
Topics of today:

Singular DCJ-indel distance and sorting:

1. Indel-potential

2. Deducting path recombinations

3. Restricted DCJ-indel model

4. The diameter of the DCJ-indel distance

5. Establishing the triangular inequality

Runs of indel-edges

One indel-enclosing cycle:

⇤⇥ ��~
⇤⇥ �� ⇤⇥ ��

⇤⇥ �� ⇤⇥ ��{
q q q q q r r q q q q r q q q q r q q q
q q r q q q q q q r r q q q q r q q q q ⇤ = 4

indel edges , runs

⇤(C) is the number of runs in component C

⇤
0 cycles or paths

1 cycles, paths and singletons

2 cycles, paths

3 paths

4 cycles, paths

5 paths

6 cycles, paths
.
.
.

.

.

.

Runs of indel-edges

Types of DCJ operation

8
><

>:

�dcj = 0 (gaining): creates one cycle or two AB-paths
�dcj = 1 (neutral): does not change the number of cycles nor of AB-paths
�dcj = 2 (losing): destroys one cycle or two AB-paths

Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once

) Second upper bound:

diddcj(A,B)  n � |C|�
|PAB|
2

+
X

C2RG

⇤(C)

DCJ operations can modify the number of runs:

A DCJ operation can have

8
>>>>><

>>>>>:

�⇤ = �2 (merges two pairs of runs)

�⇤ = �1 (merges one pair of runs)

�⇤ = 0 (preserves the runs)

�⇤ = 1 (splits one run)

�⇤ = 2 (splits two runs)

Runs can be merged and accumulated in both genomes

Singular genomes

8
>>>>>>>>><

>>>>>>>>>:

A = [a1 2̄ 1 ā2 3̄]

B = [b1 1 b2 2 3]

A sequence of 3 operations
sorting A into I = [1̄ 2 3]

A : -� -� �a1 2̄ 1 ā2 3̄

inversion

� -� � �1̄ 2 ā1 ā2 3̄

deletion #
� -�1̄ 2 3̄

inversion #
I : � - -1̄ 2 3

B : - - - - -b1 1 b2 2 3
" inversion

-� � - -b1 b̄2 1̄ 2 3
" deletion

A sequence of 2 operations
sorting B into I = [1̄ 2 3]

)

A sequence of 5 operations
sorting A into B

A : -� -� �a1 2̄ 1 ā2 3̄

inversion

� -� � �1̄ 2 ā1 ā2 3̄

deletion #
� -�1̄ 2 3̄

inversion #
� - -1̄ 2 3
insertion

-� � - -b1 b̄2 1̄ 2 3
inversion

B : - - - - -b1 1 b2 2 3

Merging runs with “internal” gaining DCJ operations

An gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component
can decrease the number of runs:

⇤⇥ ��~
⇤⇥ �� ⇤⇥ ��

\⇤⇥ ��/ ⇤⇥ ��y
q q q q q r r q q q q r q q q q r q q q
q q r q q q q q q r r q q q q r q q q q ⇤⇥ ��~

⇤⇥ �� ⇤⇥ ��
| ⇤⇥ ��⇤⇥ ��~

q q q q q r r q q q q qp p q q
q q r q q q q q q r r q qp p r q q q q +

|⇤⇥ ��q q q q q q
q q

⇤ = 4 2 + 1 = 3 (�⇤=�1)

DCJ-sorted (or short) components: 2-cycles and 1-paths (and 0-cycles and 0-paths)

Long components: k-cycles (with k � 4) and k-paths (with k � 2)

DCJ-sorting a long component C : transforming C into a set of DCJ-sorted components

Indel-potential �(C) of a component C :

minimum number of runs that we can obtain by DCJ-sorting C with gaining DCJ operations

Indel-potential �0
of a cycle C

⇤(C) = 0, 1, 2, 4, 6, 8, ...

We will show that �0(C) depends only on the value ⇤(C): denote �0(C) = �0(⇤(C))

⇤(C) = 1) �0(1) = 1

⇤(C) = 2) �0(2) = 2

⇤(C) � 4 : ⇤(C) = o1 + o2 such that o1 and o2 are odd, and assume o1 � o2

two resulting cycles:

(
one with o1 � 1 runs

one with either 1 run (if o2 = 1) or with o2 � 1 runs (if o2 � 3)

) �0(4) = �0(2) + �0(1) = 2 + 1 = 3

) �0(6) =

(
�0(2) + �0(2) = 2 + 2 = 4

�0(4) + �0(1) = 3 + 1 = 4

) �0(8) =

(
�0(4) + �0(2) = 3 + 2 = 5

�0(6) + �0(1) = 4 + 1 = 5

⇤ �0
0 0
1 1
2 2
4 3
6 4
8 5
.
.
.

.

.

.

Induction:

(
hypothesis: �0(⇤(C)) = ⇤(C)

2 + 1

base cases: �0(1) = 1 and �0(2) = 2

Induction step: in general, for ⇤(C) � 4, we can state �0(⇤(C)) = �0(⇤(C)� 2) + �0(1)

=

✓
⇤(C)� 2

2
+ 1

◆
+ 1

=
⇤(C)

2
+ 1

Indel-potential �00
of a path P

⇤(P) = 0, 1, 2, 3, 4, 5, 6, 7, 8, ...

We will show that �00(P) depends only on the value ⇤(P): denote �00(P) = �00(⇤(P))

⇤(P) = 1) �00(1) = 1

⇤(P) = 2) �00(2) = 2

⇤(P) � 3 : ⇤(P) = o1 + o2 such that o1 � 1 and o2 is odd

two resulting components:

(
one path with either 1 run (if o1 = 1) or with o1�1 runs (if o1 � 2)

one cycle with either 1 run (if o2 = 1) or with o2�1 runs (if o2 2 {3, 5, ...})
but we can get the same indel-potential if we extract all runs into a cycle:

�00(3) =

(
�00(1) + �0(1) = 1+1 = 2

�0(2) = 2

�00(4) =

8
><

>:

�00(2) + �0(1) = 2 + 1 = 3

�00(1) + �0(2) = 1 + 2 = 3

�0(4) = 3

�00(5) =

8
><

>:

�00(3) + �0(1) = 2 + 1 = 3

�00(1) + �0(2) = 1 + 2 = 3

�0(4) = 3

�00(6) =

(
...

�0(6) = 4

⇤ �00
0 0
1 1
2 2
3 2
4 3
5 3
6 4
7 4
.
.
.

.

.

.

In general, for ⇤(P) � 2, we can state �00(⇤(P)) =

(
�0(⇤(P)) if ⇤(P) is even

�0(⇤(P)� 1) if ⇤(P) is odd

�00(⇤(P)) =

⇠
⇤(P) + 1

2

⇡

Indel-potential � of a component C

If C is a singleton: �(C) = 1

If C is a cycle:

�(C) =

8
><

>:

0 if ⇤(C) = 0 (C is indel-free)

1 if ⇤(C) = 1
⇤(C)
2 + 1 if ⇤(C) � 2

If C is a path:

�(C) =

(
0 if ⇤(C) = 0 (C is indel-free)l

⇤(C)+1
2

m
if ⇤(C) � 1

In general, for any component C :

�(C) =

(
0 if ⇤(C) = 0 (C is indel-free)l

⇤(C)+1
2

m
if ⇤(C) � 1

⇤ �
0 0 paths and cycles
1 1 paths, cycles and singletons
2 2 paths and cycles
3 2 paths
4 3 paths and cycles
5 3 paths
6 4 paths and cycles
7 4 paths
.
.
.

.

.

.

Third upper bound: diddcj(A,B)  n � |C|�
|PAB|
2

+
X

C2RG

�(C)

(gaining DCJ operations + indels sorting components separately)

Types of DCJ operation

DCJ-types of DCJ operation

8
><

>:

�dcj = 0 (gaining): creates one cycle or two AB-paths
�dcj = 1 (neutral): does not change the number of cycles nor of AB-paths
�dcj = 2 (losing): destroys one cycle or two AB-paths

Indel-types of DCJ operation

8
>>>>><

>>>>>:

�� = �2 : decreases the overall indel-potential by two

�� = �1 : decreases the overall indel-potential by one

�� = 0 : does not change the overall indel-potential

�� = 1 : increases the overall indel-potential by one

�� = 2 : increases the overall indel-potential by two

E↵ect of a DCJ operation ⇢ on the third upper bound: ��
dcj(⇢) = �dcj(⇢) +��(⇢)

DCJ Operations that can decrease the third upper bound:

8
><

>:

�dcj = 0 (gaining) and �� = �2 : ��
dcj = �2

�dcj = 0 (gaining) and �� = �1 : ��
dcj = �1

�dcj = 1 (neutral) and �� = �2 : ��
dcj = �1

I By definition: any “internal” gaining DCJ operation ⇢ (applied to a single component)
has ��(⇢) � 0 and, consequentely, ��

dcj(⇢) � 0

I Any losing DCJ operation ⇢ has ��
dcj(⇢) � 0

DCJ operations involving cycles

I Any DCJ operation involving two cycles is losing and has ��
dcj � 0

(cannot decrease the DCJ-indel distance)

⇤ �
0 0
1 1
2 2
4 3
6 4
8 5
.
.
.

.

.

.

I A DCJ operation ⇢ applied to a single cycle C can be:

I Gaining, with ��
dcj(⇢) � 0 (cannot decrease the DCJ-indel distance)

I Neutral (�dcj(⇢) = 1):

If ⇤(C) � 4, the DCJ ⇢ can merge at most two pairs of runs: �⇤(⇢) � �2 and ��(⇢) � �1

) Any neutral DCJ operation applied to a single cycle has ��
dcj � 0

(cannot decrease the DCJ-indel distance)

If singular genomes A and B are circular, the graph RG(A,B) has only cycles (and eventually singletons).

In this case:

diddcj(A,B) = n � |C|+
X

C2RG

�(C)

DCJ operations involving paths

I Any DCJ operation involving a path and a cycle is losing and has ��
dcj � 0

(cannot decrease the DCJ-indel distance)

⇤ �
0 0
1 1
2 2
3 2
4 3
5 3
6 4
7 4
.
.
.

.

.

.

I A DCJ operation ⇢ applied to a single path P can be:

I Gaining, with ��
dcj(⇢) � 0 (cannot decrease the DCJ-indel distance)

I Neutral (�dcj(⇢) = 1):

If ⇤(P) � 4, the DCJ ⇢ can merge at most two pairs of runs: �⇤(⇢) � �2 and ��(⇢) � �1

) Any neutral DCJ operation applied to a single path has ��
dcj � 0

(cannot decrease the DCJ-indel distance)

Path recombinations can have �
�
dcj  �1

An gaining (deducting) path recombination with ��
dcj = �2:

Sources Resultants

(
P

� = 2 + 2 = 4) (
P

� = 2 + 0 = 2)

AA + BB AB + AB
2 runs + 2 runs 3 runs + no run

q q q qe2

/ q q q qe3

\

q q q q
e1

q q q q
e4

!
gaining
DCJ

q q q q dqe2 q q qe3

q q q q
e1

q q q
e4

qd
q

AABA + BBAB =

8
><

>:

ABBAB + AB"

(ABABA + AB")

(ABA + ABB)

(all variants have ��
dcj=�2)

Deducting path recombinations

have ��
dcj  �1

General DCJ-indel distance formula:

diddcj(A,B) = n � |C|�
|PAB|
2

+
X

C2RG

�(C)� �,

where � is the value obtained by optimizing deducting path
recombinations

Optimizing deducting path recombinations (for computing �)

Run-type of a path

8
>>>>><

>>>>>:

" ⌘ " (empty)

ABAB ...A ⌘ A (odd)

BABA ...B ⌘ B (odd)

ABAB ...AB ⌘ AB (even)

BABA ...BA ⌘ BA (even)

Path types

8
>>>><

>>>>:

AA",AAA,AAB,AAAB(⌘AABA)

BB", BBA, BBB,BBAB(⌘BBBA)

AB", ABA, ABB, ABAB, ABBA
) an AB-path is always read from A to B

Deducting path recombinations that allow the best reuse of the resultants:

sources resultants �� �dcj ��
dcj

AAAB + BBAB • + • �2 0 �2

AAAB + BBA • + ABBA �1 0 �1
AAAB + BBB • + ABAB �1 0 �1

AAA + BBAB • + ABAB �1 0 �1
AAB + BBAB • + ABBA �1 0 �1

AAA + BBA • + • �1 0 �1
AAB + BBB • + • �1 0 �1

sources resultants �� �dcj ��
dcj

AAAB + AAAB AAA + AAB �2 +1 �1
BBAB + BBAB BBA + BBB �2 +1 �1

AAAB + ABAB • + AAA �2 +1 �1
AAAB + ABBA • + AAB �2 +1 �1

BBAB + ABAB • + BBB �2 +1 �1
BBAB + ABBA • + BBA �2 +1 �1

ABAB + ABBA • + • �2 +1 �1

Path recombinations with ��
dcj = 0 creating resultants that can be used in deducting recombinations:

sources resultants �� �dcj ��
dcj

AAA + ABBA • + AAAB �1 +1 0
AAB + ABAB • + AAAB �1 +1 0

BBA + ABAB • + BBAB �1 +1 0
BBB + ABBA • + BBAB �1 +1 0

sources resultants �� �dcj ��
dcj

AAA + BBB • + ABAB 0 0 0
AAB + BBA • + ABBA 0 0 0

ABAB + ABAB AAA + BBB �2 +2 0
ABBA + ABBA AAB + BBA �2 +2 0

Sources:

W : AAAB

W : AAA
W : AAB

M : BBAB

M : BBA
M : BBB

Z : ABAB

N : ABBA

Optimizing deducting path recombinations (for computing �)

Deducting chain of path recombinations

8
>>>><

>>>>:

transforming 2⇥ AAAB + BBA + BBB

into 3⇥ AB" + ABB

with overall ��
dcj = �3

AAAB + BBA AB" + ABBA
2 runs + 1 run no run + 2 runs

� = 2 + � = 1 � = 0 + � = 2

q q q qe2
/ q q q qe3

\

q q q q
e1

q q
!

gaining
DCJ

(��
dcj=�1) qc

q
q q q e2 q qc e3 q q/

q q q q
e1

q &

AAAB + BBB AB" + ABAB (��
dcj=�1)

2 runs + 1 run no run + 2 runs neutral !
� = 2 + � = 1 � = 0 + � = 2 DCJ

q q q qe5
/ q q\

q q q q
e4

q q q q
e6

!
gaining
DCJ

(��
dcj=�1) qc

q
q q qe5
\ q qc

q q q q
e4

q q q
e6

%

AB" + ABB
no run + 3 runs
� = 0 + � = 2

qc
q

q q q e2 q q e3 qc
q q q q

e1

q q qe5 q q
q q q q

e4

q q q
e6

id sources resultants ��
dcj scr

P WM AAAB BBAB —– —– —– —– 2 ⇥ • �2 �1

Q WWMM 2 ⇥ AAAB BBA+BBB —– —– —– —– 4 ⇥ • �3 �3/4

MMWW AAA+AAB 2 ⇥ BBAB —– —– —– —– 4 ⇥ • �3 �3/4

T WZM AAAB BBA ABAB —– —– —– 3 ⇥ • �2 �2/3
WWM 2 ⇥ AAAB BBA —– AAB —– —– 2 ⇥ • �2 �2/3

WNM AAAB BBB ABBA —– —– —– 3 ⇥ • �2 �2/3
WWM 2 ⇥ AAAB BBB —– AAA —– —– 2 ⇥ • �2 �2/3

MNW AAA BBAB ABBA —– —– —– 3 ⇥ • �2 �2/3
MMW AAA 2 ⇥ BBAB —– —– BBB —– 2 ⇥ • �2 �2/3

MZW AAB BBAB ABAB —– —– —– 3 ⇥ • �2 �2/3
MMW AAB 2 ⇥ BBAB —– —– BBA —– 2 ⇥ • �2 �2/3

S ZN —– —– ABAB+ABBA —– —– —– 2 ⇥ • �1 �1/2

WM AAA BBA —– —– —– —– 2 ⇥ • �1 �1/2
WM AAB BBB —– —– —– —– 2 ⇥ • �1 �1/2

WM AAAB BBA —– —– —– ABBA • �1 �1/2

WM AAAB BBB —– —– —– ABAB • �1 �1/2

WZ AAAB —– ABAB AAA —– —– • �1 �1/2

WN AAAB —– ABBA AAB —– —– • �1 �1/2

WW 2 ⇥ AAAB —– —– AAA+AAB —– —– —– �1 �1/2

MW AAA BBAB —– —– —– ABAB • �1 �1/2

MW AAB BBAB —– —– —– ABBA • �1 �1/2

MZ —– BBAB ABAB —– BBB —– • �1 �1/2

MN —– BBAB ABBA —– BBA —– • �1 �1/2

MM —– 2 ⇥ BBAB —– —– BBA+BBB —– —– �1 �1/2

id sources resultants ��
dcj scr

M ZZWM AAB BBA 2 ⇥ ABAB —– —– —– 4 ⇥ • �2 �1/2

NNWM AAA BBB 2 ⇥ ABBA —– —– —– 4 ⇥ • �2 �1/2

N ZWM AAB BBA ABAB —– —– ABBA 2 ⇥ • �1 �1/3

ZZW AAB —– 2 ⇥ ABAB AAA —– —– 2 ⇥ • �1 �1/3

ZZM —– BBA 2 ⇥ ABAB —– BBB —– 2 ⇥ • �1 �1/3

NWM AAA BBB ABBA —– —– ABAB 2 ⇥ • �1 �1/3

NNW AAA —– 2 ⇥ ABBA AAB —– —– 2 ⇥ • �1 �1/3

NNM —– BBB 2 ⇥ ABBA —– BBA —– 2 ⇥ • �1 �1/3

Sources:

W : AAAB

W : AAA
W : AAB

M : BBAB

M : BBA
M : BBB

Z : ABAB

N : ABBA

DCJ-indel distance formula:

diddcj(A,B) = n � |C| �
|PAB|

2
+

X

C2RG

�(C) � �,

where � is the value obtained by optimizing deducting path recombinations:

� = 2P + 3Q + 2T + S + 2M + N

the values P, Q, T , S, M and N refer to the corresponding number of
chains of deducting path recombinations of each type and can be obtained by a

greedy approach (simple top-down screening of the table)

Singular DCJ-indel model - summary

DCJ-indel distance: diddcj(A,B) = n � |C|�
|PAB|
2

+
X

C2RG

�(C)� �,
where � is the value obtained by opti-
mizing deducting path recombinations

A and B are circular: diddcj(A,B) = n � |C|+
X

C2RG

�(C)

Sorting genome A into genome B (with a minimum number of DCJs):

1. Apply all P, Q, T , S, M and N chains of deducting path recombinations, in this order.

2. For each component C 2 RG(A,B):
2.1 Split C with gaining DCJs (that have �� = 0) until only components with at most two runs are

obtained and the total number of runs in all new components is equal to �(C).
2.2 Accumulate all runs in the smaller components derived from C with gaining DCJ operations (that

have �� = 0).
2.3 Apply gaining DCJ operations (that have �� = 0) in the smaller components derived from C until

only DCJ-sorted components exist.
2.4 Delete all runs in the DCJ-sorted components derived from C .

Computing the distance and sorting can be done in linear time.

Singular DCJ-indel sorting: trade-o↵ between DCJ and indels

The presented sorting algorithm maximizes gaining DCJs with �� = 0 (minimizing indels).

However, these gaining DCJs can often be replaced by

(
neutral DCJs with �� = �1

losing DCJs with �� = �2

+

There is a big range of possibilities between the presented sorting algorithm and
a sorting algorithm that minimizes gaining DCJs with �� = 0 (maximizing indels)

Restricted DCJ-indel-distance (singular linear genomes)

general DCJ-indel sorting restricted DCJ-indel sorting

]

-� -� - - -� -b a c u g f e v d

inversion

-� -� - - -� -a b c u g f e v d

inversion

- - -� - - -� -a b c u g f e v d

excision #
- -a b - - - - -� �c d g f e v u \

deletion #
- -a b - - - - -c d g f e

excision #
- - - - - - -a b c d g e f

reincorporation #
- -a b - - - - -c d e g f \

reincorporation #
- - - - - - -a b c d e f g

insertion

- - - - - - - - -a b x y c d e f g

-� -� - - -� -b a c u g f e v d

inversion

-� -� - - -� -a b c u g f e v d

inversion

- - -� - - -� -a b c u g f e v d

excision #
- - - - - - -� �a b c d g f e v u

reincorporation #
- - - - - -� � -a b c d f e v u g

excision #
- - - - -� � - -a b c d e v u g f \

reincorporation #
- - - - - -� � -a b c d e f v u g

deletion #
- - - - - - -a b c d e f g

insertion

- - - - - - - - -a b x y c d e f g

In any sorting sequence, it is always possible to

(
move deletions down

move insertions up

S : general sequence of DCJ and indel operations sorting linear A into linear B

S S 0 = Sins � Sdcj � Sdel R = Sins � Rdcj � Sdel and |S | = |S 0| = |R|

The diameter D
id
dcj of the DCJ-indel-distance

For a given component C in a relational graph, let a segment of C be
8
><

>:

C itself (if C is a 0-cycle or a 0-path)

a minimal path flanked by two extremity-edges

a minimal path at the extremity of a path and connected to an extremity edge

s(C) : number of segments in component C

s(C) ddcj(C) ⇤max(C) �max(C)
1 0 1 1
2 0 2 2
3 1 3 2
4 1 4 3
5 2 5 3
6 2 6 4
7 3 7 4
.
.
.

.

.

.
.
.
.

.

.

.

s(C)
j

s(C)�1
2

k
s(C)

l
s(C)+1

2

m

if s(C) is odd:

ddcj(C) + �max(C) = s(C)�1
2 + s(C)+1

2 = s(C)

if s(C) is even:

ddcj(C) + �max(C) = s(C)�2
2 + s(C)+2

2 = s(C)

Let

8
>>>><

>>>>:

(A) : # linear chromosomes in A
S(A) : # (circular) singletons in A

(B) : # linear chromosomes in B
S(B) : # (circular) singletons in B

The number of segments in RG(A,B) is

s(RG(A,B)) = 2n + (A) + S(A) + (B) + S(B)

Did
dcj(A,B) =

X

C2RG(A,B)
(ddcj(C) + �MAX(C))

=
X

C2RG(A,B)
s(C)

= s(RG(A,B))

Did
dcj(A,B) = 2n + (A) + S(A) + (B) + S(B)

The triangular inequality does not hold for the DCJ-indel distance

Three singular genomes

8
><

>:

A = [1 2 3 4 5]

B = [1 3 4̄ 2 5]

C = [1 5]

.

The triangular inequality

diddcj(A,B)  diddcj(A,C) + diddcj(B,C)

does not hold

8
>><

>>:

diddcj(A,B) = 3

diddcj(A,C) = 1

diddcj(B,C) = 1

“Free lunch”:

while sorting A into C and then C into B,
a set of common genes of A and B
are deleted and then reinserted

In the comparison of two genomes, our model prevents this problem:

common genes cannot be deleted or inserted

However, the triangular inequality is essential in other problems involving the DCJ-indel distance

for the comparison of three or more genomes (e.g. median)

Establishing the triangular inequality

Disjoint sets of genes GA, GB, GC, GAB, GBC, GAC and G?

for three genomes A,B and C

For each pair of genomes, we define the corrected distance dkiddcj:

dkiddcj(A,B) = diddcj(A,B) + k(|GA|+ |GAC|+ |GB|+ |GBC|)

dkiddcj(A,C) = diddcj(A,C) + k(|GA|+ |GAB|+ |GC|+ |GBC|)

dkiddcj(B,C) = diddcj(B,C) + k(|GB|+ |GAB|+ |GC|+ |GAC|)

A B

C

GA GB

GC

GAB

GBCGAC
G?

The triangular inequality must hold for dkiddcj:

dkiddcj(A,B)  dkiddcj(A,C) + dkiddcj(B,C)

diddcj(A,B) + k(|GA|+ |GAC|+ |GB|+ |GBC|)  diddcj(A,C) + k(|GA|+ |GAB|+ |GC|+ |GBC|)+
diddcj(B,C) + k(|GB|+ |GAB|+ |GC|+ |GAC|)

diddcj(A,B)  diddcj(A,C) + k(|GAB|+ |GC|) + diddcj(B,C) + k(|GAB|+ |GC|)

diddcj(A,B)  diddcj(A,C) + diddcj(B,C) + 2k(|GAB|+ |GC|)

Establishing the triangular inequality

8
>>>><

>>>>:

diddcj(A,B)  diddcj(A,C) + diddcj(B,C) + 2k(|GAB|+ |GC|)

diddcj(A,C)  diddcj(A,B) + diddcj(B,C) + 2k(|GAC|+ |GB|)

diddcj(B,C)  diddcj(A,B) + diddcj(A,C) + 2k(|GBC|+ |GA|)

A B

C

GA GB

GC

GAB

GBCGAC
G?

Assume

8
<

:

diddcj(A,B) � diddcj(A,C)

diddcj(A,B) � diddcj(B,C)
Let

8
>>>>>>>><

>>>>>>>>:

⇠(A) : # chromosomes in A
(A) : # linear chromosomes in A
S(A) : # (circular) singletons in A

⇠(B) : # chromosomes in B
(B) : # linear chromosomes in B
S(B) : # (circular) singletons in B

(A) + S(A)  ⇠(A)

and

(B) + S(B)  ⇠(B)

We need to find a value k that guarantees:

diddcj(A,B)  diddcj(A,C) + diddcj(B,C) + 2k(|GAB|+ |GC|)

In the worst case genome C is empty:

diddcj(A,C) = ⇠(A) and diddcj(B,C) = ⇠(B)

Did
dcj(A,B) = 2|GAB|+ (A) + S(A) + (B) + S(B)

Did
dcj(A,B)  ⇠(A) + ⇠(B) + 2k|GAB|

...

2|GAB|  2k|GAB|) k � 1

Establishing the triangular inequality

dkiddcj(A,B) = diddcj(A,B) + k(|GA|+ |GAC|+ |GB|+ |GBC|)

dkiddcj(A,C) = diddcj(A,C) + k(|GA|+ |GAB|+ |GC|+ |GBC|)

dkiddcj(B,C) = diddcj(B,C) + k(|GB|+ |GAB|+ |GC|+ |GAC|)

A B

C

GA GB

GC

GAB

GBCGAC
G?

The triangular inequality holds for the corrected distance dkiddcj for any k � 1

References

Double Cut and Join with Insertions and Deletions

(Maŕılia D.V. Braga, Eyla Willing and Jens Stoye)

JCB, Vol. 18, No. 9 (2011)

Sorting Linear Genomes with Rearrangements and Indels

(Maŕılia D. V. Braga and Jens Stoye)

TCBB, vol 12, issue 3, pp. 500-506 (2015)

On the weight of indels in genomic distances

(Maŕılia D. V. Braga, Raphael Machado, Leonardo C. Ribeiro and Jens Stoye)

BMC Bioinformatics, vol. 12, S13 (2011)

