"Free lunch":
while sorting \mathbb{A} into \mathbb{C} and then \mathbb{C} into \mathbb{B},
a set of common genes of \mathbb{A} and \mathbb{B}
are deleted and then reinserted

In the comparison of two genomes, our model prevents this problem: common genes cannot be deleted or inserted

However, the triangular inequality is essential in other problems involving the DCJ-indel distance for the comparison of three or more genomes (e.g. median)

Establishing the triangular inequality

Disjoint sets of genes $\mathcal{G}_{\mathbb{A}}, \mathcal{G}_{\mathbb{B}}, \mathcal{G}_{\mathbb{C}}, \mathcal{G}_{\mathbb{A} \mathbb{B}}, \mathcal{G}_{\mathbb{B} C}, \mathcal{G}_{\mathbb{A} \mathbb{C}}$ and \mathcal{G}_{\star} for three genomes \mathbb{A}, \mathbb{B} and \mathbb{C}

For each pair of genomes, we define the corrected distance $\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}$:

$$
\begin{aligned}
\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) & =\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A}}\right|+\left|\mathcal{G}_{\mathbb{A C}}\right|+\left|\mathcal{G}_{\mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{B} C}\right|\right) \\
\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{D}}(\mathbb{A}, \mathbb{C}) & =\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{DD}}(\mathbb{A}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A}}\right|+\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|+\left|\mathcal{G}_{\mathbb{B C}}\right|\right) \\
\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{D}}(\mathbb{B}, \mathbb{C}) & =\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{A B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|+\left|\mathcal{G}_{\mathbb{A} C}\right|\right)
\end{aligned}
$$

The triangular inequality must hold for $\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{D}}$:

$$
\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})+\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})
$$

$$
\begin{aligned}
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A}}\right|+\left|\mathcal{G}_{\mathbb{A C}}\right|+\left|\mathcal{G}_{\mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{B C}}\right|\right) \leq & \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A}}\right|+\left|\mathcal{G}_{\mathbb{A} B}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|+\left|\mathcal{G}_{\mathbb{B C}}\right|\right)+ \\
& \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|+\left|\mathcal{G}_{\mathbb{A C}}\right|\right) \\
& \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq \\
\leq & \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|\right)+\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|\right) \\
& \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq
\end{aligned}
$$

Establishing the triangular inequality

$$
\left\{\begin{array}{l}
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{DD}}(\mathbb{A}, \mathbb{C})+\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})+2 \mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|\right) \\
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C}) \leq \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})+\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})+2 \mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A C}}\right|+\left|\mathcal{G}_{\mathcal{B}}\right|\right) \\
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C}) \leq \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})+\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})+2 \mathrm{k}\left(\left|\mathcal{G}_{\mathcal{B C}}\right|+\left|\mathcal{G}_{\mathbb{A}}\right|\right)
\end{array}\right.
$$

Assume $\left\{\begin{array}{l}d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \geq \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C}) \\ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \geq \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})\end{array}\right.$ Let $\left\{\begin{array}{llc}\xi(\mathbb{A}): & \# \text { chromosomes in } \mathbb{A} & \\ \kappa(\mathbb{A}): & \# \text { linear chromosomes in } \mathbb{A} & \\ \mathcal{S}(\mathbb{A}): & \# \text { (circular) singletons in } \mathbb{A} & \kappa(\mathbb{A})+\mathcal{S}(\mathbb{A}) \leq \xi(\mathbb{A}) \\ \xi(\mathbb{B}): & \# \text { chromosomes in } \mathbb{B} & \text { and } \\ \kappa(\mathbb{B}): & \# \text { linear chromosomes in } \mathbb{B} & \kappa(\mathbb{B})+\mathcal{S}(\mathbb{B}) \leq \xi(\mathbb{B}) \\ \mathcal{S}(\mathbb{B}): & \# \text { (circular) singletons in } \mathbb{B} & \end{array}\right.$

We need to find a value k that guarantees:
$\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})+\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})+2 \mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|\right)$

$$
\mathrm{D}_{\mathrm{DCJ}}^{\mathrm{DD}}(\mathbb{A}, \mathbb{B}) \leq \xi(\mathbb{A})+\xi(\mathbb{B})+2 \mathrm{k}\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right|
$$

In the worst case genome \mathbb{C} is empty:

$$
\begin{array}{rlrl}
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})=\xi(\mathbb{A}) & \text { and } & \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})=\xi(\mathbb{B}) & 2\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right| \leq 2 \mathrm{k}\left|\mathcal{G}_{\mathbb{A B}}\right| \Rightarrow \\
\mathrm{D}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=2\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right|+\kappa(\mathbb{A})+\mathcal{S}(\mathbb{A})+\kappa(\mathbb{B})+\mathcal{S}(\mathbb{B}) &
\end{array}
$$

Establishing the triangular inequality

$$
\begin{aligned}
& \mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A}}\right|+\left|\mathcal{G}_{\mathbb{A} \mathbb{C}}\right|+\left|\mathcal{G}_{\mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{B C}}\right|\right) \\
& \mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})=\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{A}}\right|+\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|+\left|\mathcal{G}_{\mathbb{B} C}\right|\right) \\
& \mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})=\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B}, \mathbb{C})+\mathrm{k}\left(\left|\mathcal{G}_{\mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{A} \mathbb{B}}\right|+\left|\mathcal{G}_{\mathbb{C}}\right|+\left|\mathcal{G}_{\mathbb{A C}}\right|\right)
\end{aligned}
$$

The triangular inequality holds for the corrected distance $\mathrm{dk}_{\mathrm{DCJ}}^{\mathrm{ID}}$ for any $\mathrm{k} \geq 1$

Quiz 2

1 Which of the following statements about the DCJ-indel model are true?
A sequence of DCJ operations and indels that sort each component of the relational graph separately is always optimal.

B An optimal sequence of DCJ operations and indels sorting one singular genome into another can have gaining, neutral and losing DCJs.

The triangular inequality holds for the DCJ-indel distance.
C The triangular inequality does not hold for the DCJ-indel distance, but a simple correction can be done.

The DCJ-indel distance can be distinct from the restricted DCJ-indel distance.

2 The best known algorithm for the restricted DCJ-indel sorting runs in...

A $O(n)$ time.
(B) $O(n \log n)$ time.

C $O\left(n^{2}\right)$ time.

References

Double Cut and Join with Insertions and Deletions
(Marília D.V. Braga, Eyla Willing and Jens Stoye)
JCB, Vol. 18, No. 9 (2011)

Sorting Linear Genomes with Rearrangements and Indels
(Marília D. V. Braga and Jens Stoye)
TCBB, vol 12, issue 3, pp. 500-506 (2015)

On the weight of indels in genomic distances
(Marília D. V. Braga, Raphael Machado, Leonardo C. Ribeiro and Jens Stoye)
BMC Bioinformatics, vol. 12, S13 (2011)

