Topics of today:

Singular DCJ-indel distance and sorting:

- 1. Indel-potential
- 2. Deducting path recombinations
- 3. Restricted DCJ-indel model
- 4. The diameter of the DCJ-indel distance
- 5. Establishing the triangular inequality

Runs of indel-edges

One indel-enclosing cycle:

 $\Lambda(C)$ is the number of **runs** in component *C*

Runs of indel-edges

 $\label{eq:DCJ} \mbox{Types of DCJ operation} \begin{cases} \Delta_{\rm DCJ} = 0 \mbox{ (gaining): creates one cycle or two \mathbb{AB}-paths} \\ \Delta_{\rm DCJ} = 1 \mbox{ (neutral): does not change the number of cycles nor of \mathbb{AB}-paths} \\ \Delta_{\rm DCJ} = 2 \mbox{ (losing): destroys one cycle or two \mathbb{AB}-paths} \end{cases}$

Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once

 \Rightarrow Second upper bound:

$$\mathsf{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) \leq n - |\mathcal{C}| - \frac{|\mathcal{P}_{\mathbb{A}\mathbb{B}}|}{2} + \sum_{C \in RG} \Lambda(C)$$

DCJ operations can modify the number of runs:

$$\label{eq:ADCJ} A \mbox{ DCJ operation can have} \begin{cases} \Delta_{\Lambda} = -2 & (\mbox{merges two pairs of runs}) \\ \Delta_{\Lambda} = -1 & (\mbox{merges one pair of runs}) \\ \Delta_{\Lambda} = 0 & (\mbox{preserves the runs}) \\ \Delta_{\Lambda} = 1 & (\mbox{splits one run}) \\ \Delta_{\Lambda} = 2 & (\mbox{splits two runs}) \end{cases}$$

Runs can be merged and accumulated in both genomes

1 inversion

Β·

A sequence of 2 operations sorting \mathbb{B} into $\mathbb{I} = [\overline{1} \ 2 \ 3]$

inversion

 \mathbb{I} :

 \mathbb{B} :

Merging runs with "internal" gaining DCJ operations

An gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component can decrease the number of runs:

DCJ-sorted (or short) components: 2-cycles and 1-paths (and 0-cycles and 0-paths)

Long components: *k*-cycles (with $k \ge 4$) and *k*-paths (with $k \ge 2$)

DCJ-sorting a long component C: transforming C into a set of DCJ-sorted components

Indel-potential $\lambda(C)$ of a component C:

minimum number of runs that we can obtain by DCJ-sorting C with gaining DCJ operations

Indel-potential λ' of a cycle *C*

 $\Lambda(C) = 0, 1, 2, 4, 6, 8, \dots$

We will show that $\lambda'(C)$ depends only on the value $\Lambda(C)$: denote $\lambda'(C) = \lambda'(\Lambda(C))$

$$\begin{split} \Lambda(C) &= 1 \Rightarrow \lambda'(1) = 1\\ \Lambda(C) &= 2 \Rightarrow \lambda'(2) = 2\\ \Lambda(C) &\geq 4 : \Lambda(C) = o_1 + o_2 \text{ such that } o_1 \text{ and } o_2 \text{ are odd, and assume } o_1 \geq o_2\\ & \text{two resulting cycles:} \begin{cases} \text{one with } o_1 - 1 \text{ runs}\\ \text{one with either 1 run (if } o_2 = 1) \text{ or with } o_2 - 1 \text{ runs (if } o_2 \geq 3) \end{cases} \end{split}$$

$$\Rightarrow \lambda'(4) = \lambda'(2) + \lambda'(1) = 2 + 1 = 3 \Rightarrow \lambda'(6) = \begin{cases} \lambda'(2) + \lambda'(2) = 2 + 2 = 4 \\ \lambda'(4) + \lambda'(1) = 3 + 1 = 4 \end{cases} \Rightarrow \lambda'(8) = \begin{cases} \lambda'(4) + \lambda'(2) = 3 + 2 = 5 \\ \lambda'(6) + \lambda'(1) = 4 + 1 = 5 \end{cases}$$

Λ	λ'
0	0
1	1
2	2
4	3
6	4
8	5
	•
	:

Induction: $\begin{cases} \text{hypothesis: } \lambda'(\Lambda(C)) = \frac{\Lambda(C)}{2} + 1\\ \text{base cases: } \lambda'(1) = 1 \text{ and } \lambda'(2) = 2 \end{cases}$

Induction step: in general, for $\Lambda(C) \ge 4$, we can state $\lambda'(\Lambda(C)) = \lambda'(\Lambda(C) - 2) + \lambda'(1)$

$$= \left(\frac{\Lambda(C) - 2}{2} + 1\right) + 1$$
$$= \frac{\Lambda(C)}{2} + 1$$

Indel-potential λ'' of a path P

 $\Lambda(P) = 0, 1, 2, 3, 4, 5, 6, 7, 8, \dots$

We will show that $\lambda''(P)$ depends only on the value $\Lambda(P)$: denote $\lambda''(P) = \lambda''(\Lambda(P))$

$$\begin{split} &\Lambda(P) = 1 \Rightarrow \lambda''(1) = 1 \\ &\Lambda(P) = 2 \Rightarrow \lambda''(2) = 2 \\ &\Lambda(P) \ge 3 : \Lambda(P) = o_1 + o_2 \text{ such that } o_1 \ge 1 \text{ and } o_2 \text{ is odd} \\ &\text{two resulting components:} \begin{cases} \text{one path with either 1 run (if } o_1 = 1) \text{ or with } o_1 - 1 \text{ runs (if } o_1 \ge 2) \\ &\text{one cycle with either 1 run (if } o_2 = 1) \text{ or with } o_2 - 1 \text{ runs (if } o_2 \in \{3, 5, ...\}) \end{cases} \end{split}$$

but we can get the same indel-potential if we extract all runs into a cycle:

$$\lambda''(3) = \begin{cases} \lambda''(1) + \lambda'(1) = 1 + 1 = 2 \\ \lambda'(2) = 2 \\ \lambda''(4) = \begin{cases} \lambda''(2) + \lambda'(1) = 2 + 1 = 3 \\ \lambda''(1) + \lambda'(2) = 1 + 2 = 3 \\ \lambda''(4) = 3 \end{cases} \qquad \lambda''(6) = \begin{cases} \lambda''(3) + \lambda'(1) = 2 + 1 = 3 \\ \lambda''(1) + \lambda'(2) = 1 + 2 = 3 \\ \lambda'(4) = 3 \\ \lambda''(6) = 4 \end{cases}$$

Λ	$\lambda^{\prime\prime}$
0	0
1	1
2	2
3	2
4	3
5	3
6	4
7	4
•	•
· ·	•

In general, for $\Lambda(P) \ge 2$, we can state $\lambda''(\Lambda(P)) = \begin{cases} \lambda'(\Lambda(P)) & \text{if } \Lambda(P) \text{ is even} \\ \lambda'(\Lambda(P)-1) & \text{if } \Lambda(P) \text{ is odd} \end{cases}$ $\lambda''(\Lambda(P)) = \left\lceil \frac{\Lambda(P)+1}{2} \right\rceil$

Indel-potential λ of a component C

If C is a singleton: $\lambda(C) = 1$

If C is a cycle:

$$\lambda(C) = \begin{cases} 0 & \text{if } \Lambda(C) = 0 \ (C \text{ is indel-free}) \\ 1 & \text{if } \Lambda(C) = 1 \\ \frac{\Lambda(C)}{2} + 1 & \text{if } \Lambda(C) \ge 2 \end{cases}$$

If C is a path:

$$\lambda(C) = \begin{cases} 0 & \text{if } \Lambda(C) = 0 \text{ (}C \text{ is indel-free)} \\ \left\lceil \frac{\Lambda(C)+1}{2} \right\rceil & \text{if } \Lambda(C) \ge 1 \end{cases}$$

Λ	λ	
0	0	paths and cycles
1	1	paths, cycles and singletons
2	2	paths and cycles
3	2	paths
4	3	paths and cycles
5	3	paths
6	4	paths and cycles
7	4	paths
•	•	
:	:	

In general, for any component C:

 $\lambda(C) = \begin{cases} 0 & \text{if } \Lambda(C) = 0 \text{ (}C \text{ is indel-free)} \\ \left\lceil \frac{\Lambda(C)+1}{2} \right\rceil & \text{if } \Lambda(C) \ge 1 \end{cases}$

$$\text{Third upper bound:} \quad \mathsf{d}_{_{\mathrm{DCJ}}}^{^{\mathrm{ID}}}(\mathbb{A},\mathbb{B}) \leq n - |\mathcal{C}| - \frac{|\mathcal{P}_{\mathbb{A}\mathbb{B}}|}{2} + \sum_{C \in \mathit{RG}} \lambda(C)$$

(gaining DCJ operations + indels sorting components separately)

Types of DCJ operation

 $\label{eq:DCJ-types of DCJ operation} \begin{cases} \Delta_{\rm DCJ} = 0 \mbox{ (gaining): creates one cycle or two \mathbb{AB}-paths} \\ \Delta_{\rm DCJ} = 1 \mbox{ (neutral): does not change the number of cycles nor of \mathbb{AB}-paths} \\ \Delta_{\rm DCJ} = 2 \mbox{ (losing): destroys one cycle or two \mathbb{AB}-paths} \end{cases}$

 $\label{eq:linear_linear} \mbox{Indel-types of DCJ operation} \begin{cases} \Delta_\lambda = -2 & : \mbox{ decreases the overall indel-potential by two} \\ \Delta_\lambda = -1 & : \mbox{ decreases the overall indel-potential by one} \\ \Delta_\lambda = 0 & : \mbox{ does not change the overall indel-potential} \\ \Delta_\lambda = 1 & : \mbox{ increases the overall indel-potential by one} \\ \Delta_\lambda = 2 & : \mbox{ increases the overall indel-potential by two} \end{cases}$

Effect of a DCJ operation ρ on the third upper bound: $\Delta^{\lambda}_{\text{DCJ}}(\rho) = \Delta_{\text{DCJ}}(\rho) + \Delta_{\lambda}(\rho)$

 $\begin{array}{l} \mbox{DCJ Operations that can decrease the third upper bound:} \\ \left\{ \begin{array}{l} \Delta_{\rm DCJ}=0 \mbox{ (gaining) and } \Delta_{\lambda}=-2 \ : \ \Delta_{\rm DCJ}^{\lambda}=-2 \\ \Delta_{\rm DCJ}=0 \mbox{ (gaining) and } \Delta_{\lambda}=-1 \ : \ \Delta_{\rm DCJ}^{\lambda}=-1 \\ \Delta_{\rm DCJ}=1 \mbox{ (neutral) and } \Delta_{\lambda}=-2 \ : \ \Delta_{\rm DCJ}^{\lambda}=-1 \end{array} \right. \end{array}$

▶ By definition: any "internal" gaining DCJ operation ρ (applied to a single component) has $\Delta_{\lambda}(\rho) \ge 0$ and, consequentely, $\Delta_{\text{DCJ}}^{\lambda}(\rho) \ge 0$

DCJ operations involving cycles

► Any DCJ operation involving two cycles is losing and has $\Delta_{\rm DCJ}^{\lambda} \ge 0$ (cannot decrease the DCJ-indel distance)

• A DCJ operation ρ applied to a single cycle C can be:

▶ Gaining, with $\Delta^{\lambda}_{\text{DCJ}}(\rho) \ge 0$ (cannot decrease the DCJ-indel distance)

• Neutral $(\Delta_{\text{DCJ}}(\rho) = 1)$:

If $\Lambda(C) \ge 4$, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\Lambda}(\rho) \ge -2$ and $\Delta_{\lambda}(\rho) \ge -1$

 $\Rightarrow \text{ Any neutral DCJ operation applied to a single cycle has } \Delta^{\lambda}_{\text{DCJ}} \geq 0$ (cannot decrease the DCJ-indel distance)

If singular genomes \mathbb{A} and \mathbb{B} are circular, the graph $RG(\mathbb{A},\mathbb{B})$ has only cycles (and eventually singletons).

In this case:

$$\mathsf{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B})=n-|\mathcal{C}|+\sum_{\mathcal{C}\in \mathcal{RG}}\lambda(\mathcal{C})$$

Λ	λ
0	0
1	1
2	2
4	3
6	4
8	5
:	:

DCJ operations involving paths

▶ Any DCJ operation involving a path and a cycle is losing and has $\Delta_{\rm DCJ}^{\lambda} \ge 0$ (cannot decrease the DCJ-indel distance)

• A DCJ operation ρ applied to a single path P can be:

- Gaining, with $\Delta_{\text{DCJ}}^{\lambda}(\rho) \geq 0$ (cannot decrease the DCJ-indel distance)
- Neutral $(\Delta_{\text{DCJ}}(\rho) = 1)$:

If $\Lambda(P) \ge 4$, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\Lambda}(\rho) \ge -2$ and $\Delta_{\lambda}(\rho) \ge -1$

 \Rightarrow Any neutral DCJ operation applied to a single path has $\Delta^{\lambda}_{\rm DCJ} \geq 0$ (cannot decrease the DCJ-indel distance)

Λ	λ
0	0
1	1
2	2
3	2
4	3
5	3
6	4
7	4
-	-
	· ·

Path recombinations can have $\Delta_{\text{DCL}}^{\lambda} \leq -1$

Deducting path recombinations

have $\Delta_{\rm DCL}^{\lambda} < -1$

where δ is the value obtained by optimizing deducting path recombinations

Optimizing deducting path recombinations (for computing δ)

	ε	\equiv	ε	(empty)	ſ	$\mathbb{AA}_{\varepsilon}, \mathbb{AA}_{\mathcal{A}}, \mathbb{AA}_{\mathcal{B}}, \mathbb{AA}_{\mathcal{AB}}(\equiv \mathbb{AA}_{\mathcal{BA}})$
_	$\mathcal{ABAB}\ldots\mathcal{A}$	≡	\mathcal{A}	(odd)		\mathbb{BB}_{ϵ} , \mathbb{BB}_{A} , \mathbb{BB}_{B} , $\mathbb{BB}_{AB}(\equiv \mathbb{BB}_{BA})$
Run-type of a path	BABA B ABAB AB	=	B AB	(odd) (even)	Path types {	$AB_{\varepsilon}, AB_{A}, AB_{B}, AB_{AB}, AB_{BA}$
	BABA BA	=	BA	(even)	l	\Rightarrow an AB-path is always read from A to B

Deducting path recombinations that allow the best reuse of the resultants:

sources	resultants	Δ_{λ}	$\Delta_{\rm DCJ}$	$\Delta^{\lambda}_{ m DCJ}$	sources	resultants	Δ_{λ}	$\Delta_{\rm DCJ}$	$\Delta^\lambda_{ m DCJ}$	
$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{B}\mathbb{B}_{\mathcal{A}\mathcal{B}}$	•+•	-2	0	-2	$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}}$	$\mathbb{AA}_{\mathcal{A}} + \mathbb{AA}_{\mathcal{B}}$	-2	$^{+1}$	$^{-1}$	Sources
$\mathbb{A}\mathbb{A}_{AB} + \mathbb{B}\mathbb{B}_A$	$\bullet + \mathbb{AB}_{BA}$	-1	0	-1	$\mathbb{BB}_{AB} + \mathbb{BB}_{AB}$	$\mathbb{BB}_{\mathcal{A}} + \mathbb{BB}_{\mathcal{B}}$	-2	+1	$^{-1}$	
$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{B}\mathbb{B}_{\mathcal{B}}$	$\bullet + \mathbb{AB}_{AB}$	-1	0	$^{-1}$	$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{A}\mathbb{B}_{\mathcal{A}\mathcal{B}}$	• $+ AA_A$	-2	+1	$^{-1}$	W:AAA
$\mathbb{A}\mathbb{A}_A + \mathbb{B}\mathbb{B}_{AB}$	• + \mathbb{AB}_{AB}	-1	0	-1	$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}} + \mathbb{A}\mathbb{B}_{\mathcal{B}\mathcal{A}}$	• $+ \mathbb{A}\mathbb{A}_{\mathcal{B}}$	-2	$^{+1}$	$^{-1}$	
$\mathbb{A}\mathbb{A}_{\mathcal{B}} + \mathbb{B}\mathbb{B}_{\mathcal{A}\mathcal{B}}$	• + AB_{BA}	$^{-1}$	0	$^{-1}$	$\mathbb{B}\mathbb{B}_{AB} + \mathbb{A}\mathbb{B}_{AB}$	• + $\mathbb{BB}_{\mathcal{B}}$	-2	$^{+1}$	$^{-1}$	W : AAA
$AA_A + BB_A$	•+•	-1	0	$^{-1}$	$\mathbb{BB}_{AB} + \mathbb{AB}_{BA}$	• + $\mathbb{BB}_{\mathcal{A}}$	-2	$^{+1}$	$^{-1}$	\underline{W} : $\mathbb{A}\mathbb{A}_{\mathcal{B}}$
$\mathbb{A}\mathbb{A}_{\mathcal{B}}^{\prime} + \mathbb{B}\mathbb{B}_{\mathcal{B}}^{\prime}$	• + •	-1	0	-1	$\mathbb{AB}_{\mathcal{AB}} + \mathbb{AB}_{\mathcal{BA}}$	• + •	-2	$^{+1}$	-1	$M : \mathbb{BB}_{AB}$
										$\overline{M}:\mathbb{BB}_{\mathcal{A}}$
recombinatio	ns with $\Delta^\lambda_{ m DC.}$, = 0	creatir	ng resu	ltants that can b	e used in deduc	ting r	ecomb	oination	s: M:BBB

 $Z : AB_{AB}$ N : AB_{BA}

sources	resultants	Δ_{λ}	$\Delta_{\rm DCJ}$	$\Delta^\lambda_{ m DCJ}$	SO	ırce	s	resul	tants	Δ_{λ}	$\Delta_{\rm DCJ}$	$\Delta^\lambda_{ m DCJ}$
$\mathbb{A}\mathbb{A}_{\mathcal{A}} + \mathbb{A}\mathbb{B}_{\mathcal{B}\mathcal{A}}$	• $+ AA_{AB}$	-1	$^{+1}$	0	AAA	+	$\mathbb{BB}_{\mathcal{B}}$	•	$+ \mathbb{AB}_{AB}$	0	0	0
$\mathbb{A}\mathbb{A}_{\mathcal{B}} + \mathbb{A}\mathbb{B}_{\mathcal{A}\mathcal{B}}$	• + AA_{AB}	-1	+1	0	$\mathbb{AA}_{\mathcal{B}}$	+	$\mathbb{BB}_{\mathcal{A}}$	•	$+ \mathbb{AB}_{\mathcal{BA}}$	0	0	0
$\mathbb{B}\mathbb{B}_{\mathcal{A}} + \mathbb{A}\mathbb{B}_{\mathcal{A}\mathcal{B}}$	• + $\mathbb{B}\mathbb{B}_{AB}$	-1	$^{+1}$	0	ABAB	+	ABAB	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$+ \mathbb{BB}_{\mathcal{B}}$	-2	+2	0
$\mathbb{BB}_{\mathcal{B}} + \mathbb{AB}_{\mathcal{BA}}$	• + \mathbb{BB}_{AB}	$^{-1}$	$^{+1}$	0	$\mathbb{AB}_{\mathcal{BA}}$	+	$\mathbb{AB}_{\mathcal{BA}}$	$\mathbb{AA}_{\mathcal{B}}$	$+ \mathbb{BB}_{A}$	-2	+2	0

Optimizing deducting path recombinations (for computing δ)

	id		sources			resultants			$\Delta_{\text{DCJ}}^{\lambda}$	scr
\mathcal{P}	WM	AAB	$\mathbb{BB}_{\mathcal{AB}}$					$2 \times \bullet$	-2	-1
Q	₩₩ <u>₩</u> M	$2 imes \mathbb{AA}_{\mathcal{AB}}$	$\mathbb{BB}_{\mathcal{A}} + \mathbb{BB}_{\mathcal{B}}$		—			$4 \times \bullet$	-3	-3/4
	mm <u>₩</u>	$\mathbb{AA}_{\!\mathcal{A}} \! + \! \mathbb{AA}_{\mathcal{B}}$	$2\times \mathbb{BB}_{\!\mathcal{A}\!\mathcal{B}}$					$4 \times \bullet$	-3	-3/4
\mathcal{T}	WZM	AAAB	$\mathbb{BB}_{\mathcal{A}}$	$\mathbb{AB}_{\mathcal{AB}}$				$3 \times \bullet$	-2	-2/3
	WWM	$2 imes \mathbb{AA}_{\mathcal{AB}}$	$\mathbb{BB}_{\mathcal{A}}$		AAB			$2 \times \bullet$	-2	-2/3
	WNM	AAB	$\mathbb{BB}_{\mathcal{B}}$	$\mathbb{AB}_{\mathcal{BA}}$				$3 \times \bullet$	-2	-2/3
	WW <u>M</u>	$2 imes \mathbb{AA}_{\mathcal{AB}}$	$\mathbb{BB}_{\mathcal{B}}$		AA_A			$2 \times \bullet$	-2	-2/3
	MNW	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{BA}}$				$3 \times \bullet$	-2	-2/3
	MMW	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$2 imes \mathbb{BB}_{\mathcal{AB}}$			$\mathbb{BB}_{\mathcal{B}}$		$2 \times \bullet$	-2	-2/3
	MZW	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{AB}}$				$3 \times \bullet$	-2	-2/3
	MM <u>W</u>	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$2 imes \mathbb{BB}_{AB}$		<u> </u>	$\mathbb{BB}_{\mathcal{A}}$		$2 \times \bullet$	-2	-2/3
S	ZN			$\mathbb{AB}_{\mathcal{AB}} + \mathbb{AB}_{\mathcal{BA}}$				$2 \times \bullet$	-1	-1/2
	WM	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\!\mathcal{A}}$					$2 \times \bullet$	$^{-1}$	-1/2
	WM	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{B}}$		—			$2 \times \bullet$	$^{-1}$	-1/2
	WM	AAAB	$\mathbb{BB}_{\!\mathcal{A}}$				$\mathbb{AB}_{\mathcal{BA}}$	•	$^{-1}$	-1/2
	WM	$\mathbb{A}\mathbb{A}_{\mathcal{A}\mathcal{B}}$	$\mathbb{BB}_{\mathcal{B}}$				$\mathbb{AB}_{\mathcal{AB}}$	•	$^{-1}$	-1/2
	WZ	AAAB		$\mathbb{AB}_{\mathcal{AB}}$	AA_A			•	$^{-1}$	-1/2
	WN	AAAB		$\mathbb{AB}_{\mathcal{BA}}$	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$			•	$^{-1}$	-1/2
	WW	$2 imes \mathbb{AA}_{\mathcal{AB}}$			$AA_{\mathcal{A}} + AA_{\mathcal{B}}$				$^{-1}$	-1/2
	MW	$\mathbb{A}\mathbb{A}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{AB}}$				$\mathbb{AB}_{\mathcal{AB}}$	•	$^{-1}$	-1/2
	MW	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$\mathbb{BB}_{\mathcal{AB}}$				$\mathbb{AB}_{\mathcal{BA}}$	•	$^{-1}$	-1/2
	MZ		$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{AB}}$		$\mathbb{BB}_{\mathcal{B}}$		•	$^{-1}$	-1/2
	MN		$\mathbb{BB}_{\mathcal{AB}}$	$\mathbb{AB}_{\mathcal{BA}}$		$\mathbb{BB}_{\!\mathcal{A}}$		•	$^{-1}$	-1/2
	MM		$2 imes \mathbb{BB}_{\mathcal{AB}}$			$\mathbb{BB}_{\mathcal{A}} + \mathbb{BB}_{\mathcal{B}}$			$^{-1}$	-1/2

	id		sources			resultants	;		$\Delta_{\text{DCJ}}^{\lambda}$	scr
\mathcal{M}	ZZ <u>W</u> M	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$	$\mathbb{BB}_{\!\mathcal{A}}$	$2 imes \mathbb{AB}_{AB}$				$4 \times \bullet$	-2	-1/2
	NN₩ <u>M</u>	$\mathbb{A}\mathbb{A}_{\!\mathcal{A}}$	$\mathbb{BB}_{\mathcal{B}}$	$2\times \mathbb{AB}_{\mathcal{BA}}$				$4 \times \bullet$	-2	-1/2
\mathcal{N}	Z <u>₩</u> M	$\mathbb{AA}_{\mathcal{B}}$	$\mathbb{BB}_{\!\mathcal{A}}$	$\mathbb{AB}_{\mathcal{AB}}$			$\mathbb{AB}_{\mathcal{BA}}$	$2 \times \bullet$	-1	-1/3
	ZZ₩	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$		$2 imes \mathbb{AB}_{\mathcal{AB}}$	$\mathbb{AA}_{\mathcal{A}}$			$2 \times \bullet$	-1	-1/3
	ZZM		$\mathbb{BB}_{\!\mathcal{A}}$	$2 imes \mathbb{AB}_{\!\mathcal{A}\!\mathcal{B}}$		$\mathbb{BB}_{\mathcal{B}}$		$2 \times \bullet$	-1	-1/3
	NW <u>M</u>	$\mathbb{AA}_{\mathcal{A}}$	$\mathbb{BB}_{\mathcal{B}}$	$\mathbb{AB}_{\mathcal{BA}}$			$\mathbb{AB}_{\mathcal{AB}}$	$2 \times \bullet$	$^{-1}$	-1/3
	NNW	$\mathbb{AA}_{\mathcal{A}}$		$2\times \mathbb{AB}_{\mathcal{BA}}$	$\mathbb{A}\mathbb{A}_{\mathcal{B}}$			$2 \times \bullet$	$^{-1}$	-1/3
	NNM		$\mathbb{BB}_{\mathcal{B}}$	$2\times \mathbb{AB}_{\mathcal{BA}}$		$\mathbb{BB}_{\mathcal{A}}$		$2 \times \bullet$	-1	-1/3

Sources: $W : \mathbb{A} \mathbb{A}_{AB}$ $\overline{W} : \mathbb{A} \mathbb{A}_{A}$ $\underline{W} : \mathbb{A} \mathbb{A}_{B}$ $M : \mathbb{B} \mathbb{B}_{AB}$ $\overline{M} : \mathbb{B} \mathbb{B}_{A}$ $\underline{M} : \mathbb{B} \mathbb{B}_{B}$ $Z : \mathbb{A} \mathbb{B}_{AB}$ $N : \mathbb{A} \mathbb{B}_{BA}$

DCJ-indel distance formula:

$$\mathsf{d}^{^{\mathrm{ID}}}_{_{\mathrm{DCJ}}}(\mathbb{A},\mathbb{B})=n-|\mathcal{C}|-\frac{|\mathcal{P}_{\mathbb{A}\mathbb{B}}|}{2}+\sum_{\mathcal{C}\in\mathcal{R}\mathcal{G}}\lambda(\mathcal{C})-\delta,$$

where δ is the value obtained by optimizing deducting path recombinations:

 $\delta = 2\mathcal{P} + 3\mathcal{Q} + 2\mathcal{T} + \mathcal{S} + 2\mathcal{M} + \mathcal{N}$

the values \mathcal{P} , \mathcal{Q} , \mathcal{T} , \mathcal{S} , \mathcal{M} and \mathcal{N} refer to the corresponding number of chains of deducting path recombinations of each type and can be obtained by a greedy approach (simple top-down screening of the table)

Singular DCJ-indel model - summary

DCJ-indel distance:
$$d_{DCJ}^{ID}(\mathbb{A}, \mathbb{B}) = n - |\mathcal{C}| - \frac{|\mathcal{P}_{\mathbb{A}\mathbb{B}}|}{2} + \sum_{C \in RG} \lambda(C) - \delta$$
, where δ is the value obtained by optimizing deducting path recombinations

 $\mathbb{A} \text{ and } \mathbb{B} \text{ are circular: } \mathsf{d}_{_{\mathrm{DCJ}}}^{^{\mathrm{ID}}}(\mathbb{A},\mathbb{B}) = n - |\mathcal{C}| + \sum_{C \in \mathcal{RG}} \lambda(C)$

Sorting genome \mathbb{A} **into genome** \mathbb{B} (with a minimum number of DCJs):

- 1. Apply all $\mathcal{P}, \mathcal{Q}, \mathcal{T}, \mathcal{S}, \mathcal{M}$ and \mathcal{N} chains of deducting path recombinations, in this order.
- 2. For each component $C \in RG(\mathbb{A}, \mathbb{B})$:
 - 2.1 Split C with gaining DCJs (that have $\Delta_{\lambda} = 0$) until only components with at most two runs are obtained and the total number of runs in all new components is equal to $\lambda(C)$.
 - 2.2 Accumulate all runs in the smaller components derived from C with gaining DCJ operations (that have $\Delta_{\lambda} = 0$).
 - 2.3 Apply gaining DCJ operations (that have $\Delta_{\lambda} = 0$) in the smaller components derived from C until only DCJ-sorted components exist.
 - 2.4 **Delete** all runs in the DCJ-sorted components derived from *C*.

Computing the distance and sorting can be done in linear time.

Singular DCJ-indel sorting: trade-off between DCJ and indels

The presented sorting algorithm maximizes gaining DCJs with $\Delta_{\lambda} = 0$ (minimizing indels).

However, these gaining DCJs can often be replaced by $\begin{cases} neutral DCJs \text{ with } \Delta_{\lambda} = -1 \\ losing DCJs \text{ with } \Delta_{\lambda} = -2 \end{cases}$

₩

There is a big range of possibilities between the presented sorting algorithm and a sorting algorithm that minimizes gaining DCJs with $\Delta_{\lambda} = 0$ (maximizing indels)

Restricted DCJ-indel-distance (singular linear genomes)

general DCJ-indel sorting

restricted DCJ-indel sorting

move **deletions down** move **insertions up**

S : general sequence of DCJ and indel operations sorting linear \mathbb{A} into linear \mathbb{B} $S \rightsquigarrow S' = S_{\text{INS}} \oplus S_{\text{DCJ}} \oplus S_{\text{DEL}} \implies R = S_{\text{INS}} \oplus R_{\text{DCJ}} \oplus S_{\text{DEL}}$ and |S| = |S'| = |R|

In any sorting sequence, it is always possible to

The diameter D_{DCL}^{ID} of the DCJ-indel-distance

For a given component C in a relational graph, let a segment of C be

C itself (if C is a 0-cycle or a 0-path) a minimal path flanked by two extremity-edges a minimal path at the extremity of a path and connected to an extremity edge

s(C)	:	number	of	segments	in	component	С
----	----	---	--------	----	----------	----	-----------	---

s(<i>C</i>)	$d_{\text{DCJ}}(C)$	$\Lambda_{MAX}(C)$	$\lambda_{\text{MAX}}(C)$
1	0	1	1
2	0	2	2
3	1	3	2
4	1	4	3
5	2	5	3
6	2	6	4
7	3	7	4
:	:	:	:
s(C)	$\left\lfloor \frac{s(C)-1}{2} \right\rfloor$	s(C)	$\left\lceil \frac{s(C)+1}{2} \right\rceil$

if s(C) is odd:

$$\mathsf{d}_{\scriptscriptstyle \mathrm{DCJ}}(\mathcal{C}) + \lambda_{\scriptscriptstyle \mathrm{MAX}}(\mathcal{C}) = rac{\mathsf{s}(\mathcal{C})-1}{2} + rac{\mathsf{s}(\mathcal{C})+1}{2} = \mathsf{s}(\mathcal{C})$$

if s(C) is even:

$$\mathsf{d}_{\text{DCJ}}(\mathcal{C}) + \lambda_{\text{MAX}}(\mathcal{C}) = \frac{\mathsf{s}(\mathcal{C}) - 2}{2} + \frac{\mathsf{s}(\mathcal{C}) + 2}{2} = \mathsf{s}(\mathcal{C})$$

Let 〈	$\kappa(\mathbb{A})$:	$\#$ linear chromosomes in \mathbb{A}
	$\mathcal{S}(\mathbb{A})$:	$\#$ (circular) singletons in $\mathbb A$
	$\kappa(\mathbb{B})$:	$\#$ linear chromosomes in $\mathbb B$
	$\mathcal{S}(\mathbb{B})$:	$\#$ (circular) singletons in ${\mathbb B}$

The number of segments in $RG(\mathbb{A}, \mathbb{B})$ is $s(RG(\mathbb{A},\mathbb{B})) = 2n + \kappa(\mathbb{A}) + S(\mathbb{A}) + \kappa(\mathbb{B}) + S(\mathbb{B})$

$$\begin{split} \mathsf{D}^{\mathrm{D}}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{B}) &= \sum_{C \in \mathcal{RG}(\mathbb{A},\mathbb{B})} \left(\mathsf{d}_{\mathrm{DCJ}}(C) + \lambda_{\mathrm{MAX}}(C) \right) \\ &= \sum_{C \in \mathcal{RG}(\mathbb{A},\mathbb{B})} \mathsf{s}(C) \\ &= \mathsf{s}(\mathcal{RG}(\mathbb{A},\mathbb{B})) \end{split}$$

 $\mathsf{D}_{\mathrm{DCI}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) = 2n + \kappa(\mathbb{A}) + \mathcal{S}(\mathbb{A}) + \kappa(\mathbb{B}) + \mathcal{S}(\mathbb{B})$

The triangular inequality does not hold for the DCJ-indel distance

Three singular genomes
$$\begin{cases} \mathbb{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix} \\ \mathbb{B} = \begin{bmatrix} 1 & 3 & \bar{4} & 2 & 5 \end{bmatrix} \\ \mathbb{C} = \begin{bmatrix} 1 & 5 \end{bmatrix}$$

.

The triangular inequality	$\int d_{\rm DCI}^{\rm ID}(\mathbb{A},\mathbb{B})=3$	"Free lunch":
	$d^{\rm ID}$ (\wedge \mathbb{C}) = 1	while sorting $\mathbb A$ into $\mathbb C$ and then $\mathbb C$ into $\mathbb B$,
$\mathbf{d}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{D}) \leq \mathbf{d}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{C}) + \mathbf{d}_{\mathrm{DCJ}}(\mathbb{D},\mathbb{C})$	$\int d_{\rm DCJ}(AX,C) = 1$	a set of common genes of $\mathbb A$ and $\mathbb B$
does not hold	$(d_{\scriptscriptstyle\mathrm{DCJ}}^{\scriptscriptstyle\mathrm{ID}}(\mathbb{B},\mathbb{C})=1$	are deleted and then reinserted

In the comparison of two genomes, our model prevents this problem: common genes cannot be deleted or inserted

However, the triangular inequality is essential in other problems involving the DCJ-indel distance for the comparison of three or more genomes (e.g. median)

Establishing the triangular inequality

Disjoint sets of genes $\mathcal{G}_{\mathbb{A}}$, $\mathcal{G}_{\mathbb{B}}$, $\mathcal{G}_{\mathbb{C}}$, $\mathcal{G}_{\mathbb{A}\mathbb{B}}$, $\mathcal{G}_{\mathbb{B}\mathbb{C}}$, $\mathcal{G}_{\mathbb{A}\mathbb{C}}$ and \mathcal{G}_{\star} for three genomes \mathbb{A} , \mathbb{B} and \mathbb{C}

For each pair of genomes, we define the corrected distance dk_{DCI}^{ID} :

$$\begin{split} dk_{\mathrm{DCJ}}^{\mathrm{in}}(\mathbb{A},\mathbb{B}) &= d_{\mathrm{DCJ}}^{\mathrm{in}}(\mathbb{A},\mathbb{B}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\mathrm{DCJ}}^{\mathrm{in}}(\mathbb{A},\mathbb{C}) &= d_{\mathrm{DCJ}}^{\mathrm{in}}(\mathbb{A},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\mathrm{DCJ}}^{\mathrm{in}}(\mathbb{B},\mathbb{C}) &= d_{\mathrm{DCJ}}^{\mathrm{in}}(\mathbb{B},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}|) \end{split}$$

The triangular inequality must hold for dk^{ID}_{DCJ}:

 $\mathsf{dk}^{\text{\tiny ID}}_{\text{\tiny DCJ}}(\mathbb{A},\mathbb{B}) \ \leq \mathsf{dk}^{\text{\tiny ID}}_{\text{\tiny DCJ}}(\mathbb{A},\mathbb{C}) + \mathsf{dk}^{\text{\tiny ID}}_{\text{\tiny DCJ}}(\mathbb{B},\mathbb{C})$

$$\begin{split} d^{\mathrm{ID}}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{B}) + \mathsf{k}(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) &\leq d^{\mathrm{ID}}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{C}) + \mathsf{k}(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) + \\ d^{\mathrm{ID}}_{\mathrm{DCJ}}(\mathbb{B},\mathbb{C}) + \mathsf{k}(|\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}|) \end{split}$$

 $\mathsf{d}_{\mathrm{DCJ}}^{\mathrm{\tiny ID}}(\mathbb{A},\mathbb{B}) \ \leq \mathsf{d}_{\mathrm{DCJ}}^{\mathrm{\tiny ID}}(\mathbb{A},\mathbb{C}) + \mathsf{k}(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|) + \mathsf{d}_{\mathrm{DCJ}}^{\mathrm{\tiny ID}}(\mathbb{B},\mathbb{C}) + \mathsf{k}(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|)$

 $d_{\text{DCJ}}^{\text{ID}}(\mathbb{A},\mathbb{B}) \ \leq d_{\text{DCJ}}^{\text{ID}}(\mathbb{A},\mathbb{C}) + d_{\text{DCJ}}^{\text{ID}}(\mathbb{B},\mathbb{C}) + 2\mathsf{k}(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|)$

Establishing the triangular inequality

$$\begin{cases} d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) &\leq \ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + 2\mathsf{k}(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|) \\ \\ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) &\leq \ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) + 2\mathsf{k}(|\mathcal{G}_{\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}}|) \\ \\ \\ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{B},\mathbb{C}) &\leq \ d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{B}) + d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A},\mathbb{C}) + 2\mathsf{k}(|\mathcal{G}_{\mathbb{B}\mathbb{C}}| + |\mathcal{G}_{\mathbb{A}}|) \end{cases} \end{cases}$$

We need to find a value k that guarantees: $d^{\rm ID}_{\rm DCJ}(\mathbb{A},\mathbb{B}) \ \le \ d^{\rm ID}_{\rm DCJ}(\mathbb{A},\mathbb{C}) + d^{\rm ID}_{\rm DCJ}(\mathbb{B},\mathbb{C}) + 2k(|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}|)$

$$\mathsf{D}^{ ext{ iny ID}}_{ ext{ iny DCJ}}(\mathbb{A},\mathbb{B})\leq \xi(\mathbb{A})+\xi(\mathbb{B})+2\mathsf{k}|\mathcal{G}_{\!\mathbb{A}\mathbb{B}}$$

In the worst case genome
$$\mathbb{C}$$
 is empty:
 $d_{DCJ}^{ID}(\mathbb{A}, \mathbb{C}) = \xi(\mathbb{A})$ and $d_{DCJ}^{ID}(\mathbb{B}, \mathbb{C}) = \xi(\mathbb{B})$
 $D_{DCJ}^{ID}(\mathbb{A}, \mathbb{B}) = 2|\mathcal{G}_{\mathbb{A}\mathbb{B}}| + \kappa(\mathbb{A}) + \mathcal{S}(\mathbb{A}) + \kappa(\mathbb{B}) + \mathcal{S}(\mathbb{B})$

$$2|\mathcal{G}_{\!\!A\mathbb{B}}| ~\leq~ 2\mathsf{k}|\mathcal{G}_{\!\!A\mathbb{B}}| ~\Rightarrow~ \boxed{\mathsf{k}\geq 1}$$

Establishing the triangular inequality

$$\begin{split} dk_{\rm DCJ}^{\rm ID}(\mathbb{A},\mathbb{B}) &= d_{\rm DCJ}^{\rm ID}(\mathbb{A},\mathbb{B}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\rm DCJ}^{\rm ID}(\mathbb{A},\mathbb{C}) &= d_{\rm DCJ}^{\rm ID}(\mathbb{A},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{A}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{B}\mathbb{C}}|) \\ dk_{\rm DCJ}^{\rm ID}(\mathbb{B},\mathbb{C}) &= d_{\rm DCJ}^{\rm ID}(\mathbb{B},\mathbb{C}) + k(|\mathcal{G}_{\mathbb{B}}| + |\mathcal{G}_{\mathbb{A}\mathbb{B}}| + |\mathcal{G}_{\mathbb{C}}| + |\mathcal{G}_{\mathbb{A}\mathbb{C}}|) \end{split}$$

References

Double Cut and Join with Insertions and Deletions (Marília D.V. Braga, Eyla Willing and Jens Stoye) JCB, Vol. 18, No. 9 (2011)

Sorting Linear Genomes with Rearrangements and Indels

(Marília D. V. Braga and Jens Stoye)

TCBB, vol 12, issue 3, pp. 500-506 (2015)

On the weight of indels in genomic distances

(Marília D. V. Braga, Raphael Machado, Leonardo C. Ribeiro and Jens Stoye) BMC Bioinformatics, vol. 12, S13 (2011)