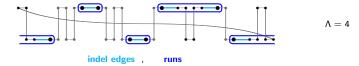
Topics of today:

Singular DCJ-indel distance and sorting:

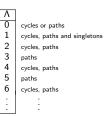
- 1. Indel-potential
- 2. Deducting path recombinations
- 3. Restricted DCJ-indel model
- 4. The diameter of the DCJ-indel distance
- 5. Establishing the triangular inequality

Runs of indel-edges

One indel-enclosing cycle:



 $\Lambda(\mathit{C})$ is the number of **runs** in component C



Runs of indel-edges

Types of DCJ operation
$$\begin{cases} \Delta_{\rm DCJ} = 0 \text{ (gaining): creates one cycle or two } \mathbb{A}\mathbb{B}\text{-paths} \\ \Delta_{\rm DCJ} = 1 \text{ (neutral): does not change the number of cycles nor of } \mathbb{A}\mathbb{B}\text{-paths} \\ \Delta_{\rm DCJ} = 2 \text{ (losing): destroys one cycle or two } \mathbb{A}\mathbb{B}\text{-paths} \end{cases}$$

Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once

 \Rightarrow Second upper bound:

$$\mathsf{d}_{\scriptscriptstyle \mathrm{DCJ}}^{\scriptscriptstyle \mathrm{ID}}(\mathbb{A},\mathbb{B}) \leq n - |\mathcal{C}| - \frac{|\mathcal{P}_{\scriptscriptstyle \mathbb{A}\mathbb{B}}|}{2} + \sum_{C \in \mathit{RG}} \Lambda(C)$$

DCJ operations can modify the number of runs:

$$\mbox{A DCJ operation can have} \begin{cases} \Delta_{\Lambda} = -2 & \mbox{(merges two pairs of runs)} \\ \Delta_{\Lambda} = -1 & \mbox{(merges one pair of runs)} \\ \Delta_{\Lambda} = 0 & \mbox{(preserves the runs)} \\ \Delta_{\Lambda} = 1 & \mbox{(splits one run)} \\ \Delta_{\Lambda} = 2 & \mbox{(splits two runs)} \end{cases}$$

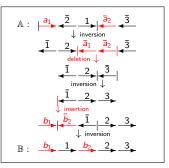
Runs can be merged and accumulated in both genomes

A sequence of 3 operations sorting \mathbb{A} into $\mathbb{I} = [\bar{1} \ 2 \ 3]$

$$\mathbb{A}: \begin{array}{c|c} \mathbf{a_1} & \overline{2} & \mathbf{1} & \overline{a_2} & \overline{3} \\ & \downarrow & \text{inversion} \\ \hline & \overline{1} & 2 & \overline{a_1} & \overline{a_2} & \overline{3} \\ & & \overline{1} & 2 & \overline{3} \\ & & \overline{1} & 2 & \overline{3} \\ & & \text{inversion} \\ \hline \mathbb{I}: & \overline{1} & 2 & \overline{3} \\ & & \overline{b_1} & \overline{b_2} & \overline{1} & 2 & 3 \\ \hline & & & \overline{b_1} & \overline{b_2} & \overline{1} & 2 & 3 \\ \hline \mathbb{B}: & & \underline{b_1} & 1 & \underline{b_2} & 2 & 3 \\ \hline \end{array}$$

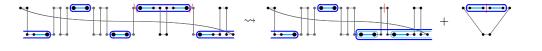
A sequence of 2 operations sorting \mathbb{B} into $\mathbb{I} = [\bar{1} \ 2 \ 3]$

A sequence of 5 operations sorting $\mathbb A$ into $\mathbb B$



Merging runs with "internal" gaining DCJ operations

An gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component can decrease the number of runs:



$$\Lambda = 4$$
 \longrightarrow 2 $+$ 1 = 3 ($\Delta_{\Lambda} = -1$)

DCJ-sorted (or short) components: 2-cycles and 1-paths (and 0-cycles and 0-paths)

Long components: k-cycles (with $k \ge 4$) and k-paths (with $k \ge 2$)

DCJ-sorting a long component C: transforming C into a set of DCJ-sorted components

Indel-potential $\lambda(C)$ of a component C:

minimum number of runs that we can obtain by DCJ-sorting C with gaining DCJ operations

Indel-potential λ' of a cycle C

$$\Lambda(C) = 0, 1, 2, 4, 6, 8, ...$$

We will show that $\lambda'(C)$ depends only on the value $\Lambda(C)$: denote $\lambda'(C) = \lambda'(\Lambda(C))$

$$\Lambda(C) = 1 \Rightarrow \lambda'(1) = 1$$

$$\Lambda(C)=2\Rightarrow \lambda'(2)=2$$

$$\Lambda(C) \geq 4 : \Lambda(C) = o_1 + o_2$$
 such that o_1 and o_2 are odd, and assume $o_1 \geq o_2$

two resulting cycles: $\begin{cases} \text{one with } o_1-1 \text{ runs} \\ \text{one with either 1 run (if } o_2=1) \text{ or with } o_2-1 \text{ runs (if } o_2\geq 3) \end{cases}$

$$\Rightarrow \lambda'(4) = \lambda'(2) + \lambda'(1) = 2 + 1 = 3$$

$$\Rightarrow \lambda'(6) = \begin{cases} \lambda'(2) + \lambda'(2) = 2 + 2 = 4 \\ \lambda'(4) + \lambda'(1) = 3 + 1 = 4 \end{cases}$$

$$\Rightarrow \lambda'(8) = \begin{cases} \lambda'(4) + \lambda'(2) = 3 + 2 = 5 \\ \lambda'(6) + \lambda'(1) = 4 + 1 = 5 \end{cases}$$

Induction:
$$\begin{cases} \text{hypothesis: } \lambda'(\Lambda(C)) = \frac{\Lambda(C)}{2} + 1 \\ \text{base cases: } \lambda'(1) = 1 \text{ and } \lambda'(2) = 2 \end{cases}$$

Induction step: in general, for
$$\Lambda(\mathcal{C}) \geq 4$$
, we can state $\lambda'(\Lambda(\mathcal{C})) = \lambda'(\Lambda(\mathcal{C}) - 2) + \lambda'(1)$
$$= \left(\frac{\Lambda(\mathcal{C}) - 2}{2} + 1\right) + 1$$

$$= \frac{\Lambda(\mathcal{C})}{2} + 1$$

Indel-potential λ'' of a path P

$$\Lambda(P) = 0, 1, 2, 3, 4, 5, 6, 7, 8, ...$$

We will show that $\lambda''(P)$ depends only on the value $\Lambda(P)$: denote $\lambda''(P) = \lambda''(\Lambda(P))$

$$\Lambda(P) = 1 \Rightarrow \lambda''(1) = 1$$

$$\Lambda(P) = 2 \Rightarrow \lambda''(2) = 2$$

$$\Lambda(P) \geq 3 : \Lambda(P) = o_1 + o_2$$
 such that $o_1 \geq 1$ and o_2 is odd

$$\text{two resulting components:} \begin{cases} \text{one path with either 1 run (if } o_1=1) \text{ or with } o_1-1 \text{ runs (if } o_1\geq 2) \\ \text{one cycle with either 1 run (if } o_2=1) \text{ or with } o_2-1 \text{ runs (if } o_2\in \{3,5,...\}) \end{cases}$$

but we can get the same indel-potential if we extract all runs into a cycle:

$$\lambda''(3) = \begin{cases} \lambda''(1) + \lambda'(1) = 1 + 1 = 2 \\ \lambda'(2) = 2 \end{cases} \qquad \lambda''(5) = \begin{cases} \lambda''(3) + \lambda'(1) = 2 + 1 = 3 \\ \lambda''(1) + \lambda'(2) = 1 + 2 = 3 \end{cases} \qquad \lambda''(6) = \begin{cases} \lambda''(1) + \lambda'(2) = 1 + 2 = 3 \\ \lambda''(4) = 3 \end{cases} \qquad \lambda''(6) = \begin{cases} \lambda''(3) + \lambda'(1) = 2 + 1 = 3 \\ \lambda''(1) + \lambda'(2) = 1 + 2 = 3 \\ \lambda''(4) = 3 \end{cases} \qquad \lambda''(6) = \begin{cases} \lambda''(3) + \lambda'(1) = 2 + 1 = 3 \\ \lambda''(1) + \lambda'(2) = 1 + 2 = 3 \\ \lambda''(4) = 3 \end{cases} \qquad \lambda''(6) = \begin{cases} \lambda''(3) + \lambda'(1) = 2 + 1 = 3 \\ \lambda''(1) + \lambda'(2) = 1 + 2 = 3 \\ \lambda''(6) = 4 \end{cases} \qquad \frac{\delta}{\delta} = \frac{$$

In general, for
$$\Lambda(P) \geq 2$$
, we can state $\lambda''(\Lambda(P)) = \begin{cases} \lambda'(\Lambda(P)) & \text{if } \Lambda(P) \text{ is even} \\ \lambda'(\Lambda(P)-1) & \text{if } \Lambda(P) \text{ is odd} \end{cases}$
$$\lambda''(\Lambda(P)) = \left\lceil \frac{\Lambda(P)+1}{2} \right\rceil$$

Indel-potential λ of a component C

If C is a singleton:
$$\lambda(C) = 1$$

If C is a cycle:

$$\lambda(C) = \begin{cases} 0 & \text{if } \Lambda(C) = 0 \text{ (C is indel-free)} \\ 1 & \text{if } \Lambda(C) = 1 \\ \frac{\Lambda(C)}{2} + 1 & \text{if } \Lambda(C) \ge 2 \end{cases}$$

If C is a path:

$$\lambda(C) = \begin{cases} 0 & \text{if } \Lambda(C) = 0 \text{ (C is indel-free)} \\ \left\lceil \frac{\Lambda(C)+1}{2} \right\rceil & \text{if } \Lambda(C) \ge 1 \end{cases}$$

paths and cycles paths, cycles and singletons paths and cycles paths paths and cycles paths paths and cycles paths and cycles

In general, for any component C:

$$\lambda(C) = \begin{cases} 0 & \text{if } \Lambda(C) = 0 \text{ (C is indel-free)} \\ \left\lceil \frac{\Lambda(C)+1}{2} \right\rceil & \text{if } \Lambda(C) \ge 1 \end{cases}$$

$$\Rightarrow$$
 Third upper bound:

$$\mathsf{d}_{\scriptscriptstyle \mathrm{DCJ}}^{\scriptscriptstyle \mathrm{ID}}(\mathbb{A},\mathbb{B}) \leq n - |\mathcal{C}| - \frac{|\mathcal{P}_{\mathbb{A}\mathbb{B}}|}{2} + \sum_{C \in \mathit{RG}} \lambda(C)$$

(gaining DCJ operations + indels sorting components separately)

Types of DCJ operation

DCJ-types of DCJ operation
$$\begin{cases} \Delta_{\rm DCJ} = 0 \text{ (gaining): creates one cycle or two $\mathbb{A}\mathbb{B}$-paths} \\ \Delta_{\rm DCJ} = 1 \text{ (neutral): does not change the number of cycles nor of $\mathbb{A}\mathbb{B}$-paths} \\ \Delta_{\rm DCJ} = 2 \text{ (losing): destroys one cycle or two $\mathbb{A}\mathbb{B}$-paths} \end{cases}$$

 $\begin{cases} \Delta_{\lambda}=2 &: \text{increases the overall indel-potential by two} \\ \Delta_{\lambda}=1 &: \text{increases the overall indel-potential by one} \\ \Delta_{\lambda}=0 &: \text{does not change the overall indel-potential} \\ \Delta_{\lambda}=-1 &: \text{decreases the overall indel-potential by one} \\ \Delta_{\lambda}=-2 &: \text{decreases the overall indel-potential by two} \end{cases}$

Distance effect of a DCJ operation ρ : $\Delta_{ ext{DCJ}}^{\lambda}(
ho) = \Delta_{ ext{DCJ}}(
ho) + \Delta_{\lambda}(
ho)$

DCJ Operations that can decrease the DCJ-indel distance:
$$\begin{cases} \Delta_{\text{DCJ}} = 0 \text{ (gaining) and } \Delta_{\lambda} = -2 : \Delta_{\text{DCJ}}^{\lambda} = -2 \\ \Delta_{\text{DCJ}} = 0 \text{ (gaining) and } \Delta_{\lambda} = -1 : \Delta_{\text{DCJ}}^{\lambda} = -1 \\ \Delta_{\text{DCJ}} = 1 \text{ (neutral) and } \Delta_{\lambda} = -2 : \Delta_{\text{DCJ}}^{\lambda} = -1 \end{cases}$$

- By definition: any "internal" gaining DCJ operation ρ (applied to a single component) has $\Delta_{\lambda}(\rho) \geq 0$ and, consequentely, $\Delta_{\rm DCJ}^{\lambda}(\rho) \geq 0$
- Any losing DCJ operation ho has $\Delta_{\scriptscriptstyle
 m DCJ}^{\lambda}(
 ho) \geq 0$

DCJ operations involving cycles

 \blacktriangleright Any DCJ operation involving two cycles is losing and has $\Delta_{\scriptscriptstyle DCJ}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

Λ	λ
0	0
1	1
2	2
4	3
6 8	4
8	5

- A DCJ operation ρ applied to a single cycle C can be:
 - lacktriangle Gaining, with $\Delta^{\lambda}_{ ext{DCJ}}(
 ho) \geq 0$ (cannot decrease the DCJ-indel distance)
 - Neutral $(\Delta_{ ext{DCJ}}(
 ho)=1)$:

If $\Lambda(\mathcal{C}) \geq$ 4, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\Lambda}(\rho) \geq -2$ and $\Delta_{\lambda}(\rho) \geq -1$

 \Rightarrow Any neutral DCJ operation applied to a single cycle has $\Delta_{\text{DCJ}}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

If singular genomes $\mathbb A$ and $\mathbb B$ are circular, the graph $RG(\mathbb A,\mathbb B)$ has only cycles (and eventually singletons).

In this case:

$$\mathsf{d}_{\scriptscriptstyle \mathrm{DCJ}}^{\scriptscriptstyle \mathrm{ID}}(\mathbb{A},\mathbb{B}) = n - |\mathcal{C}| + \sum_{C \in RG} \lambda(C)$$

DCJ operations involving paths

• Any DCJ operation involving a path and a cycle is losing and has $\Delta_{\text{DCJ}}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

٨	λ
0	0
1	1
2	2 2
3	
4	3
5	
6	4
7	4
:	:
	0

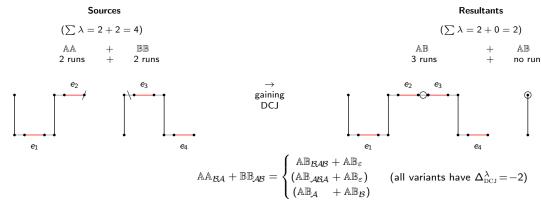
- ▶ A DCJ operation ρ applied to a single path P can be:
 - Gaining, with $\Delta_{\scriptscriptstyle DCJ}^{\lambda}(
 ho) \geq 0$ (cannot decrease the DCJ-indel distance)
 - Neutral $(\Delta_{\text{DCJ}}(\rho) = 1)$:

If
$$\Lambda(P) \geq$$
 4, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\Lambda}(\rho) \geq -2$ and $\Delta_{\lambda}(\rho) \geq -1$

 \Rightarrow Any neutral DCJ operation applied to a single path has $\Delta_{\text{DCJ}}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

Path recombinations can have $\Delta_{\text{DCJ}}^{\lambda} \leq -1$

An gaining (**deducting**) path recombination with $\Delta_{\text{DCJ}}^{\lambda} = -2$:



Deducting path recombinations

have $\Delta_{\scriptscriptstyle \mathrm{DCJ}}^{\lambda} \leq -1$

$$\mathsf{d}^{\scriptscriptstyle{\mathrm{ID}}}_{\scriptscriptstyle{\mathrm{DCJ}}}(\mathbb{A},\mathbb{B}) = n - |\mathcal{C}| - \frac{|\mathcal{P}_{\scriptscriptstyle{\mathbb{A}}\mathbb{B}}|}{2} + \sum_{\mathcal{C} \in \mathit{RG}} \lambda(\mathcal{C}) - \delta,$$

where δ is the value obtained by optimizing deducting path recombinations

Optimizing deducting path recombinations (for computing δ)

Deducting path recombinations that allow the best reuse of the resultants:

sources	resultants	Δ_{λ}	Δ_{DCJ}	$\Delta_{ ext{DCJ}}^{\lambda}$
$\mathbb{A}\mathbb{A}_{AB}+\mathbb{B}\mathbb{B}_{AB}$	• + •	-2	0	-2
$\mathbb{A}\mathbb{A}_{AB} + \mathbb{B}\mathbb{B}_{A}$	$\bullet + \mathbb{AB}_{\mathcal{BA}}$	-1	0	-1
$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{B}\mathbb{B}_{\mathcal{B}}$	$ullet$ + AB $_{\mathcal{A}\mathcal{B}}$	-1	0	-1
$\mathbb{A}\mathbb{A}_{\mathcal{A}} + \mathbb{B}\mathbb{B}_{\mathcal{A}\mathcal{B}}$	$\bullet + \mathbb{AB}_{AB}$	-1	0	-1
$\mathbb{AA}_{\mathcal{B}} + \mathbb{BB}_{\mathcal{AB}}$	$ullet$ + $\mathbb{A}\mathbb{B}_{\mathcal{B}\mathcal{A}}$	-1	0	-1
$\mathbb{A}\mathbb{A}_{\mathcal{A}} + \mathbb{B}\mathbb{B}_{\mathcal{A}}$	• + •	-1	0	-1
$\mathbb{AA}_{\mathcal{B}} + \mathbb{BB}_{\mathcal{B}}$	• + •	-1	0	-1

sources	resultants	Δ_{λ}	$\Delta_{\rm DCJ}$	$\Delta_{\scriptscriptstyle m DCJ}^{\lambda}$
$\frac{\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}}}{\mathbb{B}\mathbb{B}_{\mathcal{A}\mathcal{B}} + \mathbb{B}\mathbb{B}_{\mathcal{A}\mathcal{B}}}$	$\begin{array}{c} \mathbb{A}\mathbb{A}_{\mathcal{A}} + \mathbb{A}\mathbb{A}_{\mathcal{B}} \\ \mathbb{B}\mathbb{B}_{\mathcal{A}} + \mathbb{B}\mathbb{B}_{\mathcal{B}} \end{array}$	-2 -2	$^{+1}_{+1}$	$-1 \\ -1$
$ \begin{array}{c} \mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{A}\mathbb{B}_{\mathcal{A}\mathcal{B}} \\ \mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{A}\mathbb{B}_{\mathcal{B}\mathcal{A}} \end{array} $	 + AAA + AAB 	-2 -2	$^{+1}_{+1}$	$-1 \\ -1$
$\frac{\mathbb{BB_{AB}} + \mathbb{AB_{AB}}}{\mathbb{BB_{AB}} + \mathbb{AB_{BA}}}$	 + BB_B + BB_A 	-2 -2	+1 +1	$-1 \\ -1$
$\mathbb{A}\mathbb{B}_{AB} + \mathbb{A}\mathbb{B}_{BA}$	• + •	-2	+1	-1

Path recombinations with $\Delta_{\text{DCJ}}^{\lambda}=0$ creating resultants that can be used in deducting recombinations:

sources	resultants	Δ_{λ}	Δ_{DCJ}	$\Delta_{ ext{DCJ}}^{\lambda}$
$\mathbb{A}\mathbb{A}_{\mathcal{A}} + \mathbb{A}\mathbb{B}_{\mathcal{A}}$	$A \bullet + AAB$	-1	+1	0
$\mathbb{AA}_{\mathcal{B}} + \mathbb{AB}_{\mathcal{A}}$	\bullet + $\mathbb{A}\mathbb{A}_{AB}$	-1	+1	0
$\mathbb{BB}_{\mathcal{A}} + \mathbb{AB}_{\mathcal{A}}$	B ● + BB _{AB}	-1	+1	0
$\mathbb{BB}_{\mathcal{B}} + \mathbb{AB}_{\mathcal{B}}$	$A \bullet + \mathbb{BB}_{AB}$	-1	+1	0

sou	rce	s	resul	tan	ts	Δ_{λ}	$\Delta_{\rm DCJ}$	$\Delta_{ ext{DCJ}}^{\lambda}$
$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	+	$\mathbb{BB}_{\mathcal{B}}$	•	+	ABab	0	0	0
$\mathbb{AA}_{\mathcal{B}}$	+	$\mathbb{BB}_{\mathcal{A}}$	•	+	$\mathbb{AB}_{\mathcal{BA}}$	0	0	0
ABab	+	\mathbb{AB}_{AB}	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	+	$\mathbb{BB}_{\mathcal{B}}$	-2	+2	0
$\mathbb{AB}_{\mathcal{BA}}$	+	$\mathbb{AB}_{\mathcal{BA}}$	$\mathbb{AA}_{\mathcal{B}}$	+	$\mathbb{BB}_{\mathcal{A}}$	-2	+2	0

Sources:

 $W: \mathbb{AA}_{\mathcal{AB}}$

 $\overline{W}: \mathbb{AA}_{\mathcal{A}}$ $W: \mathbb{AA}_{\mathcal{B}}$

 $\underline{\mathbf{w}}$: \mathbb{BB}_{AB}

 $\overline{\mathtt{M}}:\mathbb{BB}_{\mathcal{A}}$

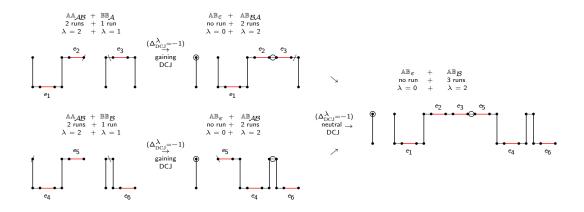
 $\mathtt{M}:\mathbb{BB}_{\mathcal{B}}$

 $Z:\mathbb{AB}_{\mathcal{A}\mathcal{B}}$

 $N : AB_{BA}$

Optimizing deducting path recombinations (for computing δ)

 $\begin{cases} \text{transforming} & 2 \times \mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{B}\mathbb{B}_{\mathcal{A}} + \mathbb{B}\mathbb{B}_{\mathcal{B}} \\ \\ \text{into} & 3 \times \mathbb{A}\mathbb{B}_{\varepsilon} + \mathbb{A}\mathbb{B}_{\mathcal{B}} \\ \\ \text{with} & \text{overall } \Delta_{\scriptscriptstyle DCJ}^{\lambda} = -3 \end{cases}$



	id		sources			resultants			$oldsymbol{\Delta}_{ ext{DCJ}}^{oldsymbol{\lambda}}$	scr
\mathcal{P}	WM	AAAB	$\mathbb{BB}_{\mathcal{AB}}$					2 × •	-2	-1
Q	$\overline{M}\overline{M}MM$	$2 imes \mathbb{A} \mathbb{A}_{\mathcal{A}\mathcal{B}}$	$\mathbb{BB}_{\mathcal{A}} + \mathbb{BB}_{\mathcal{B}}$					4 × ●	-3	-3/4
	$\underline{M}\underline{W}\underline{W}$	$AA_A + AA_B$	$2 imes \mathbb{BB}_{\mathcal{AB}}$		<u> </u>			4 × ●	-3	-3/4
\mathcal{T}	WZM	AAAB	$\mathbb{BB}_{\mathcal{A}}$	$\mathbb{AB}_{\mathcal{AB}}$				3 × ●	-2	-2/3
	WWM	$2 imes \mathbb{A} \mathbb{A}_{AB}$	$\mathbb{BB}_{\mathcal{A}}$		AAB			2 × •	-2	-2/3
	$WN\underline{M}$	AAAB	$\mathbb{BB}_{\mathcal{B}}$	$\mathbb{AB}_{\mathcal{BA}}$				3 × ●	-2	-2/3
	<u>W</u> WW	$2 \times \mathbb{AA}_{AB}$	$\mathbb{BB}_{\mathcal{B}}$		$\mathbb{A}\mathbb{A}_{\mathcal{A}}$			2 × •	-2	-2/3
	$MN\overline{W}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{BA}}$		_		3 × ●	-2	-2/3
	$MM\overline{W}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$2 imes \mathbb{BB}_{\mathcal{AB}}$			$\mathbb{BB}_{\mathcal{B}}$		2 × •	-2	-2/3
	$MZ\underline{W}$	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{AB}}$	<u> </u>			3 × ●	-2	-2/3
	<u> MMW</u>	$\mathbb{AA}_{\mathcal{B}}$	$2 \times \mathbb{BB}_{AB}$			$\mathbb{BB}_{\mathcal{A}}$		2 × •	-2	-2/3
\mathcal{S}	ZN			$\mathbb{AB}_{AB} + \mathbb{AB}_{BA}$				2 × •	-1	-1/2
	WM	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{A}}$					2 × •	-1	-1/2
	<u>WM</u>	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{B}}$					2 × •	-1	-1/2
	$W\overline{M}$	AAAB	$\mathbb{BB}_{\mathcal{A}}$	_	_	_	$\mathbb{AB}_{\mathcal{BA}}$	•	-1	-1/2
	$\underline{W}\underline{M}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}}$	$\mathbb{BB}_{\mathcal{B}}$	_		_	$\mathbb{AB}_{\mathcal{AB}}$	•	-1	-1/2
	WZ	$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}}$		$\mathbb{AB}_{\mathcal{AB}}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$			•	-1	-1/2
	WN	$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}}$		$\mathbb{AB}_{\mathcal{BA}}$	$\mathbb{AA}_{\mathcal{B}}$			•	-1	-1/2
	WW	$2 imes \mathbb{A} \mathbb{A}_{\mathcal{A}\mathcal{B}}$			$\mathbb{AA}_{A} + \mathbb{AA}_{B}$				-1	-1/2
	$M\overline{\textbf{W}}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{AB}}$				$\mathbb{AB}_{\mathcal{AB}}$	•	-1	-1/2
	$\underline{M}\underline{W}$	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{AB}}$				$\mathbb{AB}_{\mathcal{BA}}$	•	-1	-1/2
	MZ		$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{AB}}$		$\mathbb{BB}_{\mathcal{B}}$		•	-1	-1/2
	MN		$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{BA}}$		$\mathbb{BB}_{\mathcal{A}}$		•	-1	-1/2
	MM		$2 imes \mathbb{BB}_{\mathcal{AB}}$			$\mathbb{BB}_{\mathcal{A}} + \mathbb{BB}_{\mathcal{B}}$			-1	-1/2

	ıd		sources			resultants	3		$\Delta_{DCJ}^{\prime\prime}$	scr
\mathcal{M}	ZZ <u>W</u> M	$\mathbb{AA}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{A}}$	$2 imes \mathbb{AB}_{\mathcal{AB}}$				4 × ●	-2	-1/2
	NN <u>w</u> M	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{B}}$	$2 imes \mathbb{AB}_{\mathcal{BA}}$				4 × ●	-2	-1/2
\mathcal{N}	Z <u>W</u> M	$\mathbb{AA}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{A}}$	$\mathbb{AB}_{\mathcal{AB}}$			$\mathbb{AB}_{\mathcal{BA}}$	2 × •	-1	-1/3
	ZZ <u>W</u>	$\mathbb{AA}_{\mathcal{B}}$		$2 imes \mathbb{AB}_{\mathcal{AB}}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$			2 × •	-1	-1/3
	$ZZ\overline{M}$		$\mathbb{BB}_{\mathcal{A}}$	$2 imes \mathbb{AB}_{\mathcal{AB}}$		$\mathbb{BB}_{\mathcal{B}}$		2 × •	-1	-1/3
	$N\overline{W}\underline{M}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{B}}$	$\mathbb{AB}_{\mathcal{BA}}$			$\mathbb{AB}_{\mathcal{AB}}$	2 × •	-1	-1/3
	$NN\overline{W}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$		$2\times \mathbb{AB}_{\mathcal{BA}}$	$\mathbb{AA}_{\mathcal{B}}$			2 × •	-1	-1/3
	NN <u>M</u>	—	$\mathbb{BB}_{\mathcal{B}}$	$2 imes \mathbb{AB}_{\mathcal{BA}}$		$\mathbb{BB}_{\mathcal{A}}$		2 × •	-1	-1/3

Sources: $W : \mathbb{A}\mathbb{A}_{AB}$ $\overline{\mathtt{W}}: \mathbb{A}\mathbb{A}_{\!\mathcal{A}}$ $W : \mathbb{AA}_{\mathcal{B}}$ $M : \mathbb{BB}_{AB}$ $\overline{M}: \mathbb{BB}_{\Delta}$ $M: \mathbb{BB}_{\mathcal{B}}$ $Z : AB_{AB}$ $N : \mathbb{AB}_{BA}$

$$\mathsf{d}^{^{\mathrm{ID}}}_{^{\mathrm{DCJ}}}(\mathbb{A},\mathbb{B}) = n - |\mathcal{C}| - \frac{|\mathcal{P}_{\mathbb{A}\mathbb{B}}|}{2} + \sum_{C \in \mathit{RG}} \lambda(C) - \delta,$$

where δ is the value obtained by optimizing deducting path recombinations:

DCJ-indel distance formula:

$$\delta = 2\mathcal{P} + 3\mathcal{Q} + 2\mathcal{T} + \mathcal{S} + 2\mathcal{M} + \mathcal{N}$$

the values \mathcal{P} , \mathcal{Q} , \mathcal{T} , \mathcal{S} , \mathcal{M} and \mathcal{N} refer to the corresponding number of chains of deducting path recombinations of each type and can be obtained by a greedy approach (simple top-down screening of the table)

Singular DCJ-indel model - summary

DCJ-indel distance:
$$d_{\text{DCJ}}^{\text{ID}}(\mathbb{A}, \mathbb{B}) = n - |\mathcal{C}| - \frac{|\mathcal{P}_{\mathbb{AB}}|}{2} + \sum_{C \in RG} \lambda(C) - \delta$$
, where δ is the value obtained by optimizing deducting path recombinations

$$\mathbb{A} \text{ and } \mathbb{B} \text{ are circular:} \quad \mathsf{d}^{\mathrm{ID}}_{\mathrm{DCJ}}\big(\mathbb{A},\mathbb{B}\big) = n - |\mathcal{C}| + \sum_{C \in \mathit{RG}} \lambda(C)$$

Sorting genome \mathbb{A} **into genome** \mathbb{B} (with a minimum number of DCJs):

- 1. Apply all \mathcal{P} , \mathcal{Q} , \mathcal{T} , \mathcal{S} , \mathcal{M} and \mathcal{N} chains of deducting path recombinations, in this order.
- 2. For each component $C \in RG(\mathbb{A}, \mathbb{B})$:
 - 2.1 Split C with gaining DCJs (that have $\Delta_{\lambda} = 0$) until only components with at most two runs are obtained and the total number of runs in all new components is equal to $\lambda(C)$.
 - 2.2 Accumulate all runs in the smaller components derived from C with gaining DCJ operations (that have $\Delta_{\lambda} = 0$).
 - 2.3 Apply gaining DCJ operations (that have $\Delta_{\lambda}=0$) in the smaller components derived from C until only DCJ-sorted components exist.
 - 2.4 **Delete** all runs in the DCJ-sorted components derived from C.

Computing the distance and sorting can be done in linear time.

Singular DCJ-indel sorting: trade-off between DCJ and indels

The presented sorting algorithm maximizes gaining DCJs with $\Delta_{\lambda}=0$ (minimizing indels).

However, these gaining DCJs can often be replaced by $\begin{cases} \text{neutral DCJs with } \Delta_{\lambda} = -1 \\ \text{losing DCJs with } \Delta_{\lambda} = -2 \end{cases}$

1

There is a big range of possibilities between the presented sorting algorithm and a sorting algorithm that minimizes gaining DCJs with $\Delta_{\lambda}=0$ (maximizing indels)

Restricted DCJ-indel-distance (singular linear genomes)

general DCJ-indel sorting

$$\begin{vmatrix} b & a & c & u & g & f & e & v & d \\ & \downarrow \text{ inversion} & & & & & & & & & \\ & & \downarrow \text{ inversion} & & & & & & & & \\ & & & \downarrow \text{ inversion} & & & & & & & \\ & & & & \downarrow \text{ inversion} & & & & & & \\ & & & & \downarrow \text{ inversion} & & & & & \\ & & & & \downarrow \text{ inversion} & & & & \\ & & & & \downarrow \text{ inversion} & & & & \\ & & & & \downarrow \text{ inversion} & & & \\ & & & & \downarrow \text{ inversion} & & & \\ & & & & \downarrow \text{ inversion} & & & \\ & & & & \downarrow \text{ inversion} & & \\ & & & & \downarrow \text{ inversion} & & \\ & & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & & \downarrow \text{ deletion} & & \\ & & \downarrow \text{ deletion} & & \\ & & \downarrow \text{ deletion} & & \\ & & \downarrow \text{$$

restricted DCJ-indel sorting

S is a general sequence of DCJ and indel operations sorting linear $\mathbb A$ into linear $\mathbb B$

Deletions can always be moved down, insertions can always be moved up:

$$S woheaps S' = S_{ ext{INS}} \oplus S_{ ext{DCJ}} \oplus S_{ ext{DEL}} woheaps R = S_{ ext{INS}} \oplus R_{ ext{DCJ}} \oplus S_{ ext{DEL}} ext{ and } |S| = |S'| = |R|$$

The diameter D_{DCI}^{ID} of the DCJ-indel-distance

For a given component C in a relational graph, let a **segment** of C be

 $\begin{cases} C \text{ itself (if } C \text{ is a 0-cycle or a 0-path)} \\ a \text{ minimal path flanked by two extremity-edges} \\ a \text{ minimal path at the extremity of a path and connected to an extremity edge} \end{cases}$

$\mathsf{s}(\mathit{C})$: number of segments in component C

s(<i>C</i>)	$d_{\scriptscriptstyle \mathrm{DCJ}}(\mathit{C})$	$\Lambda_{\text{MAX}}(C)$	$\lambda_{\text{\tiny MAX}}(C)$
1	0	1	1
2	0	2	2
3	1	3	2
4	1	4	3
5	2	5	3
6	2	6	4
7	3	7	4
:	:	:	:
s(<i>C</i>)	$\left\lfloor \frac{s(C)-1}{2} \right\rfloor$	s(<i>C</i>)	$\left\lceil \frac{s(\mathit{C})+1}{2} \right\rceil$

if s(C) is odd:

$$d_{DCJ}(C) + \lambda_{MAX}(C) = \frac{s(C)-1}{2} + \frac{s(C)+1}{2} = s(C)$$

if s(C) is even:

$$d_{\text{DCJ}}(C) + \lambda_{\text{MAX}}(C) = \frac{s(C)-2}{2} + \frac{s(C)+2}{2} = s(C)$$

$$\mathsf{Let} \begin{cases} \kappa(\mathbb{A}) : & \# \text{ linear chromosomes in } \mathbb{A} \\ \mathcal{S}(\mathbb{A}) : & \# \text{ (circular) singletons in } \mathbb{A} \\ \kappa(\mathbb{B}) : & \# \text{ linear chromosomes in } \mathbb{B} \\ \mathcal{S}(\mathbb{B}) : & \# \text{ (circular) singletons in } \mathbb{B} \end{cases}$$

The number of segments in $RG(\mathbb{A}, \mathbb{B})$ is $s(RG(\mathbb{A}, \mathbb{B})) = 2n + \kappa(\mathbb{A}) + \mathcal{S}(\mathbb{A}) + \kappa(\mathbb{B}) + \mathcal{S}(\mathbb{B})$

$$\begin{split} \mathsf{D}^{\scriptscriptstyle{\mathrm{ID}}}_{\scriptscriptstyle{\mathrm{DCJ}}}(\mathbb{A},\mathbb{B}) &= \sum_{C \in RG(\mathbb{A},\mathbb{B})} (\mathsf{d}_{\scriptscriptstyle{\mathrm{DCJ}}}(C) + \lambda_{\scriptscriptstyle{\mathrm{MAX}}}(C)) \\ &= \sum_{C \in RG(\mathbb{A},\mathbb{B})} \mathsf{s}(C) \\ &= \mathsf{s}(RG(\mathbb{A},\mathbb{B})) \end{split}$$

$$\mathsf{D}^{\scriptscriptstyle{\mathrm{ID}}}_{\scriptscriptstyle{\mathrm{DCJ}}}(\mathbb{A},\mathbb{B})=2n+\kappa(\mathbb{A})+\mathcal{S}(\mathbb{A})+\kappa(\mathbb{B})+\mathcal{S}(\mathbb{B})$$

The triangular inequality does not hold for the DCJ-indel distance

Three singular genomes
$$\begin{cases} \mathbb{A} = [1\ 2\ 3\ 4\ 5]\\ \mathbb{B} = [1\ 3\ \bar{4}\ 2\ 5] \end{cases}.$$

$$\mathbb{C} = [1\ 5]$$

$$\begin{split} & \text{The triangular inequality} \\ & d_{\scriptscriptstyle DCJ}^{\scriptscriptstyle ID}(\mathbb{A},\mathbb{B}) \leq d_{\scriptscriptstyle DCJ}^{\scriptscriptstyle ID}(\mathbb{A},\mathbb{C}) + d_{\scriptscriptstyle DCJ}^{\scriptscriptstyle ID}(\mathbb{B},\mathbb{C}) \\ & \text{does not hold} \end{split} \qquad \begin{cases} d_{\scriptscriptstyle DCJ}^{\scriptscriptstyle ID}(\mathbb{A},\mathbb{B}) = 3 \\ d_{\scriptscriptstyle DCJ}^{\scriptscriptstyle ID}(\mathbb{A},\mathbb{C}) = 1 \\ d_{\scriptscriptstyle DCJ}^{\scriptscriptstyle ID}(\mathbb{B},\mathbb{C}) = 1 \end{cases}$$

"Free lunch": while sorting $\mathbb A$ into $\mathbb C$ and then $\mathbb C$ into $\mathbb B$, a set of common genes of $\mathbb A$ and $\mathbb B$ are deleted and then reinserted

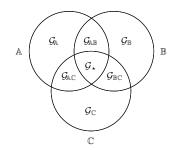
In the comparison of two genomes, our model prevents this problem: common genes cannot be deleted or inserted

However, the triangular inequality is essential in other problems involving the DCJ-indel distance for the comparison of three or more genomes (e.g. median)

Establishing the triangular inequality

Disjoint sets of genes $\mathcal{G}_{\mathbb{A}}$, $\mathcal{G}_{\mathbb{B}}$, $\mathcal{G}_{\mathbb{C}}$, $\mathcal{G}_{\mathbb{A}\mathbb{B}}$, $\mathcal{G}_{\mathbb{B}\mathbb{C}}$, $\mathcal{G}_{\mathbb{A}\mathbb{C}}$ and \mathcal{G}_{\star} for three genomes \mathbb{A} , \mathbb{B} and \mathbb{C}

$$\begin{split} dk_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) &= d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) &= d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) &= d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}|) \end{split}$$



$$\mathsf{dk}^{\mathrm{\scriptscriptstyle ID}}_{\mathrm{\scriptscriptstyle DCJ}}(\mathbb{A},\mathbb{B}) \ \leq \mathsf{dk}^{\mathrm{\scriptscriptstyle ID}}_{\mathrm{\scriptscriptstyle DCJ}}(\mathbb{A},\mathbb{C}) + \mathsf{dk}^{\mathrm{\scriptscriptstyle ID}}_{\mathrm{\scriptscriptstyle DCJ}}(\mathbb{B},\mathbb{C})$$

$$\begin{split} d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) & \leq d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) + \\ & d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) + \\ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) & \leq d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|) \\ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) & \leq d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + 2k(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|) \end{split}$$

Establishing the triangular inequality

$$\begin{cases} d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) \; \leq \; d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + 2\mathsf{k}(|\mathcal{G}_{\!\!\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|) \\ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) \; \leq \; d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + 2\mathsf{k}(|\mathcal{G}_{\!\!\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\!\!\mathbb{B}}|) \\ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) \; \leq \; d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + 2\mathsf{k}(|\mathcal{G}_{\!\!\mathbb{B}\mathbb{C}}| + |\mathcal{G}_{\!\!\mathbb{A}}|) \end{cases}$$

$$\mathbb{A} \left(\begin{array}{c} \mathcal{G}_{\mathbb{A}} & \mathcal{G}_{\mathbb{A}\mathbb{B}} & \mathcal{G}_{\mathbb{B}} \\ \mathcal{G}_{\mathbb{A}\mathbb{C}} & \mathcal{G}_{\mathbb{B}} & \mathcal{G}_{\mathbb{B}} \end{array} \right) \mathbb{B}$$

$$\label{eq:assume definition} \mathsf{Assume} \left\{ \begin{split} d^{\mathrm{ID}}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{B}) &\geq d^{\mathrm{ID}}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{C}) \\ d^{\mathrm{ID}}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{B}) &\geq d^{\mathrm{ID}}_{\mathrm{DCJ}}(\mathbb{B},\mathbb{C}) \end{split} \right.$$

$$\mbox{Assume} \begin{cases} d^{\rm ID}_{\rm DCJ}(\mathbb{A},\mathbb{B}) \geq d^{\rm ID}_{\rm DCJ}(\mathbb{A},\mathbb{C}) \\ d^{\rm ID}_{\rm DCJ}(\mathbb{A},\mathbb{B}) \geq d^{\rm ID}_{\rm DCJ}(\mathbb{B},\mathbb{C}) \end{cases} \\ \mbox{Let} \begin{cases} \xi(\mathbb{A}) : & \# \mbox{chromosomes in } \mathbb{A} \\ \kappa(\mathbb{A}) : & \# \mbox{(circular) singletons in } \mathbb{A} \\ \mathcal{S}(\mathbb{A}) : & \# \mbox{(circular) singletons in } \mathbb{B} \\ \kappa(\mathbb{B}) : & \# \mbox{chromosomes in } \mathbb{B} \\ \kappa(\mathbb{B}) : & \# \mbox{linear chromosomes in } \mathbb{B} \\ \mathcal{S}(\mathbb{B}) : & \# \mbox{(circular) singletons in } \mathbb{B} \end{cases} \\ \kappa(\mathbb{B}) : & \# \mbox{(circular) singletons in } \mathbb{B} \end{cases}$$

We need to find a value k that guarantees:

$$d_{\text{\tiny DCJ}}^{\text{\tiny ID}}(\mathbb{A},\mathbb{B}) \; \leq \; d_{\text{\tiny DCJ}}^{\text{\tiny ID}}(\mathbb{A},\mathbb{C}) + d_{\text{\tiny DCJ}}^{\text{\tiny ID}}(\mathbb{B},\mathbb{C}) + 2k(|\mathcal{G}_{\!\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|)$$

In the worst case genome $\mathbb C$ is empty:

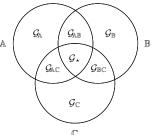
$$\begin{array}{l} \text{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) = \xi(\mathbb{A}) \quad \text{and} \quad \mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) = \xi(\mathbb{B}) \\ \\ \mathrm{D}_{\mathrm{DCJ}}^{\mathrm{D}}(\mathbb{A},\mathbb{B}) = 2|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + \kappa(\mathbb{A}) + \mathcal{S}(\mathbb{A}) + \kappa(\mathbb{B}) + \mathcal{S}(\mathbb{B}) \end{array}$$

$$D_{DCJ}^{ID}(\mathbb{A}, \mathbb{B}) \le \xi(\mathbb{A}) + \xi(\mathbb{B}) + 2k|\mathcal{G}_{\mathbb{A}\mathbb{B}}|$$

$$\vdots$$

Establishing the triangular inequality

$$\begin{split} dk_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) &= d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) &= d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) &= d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}|) \end{split}$$



The triangular inequality holds for the corrected distance $dk_{\text{DCJ}}^{\text{ID}}$ for any $k \geq 1$

References

Double Cut and Join with Insertions and Deletions

(Marília D.V. Braga, Eyla Willing and Jens Stoye)

JCB, Vol. 18, No. 9 (2011)

Sorting Linear Genomes with Rearrangements and Indels

(Marília D. V. Braga and Jens Stoye)

TCBB, vol 12, issue 3, pp. 500-506 (2015)

On the weight of indels in genomic distances

(Marília D. V. Braga, Raphael Machado, Leonardo C. Ribeiro and Jens Stoye)

BMC Bioinformatics, vol. 12, S13 (2011)