Topics of today:

Singular DCJ-indel distance and sorting;:
1. Review
2. Capped relational graph of canonical genomes
3. Capped relational graph of singular genomes

4. Indel-potential of cycles via transitions



Components of a relational graph

Cycle with k extremity-edges: k-cycle or ¢k

Path with k extremity-edges: k-path or py

if k =0 the component is a singleton

C = {ck : k>2} : set of cycles (k is even)
S = {ck : k=0} : set of circular singletons

Pan = {pk : starts and ends in A} :

t of AA-paths (k>0 i
Disjoint sets of components: seto paths (k > 0 is even)

Pez = {px : starts and ends in B} :
set of BB-paths (k > 0 is even)

Par = {px : starts in A and ends in B} :
set of AB-paths (k > 1 is odd)

DClJ-sorted (or short) components: 2-cycles and 1-paths (and O-cycles and 0-paths)
Long components: k-cycles (with k > 4) and k-paths (with k > 2)

DClJ-sorting a long component C: transforming C into a set of DCJ-sorted components with DCJ-operations



Types of DCJ operation

With respect to the position of the cuts:

Internal: either a single-cut operation or two cuts applied in the same component

Recombination: each cut is applied in a distinct component

With respect to the effect on the relational graph:

Gaining: creates one cycle or two AB-paths
ADCJ =0

Neutral: preserves the number of cycles and of AB-paths
Ape; =1

Losing: destroys one cycle or two AB-paths
Apc; =2



Each component can be sorted separately...

...with an internal gaining DCJ at each step:

Cycle: creates a new cycle at each step
SAL » OO = - = [

AB-path: creates a new cycle at each step

VLA = 1O = - = 10

AA-path: creates a new cycle at each step, eventually one step is a single cut (on B) that creates two AB-paths

170 = L‘r +O = .- = [+
1L = 1r +O = = 1*1*D*"'+ﬂ

BB-path: analogous to AA-path



Accummulating runs

indel edges runs

One indel-enclosing cycle: m AN=4

"CLUD\»\M’I“M ron: / ——00—90 o 0. 0—0

Each run can be accumulated with internal gaining DCJ operations and then inserted/deleted at once

= Second upper bound:

P
an, (A B) < n— |- 22l S~ A
CERG(AB)



Merging runs with internal gaining DCJ operations

DCJ operations can modify the number of runs by at most two:

Ap = —2 (merges two pairs of runs)

Ap = —1 (merges one pair of runs)
A DCJ operation can have ¢ Ay =0 (preserves the runs)

Ap=1 (splits one run)

Ap =2  (splits two runs)

A gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component can
decrease the number of runs:

‘ A=4a —~ 2 + 1 =3 (Ap=—1)

Indel-potential A\(C) of a component C:

minimum number of runs that we can obtain by DCJ-sorting C with internal gaining DCJ operations



Indel-potential of a cycle C - with A(C) =0,1,2,4,6,8, ...

We will show that A(C) depends only on the value A(C): denote A\(C) = A(A(C))
A(C)=0= A0)=0
ANC)=1=\1)=1
ANC)=2=X(2)=2
A(C) = 4 = \(4) = 3 (can be verified by listing all cases)

A(C) > 6 : extract 3 runs from C into a new cycle — garantees that Ay = —2

one with 2 runs
one with A(C) — 4 runs

two resulting cycles: {

= A(6) = A\2)+A2)=2+2=4
= A(8)=A2) +A\(4)=2+3=5
= A(10) = A(2) + A(6) =2+4 =6

HEIRNNEE R
- o| &fw| | =[o] >

is: —_ NS
Induction: hypothesis: A(A(C)) = =5~ +1
base cases: A\(1) =1, A(2) =2 and A\(4) =3

Induction step: in general, for A(C) > 6, we can state \(A(C)) = A\(2) + MA(C) — 4)

:2+(7A(C)74+1>

2
A(€)

= +1
5+



Indel-potential A of a path P - with A(P) =0,1,2,3,4,5,6,7,8, ...

Since A(P) depends only on the value A(P), we can denote A\(P) = A(A(P))

AP)=0= @) =0

i

AP)=1= A1) =1

AP)=2= A(2) =2

N oo slw | Rlof>
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i is even, then — MP)
A(P)>3:{fA(P) , then A(A(P)) = A2 4 1

else A(A(P)) = MA(P) — 1)

In general, for A(P) > 2, we have

ey = | M2



Indel-potential A\ of a component C

If C is a singleton: A\(C) =1

If Cis a cycle:
0 if A(C) =0 (C is indel-free)
AC) = 1 ifA(C)=1
MO 11 ifA(C) > 2
If C is a path:

0 if A(C) =0 (C is indel-free)
MC) = {P\(Cyﬂ ifA(C)>1

In general, for any component C:

A(C) 0 if A(C) =0 (C is indel-free)
= A(C .
(MG ifae) > 1
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paths and cycles

paths, cycles and singletons
paths and cycles

paths

paths and cycles

paths

paths and cycles

paths

P
Third upper bound:  din (A, B) < n—|C| — % + > MO)

(gaining DCJ operations + indels sorting components separately)




Effect of a DCJ operation on the third upper bound:

Apc; = 0 (gaining): creates one cycle or two AB-paths
DCJ-types of DCJ operation ¢ Apc; = 1 (neutral): preserves the numbers of cycles and of AB-paths
Apcy; = 2 (losing): destroys one cycle or two AB-paths

Ay = —2 : decreases the overall indel-potential by two
Ay = —1 : decreases the overall indel-potential by one
Indel-types of DCJ operation ¢ Ay = 0 : does not change the overall indel-potential
Ay = 1 : increases the overall indel-potential by one
Ay = 2 : increases the overall indel-potential by two

Effect of a DCJ operation p on the third upper bound: A}, (p) = Apci(p) + Ax(p)

Apc; =0 (gaining) and Ay = —2 : A}, = -2
DCJ Operations that can decrease the third upper bound: < Apc; = 0 (gaining) and Ay = -1 : A}, = —1
Apey =1 (neutral) and Ay = -2 : A}, = -1

DCJ

> By definition: any internal gaining DCJ operation p (applied to a single component)
has Ay(p) > 0 and, consequentely, A}, (p) > 0

> Any losing DCJ operation p has A}, (p) >0



DCJ operations involving cycles

> Any recombination involving two cycles is losing and has A}, > 0
(cannot decrease the DCJ-indel distance)
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ol swln] =] o] >

» An internal DCJ operation p applied to a cycle C can be:
> Gaining, with A),(p) > 0 (cannot decrease the DCJ-indel distance)
> Neutral (Apcs(p) = 1):

If A(C) > 4, the DCJ p can merge at most two pairs of runs: Ap(p) > —2 and Ay(p) > —1

= Any internal neutral DCJ operation applied to a cycle has A}, >0
(cannot decrease the DCJ-indel distance)

If singular genomes A and B are circular, the graph RG(A, B) has only cycles (and eventually singletons).

In this case:

i (AB)=n—[Cl+ > XC)

CeRG



DCJ operations involving paths

> Any recombination involving a path and a cycle is losing and has A}, > 0

(cannot decrease the DCJ-indel distance)
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» An internal DCJ operation p applied to a path P can be:

> Gaining, with A).,(p) > 0 (cannot decrease the DCJ-indel distance)

> Neutral (Apcs(p) = 1):
If A(P) > 4, the DCJ p can merge at most two pairs of runs: Ap(p) > —2 and Ax(p) > —1

= Any internal neutral DCJ operation applied to a path has AQCJ >0
(cannot decrease the DCJ-indel distance)



Path recombinations can have A} . <

DCJ

—1

A gaining (deducting) path recombination with A}, = —2:

Sources

(Ca=2+2=4)

Resultants
>CA=2+0=2)
AB + AB
3 runs + no run
€ €3
o e
er €4

ABgras + ABc

A(Aﬁ,i + 141532% = { (AB 454 + AB:) (all variants have A}, =—2)

(ABg  + ABp)

AA + BB
2 runs + 2 runs
€2 €3 —
—t \o——etp gaining
DCJ
€1 ey
Deducting path recombinations di> (

have AS‘CJ < -1

where § is the value obtained by optimizing deducting path

General DClJ-indel distance formula:

@Jr > Q) -3,

AB)=n—|C|— >
CeRG

recombinations




Optimizing deducting path recombinations (for computing ¢)

€ = ¢ (empty) AAc, Aby, AAg, AAas(=AARA)
ABAB...A = A (odd)
BB., BB4, BBg, BBas(=BB
Run-type of a path ¢ BABA..B = B (odd) Path types N A 5, BBas( 5A)
ABAB..AB = AB (even) ABc, AB4, ABg, ABaz, ABgra
BABA..BA = BA (even) = an AB-path is always read from A to B
Deducting path recombinations that allow the best reuse of the resultants: AB
€
sources resultants A, A Ai‘w sources resultants Ay Apey A7, o ABy
AAas 1 BBz e 1 e 2 0 -2 Akt Ahas  AAs + AAg -2 +1 -1 ABp
Ahm T BBa s T ABas T 0 T BBas+BBws BBy BBy -2 41 1
Abus + BBs e+ ABus -1 0 —1 Ak + ABas e I AA, -2 11 -1
AhL T BB e+ ABus 1 0 1 AAag + ABra o +AAp —2 +1 -1 Sources:
AAp +BBus e+ABgsa -1 0 —1 BBas + ABas e I BBs -2 41 1
Ahs | BBa et o 1 0 1 BBas + ABra o + BBy -2 41 —1 Algp W
Adp + BBs e+ e —1 0 -1 ABus +ABps e + e 2 11 1 Adg W
AAp W
Path recombinations with A}, = 0 creating resultants that can be used in deducting recombinations: BBas : M
sources resultants Ay Ay A7 sources resultants Ay Dpey AT BBa M
AAa + ABpa e + Adas -1 +1 0 AA4 + BBg e + ABas 0 o0 0 BBs M
AAs + ABas e + Adus —1 +1 0  AAs + BBa4 e 4+ ABga 0 0 0 ABus i Z
BBs + ABaz e + BBus -1 +1 0 ABaz + ABap AA4 + BBp -2 +2 0 AB N
BBs + ABga e + BBas —1 +1 0 ABga + ABga AAg + BBy -2 +2 0 BA




Optimizing deducting path recombinations (for computing ¢)

Deducting chain of path recombinations

Abas
2 runs
A=2

T

€1

AbaB
2 runs
A=2

€5

+ BB
+ 1run
+Aa=1

(

(

A
AL =—1
DCJ

gaining
DCJ

A
AN =—1
DCJ

gaining
DCJ

)

)

T

|

6

transforming 2 X AAgz + BBy + BBg

into

with

ABe + ABpy
norun + 2 runs
A=0+ A=2

€ €3

.

€1

ABe + AByp
norun + 2 runs
A=0+ A=2

€5

3 x AB. + ABg

overall A}, = -3

ABe  + ABp
N norun  + 3 runs
A=0 + A=2

@ & e

(Aémzf 1)
neutral _
DCJ



[ id [ sources resultants A [ scr ]
l P WM [ AAar BB ag —_— —_— —_— —_— 2X e -2 [ -1 l
Q WWMM | 2 X AAgs BB4 +BBgs —_— — — — 4xe -3 | -3/4

MMWW | AA4+AAR 2 X BBag — — — — 4%e -3 | —3/4

T wzM AAugs BBA ABas — — — 3xe -2 | —-2/3
WWM | 2 X AAugs BBA — AAp — — 2X e -2 | -2/3
WNM AA s BBg ABpa — — — 3Xxe -2 | -2/3
WWM | 2 X AAggs BBg —_— AAA —_— —_— 2x e -2 | =2/3
MNW AAL BB s ABga — — — 3xe -2 | =2/3
MMW AAL 2 X BBas —_— — BBs — 2Xxe -2 | =2/3
MZW AAp BB ABas —_— — — 3Xe -2 72/3
MMW AAp 2 X BBag — — BB — 2X e —2 | —2/3
S IN — — ABas+ABpa — — — 2Xe -1 -1/2
WM ARy BB4 — —_ — — 2X e —1| —-1/2
WM AAp BBg _ _ _ _ 2X e —1 —1/2
WM AAag BBA — — — ABgra . -1 -1/2
WM AAas BBg —_— —_— — ABag . -1 -1/2
Wz AAas —_— ABag AAA — —_— . -1 -1/2
WN AAas —_— ABpa AAp — —_— . -1 -1/2
WW 2 x AAug —_— —_— AAA+AARB — —_— —_— -1 -1/2
MW AAL BB g — — — AB s . -1 -1/2
MW AAp BB —_— —_— — ABpra . —1 71/2
MZ — BB as AB s — BBs — . -1 -1/2
MN — BB as ABga — BB — . -1 -1/2
MM — 2 X BBag — — BB +BBg — — —1|—1/2




id sources resultants | Af‘m I scr |
ZZWM AAp BBA 2 X ABag — — — 4 x -2 | —1/2
NNWM AAL BB 2 X ABprg — — — 4 x —2 | —1/2
Zﬂﬁ AAp BBa ABan — —_— ABra 2 x -1 71/3
ZZW AAp — 2 x ABag AAL — — 2 % —1|-1/3
ZZM — BBA 2 X ABag —_— BBg —_— 2 X —-1|-1/3
NWM AAg BBy ABpa — — ABugp 2 % —-1|-1/3
NNW AAg —_— 2 X ABra AAp —_— — 2 x —-1|-1/3
NNM — BB 2 x ABga — BBA — 2 X —1|—-1/3

Sources: DClJ-indel distance formula:
: P,

W:Ahas d® (AB) = n—|C| — | ;”"' + 37 A0) -4,

W:AAg CERG

W:AAg . . . . . .

- where 9§ is the value obtained by optimizing deducting path recombinations:

M : BBag

M : BB

A §=2P+3Q+2T +S+2M+ N
M:BBg
Z : ABas the values P, Q, 7, S, M and N refer to the corresponding number of
) chains of deducting path recombinations of each type and can be obtained by a
N: ABra greedy approach (simple top-down screening of the table)




Singular DCJ-indel model - summary

where § is the value obtained by opti-

. . . [P
DCl-indel distance: dpy;, (A, B) = n — |C| — 2 + Z A(C) =4, mizing deducting path recombinations

CeRG

A and B arecircular:  d (A, B) =n—|C| + Z A(C)
CERG

Computing the distance and sorting can be done in linear time.



Quiz 1

1 Which of the following statements is correct?

A Any DCJ operation has A, > 0.
B Any gaining DCJ operation has AX. > 0.

DCJ

@Any internal gaining DCJ operation has A}, > 0.

2 Which of the following statements about the DCJ-indel model are true?

Ap 0. v~
XAny DCJ that decreases the number of runs has Ay < 0.

If the input genomes are circular, sorting each component of the relational graph
separately is an optimal approach.

@An optimal sequence of DCJ operations and indels sorting one singular genome into
another can have gaining, neutral and losing DCJs.

)QThe triangular inequality holds for the DCJ-indel distance.

XThe DCJ-indel distance can be distinct from the restricted DCJ-indel distance.



Capped relational graph

Capping is a procedure that circularizes all paths of a relational graph by adding caps (artificial genes):
» if the capping is optimal, the genomic distance is preserved

» from the capped relational diagram we can derive genomes composed only of circular chromosomes

A capping may require adjacencies between caps:
[o: represents an adjacency between caps in genome A

I'z: represents an adjacency between caps in genome B.



Capped relational graph of can

onical genomes

Optimally linking paths from RG(A, B) of canonical genomes A and B into cycles can be done as follows:

[id paths [ linking cycle | [ An | Ac [ A(2AB) [ Ape |
1 AB (AB) 705 [ +1 05 0
2 AA + BB (AA, BB) +1 ] 41 0 0
3 AA (AATE) | U | 41| 41 0 0
4 BB BBr) | n| +1]+1 0 0

Closing an AA-path (over-represented in genome A and marked with a U) requires an adjacency .

Closing a BB-path (over-represented in genome B and marked with a N) requires an adjacency Iy.

Any capping producing linking cycles as indicated on the table above is optimal:

» The value Apc; = An— Ac — A(2AB) is the DCJ-effect produced by each type of linking cycle.

> All given linking cycles have Ape; =0, t

L {NAi number of linear chromosomes in A
et

kp: number of linear chromosomes in B

herefore they preserve the DCJ distance.

The difference between the number of AA- and of BB-
paths is equal to the difference between k, and kp.

An optimal capping that maximizes the number of linking cycles of type 2 minimizes the number of caps:

The number of caps to be added is exactly px = max{ra, KB} -
The number of adjacencies between caps is exactly ax =

HA-H]BL



Capped relational graph of canonical genomes - example

A=1[21] [43] [5] (6) and B=[12] [34] [5] [6] ; px =4 and a, =1
oh gt at 4h 3t 3h 5t 5h 6t gh
P,
dDCJ:n—|C\—%
=6—-0-1
=5
1h ot 3t 3h 4t 4h 5t 5h 6t 6h
ot oh 1t 73 4t 4h 3t 3h 4 75 st 5h 76 vg
dpey = n+ Px — |C|
=6+4-5
=5
1h ot 3h 4t shva st sh 76 8
Any way of pairing the cap extremities 71,72, ..., ¥g is valid; possible derived circular genomes are:

Ao=(21W) (43X) (5Y) (6) (2) and Bo=(12W) (34X) (5Y) (62)

(W =1, W =72, X' =3, X =y, YN = 5, Y = 6, 2" = 7, 2' = 1)
or

Ao=(21W43X5 YZ) (6) and Bo=(12W34X5Y62)
(Wh = 3, W =72, X' = 5, Xt = 4, YN = 47, YO = 5, 20 = 71, ZF = g)



Capping the relational graph - singular genomes

The sources of each chain of deducting recombinations must be properly linked together into a single cycle.
Unbalanced chains over-represented in genome A are marked with a U
BB: <I'p: a path BB, is preferred to close a U-unbalanced chain; if it does not exist, an adjacency I'p is used
Unbalanced chains over-represented in genome B are marked with a N
AA. <T4: a path AA. is preferred to close a N-unbalanced chain; if it does not exist, an adjacency Iy is used
a path AB4s can be represented by BAgy

In order to give the correct order of linking
a path ABg4 can be represented by BA 43

[ id [ sources [ linking cycle [ [ anJAac[a@EaB)[ax]A) ]
[ P WM [AAAB + BB as [ (AAag, BBga) [ [ +1 [ +1 [ 0 [ —2 [ —2 [
Q WWMM |2 X AAss + BB4 + BBs | (AAug, BBs, AAga, BBA) +2 | +1 0| —4| -3

MMWﬂ 2 X BBas + AAy + AAp (EIBAB, AAp,BBgA, AAA) +2 | +1 0| —4 -3
T WZM | AAag + BB4 + ABus (ABan, AAga, BB4) +15 | +1 —05| =3| =2
WWM | 2 X Abas + BBA (AAga, BBa, AAug, BB. <) ] +2 | +1 0| =3| -2
WNM | AAap + BB + ABra (ABga, AAss, BBg) +15 | +1 —-05| -3| -2
WWM | 2 X AAag + BB (AAag, BB4, AAss, BB, <Tg) U +2 | +1 o -3 -2
MNW | BBas + AA4 + ABga (ABga, AA4, BBAg) +15| +1 —05| -3 —2
MMW | 2 X BBag + AAg (BBga, AAa, BBag, AA. <Ty) N +2 | +1 0| -3| -2
MZW | BBag + AAg + ABas (ABas, AAg, BBga) +15 | +1 —05| -3 —2
MMW | 2 X BBag + AAp (BBag, AAp, BBra, AA. <T4) N +2 | +1 0| -3| -2




id [ sources [ linking cycle An[Ac[A(2AB) [AX[ AN, ]
S ZN | ABas + ABga (ABag, ABga) +1(+1 —1| =2 —1
WM | AA4 + BBa (AAA, BBA) +1 (41 0| —1 -1
WM | AAp + BBg (AAg, BBg) +1|+1 o —1| -1
WM | AAas + BB4 (AAga,BB4) +1|+1 0| -1 -1
WM | AAs + BBj (AAys, BBg) +1|+1 o] —1| -1
WZ | AAas + ABas (AAga, BB, <Tg, ABas) U|+15|+1 —05| —2| -1
WN | AAas + ABga (AAys, BB, <Tg, ABga) U|+15|+1 —05| —2| -1
WW | AAas + AAas (AAss, BB, <Tp, AApa, BB, <Tg) [U| +2| +1 o] —2| -1
MW | BBas + AAg (AA4, BBag) +1(+1 0| —1 —1
MW | BBas + AAg (AAj, BBga) +1]+1 o —1| -1
MZ | BBas + ABas (BBga, ABas, AA. <Ty) N|+15|+1 —05| —2| -1
MN | BBas + ABga (BBas, ABsa, AA. <Ty) N|+15|+1 —05| —2| -1
MM | BBas + BBas (BBas, AA. <T4, BBra, AA. <Tx) [N]| +2| +1 o] —2| -1
M ZZWM | 2 X ABas + AAg + BBa | (ABas, AAp, BAga, BB4) +2 | +1 —1| —4| -2
NNWM | 2 X ABja + AAg + BB | (ABga, Ada, BAgs, BBjs) +2 | +1 —1| —4| =2
N zuM | ABus + AAg + BBy (AB4s, AAg, BB4) +15| 41 —05| —2| -1
ZZW | 2 x ABus + AAg (ABuas, AAj, BApa, BB, <Tg) Ul 42| +1 —1| =3| -1
ZZM | 2 x ABys + BBy (BAga, BBa, ABas, AA. <Ty) Nl +2|+1 —1| =3| -1
NWM | ABga + AA4 + BB (ABga, AAg, BBjs) +1.5| 41 —05| —2| -1
NNW | 2 X ABga + AAy (ABga, AA4, BAug, BB: <Tg) Ul 42| +1 —1| —-3| -1
NNM |2 X ABj4 + BBg (BAus, BBss, ABga, AA. <T4) Nl +2|+1 —1| -3| -1




[ [ remaining paths [ linking cycle [ [ anJac]aEaB)[ax]A} |
T [AB. (AB.) F05[+1[ -05] 0] 0
2 | AA. + BB. (AA.,BB.) 41| +1 o] of o
3 |AA. (AA,,T5) Ul +1]+1 o| of o
4 |BB. (BB, ) N +1]+1 0] o] o

Any capping producing linking cycles following a top-down screening of the table above is optimal:
> A, = An— Ac — A(2AB) + A gives the DCJ-indel-effect produced by each type of linking cycle.
> All given linking cycles have A%‘c_] equivalent to the respective chain of deducting recombinations,
therefore they achieve the optimal DCJ-indel distance.
either there are no unbalanced chains
P1: After identifying chains of recombinations < or there are only U-unbalanced chains (over-repr.in A)

or there are only N-unbalanced chains (over-repr. in B)

P2: When an unbalanced chain is being linked
{if there is a remaining indel-free AA. /BB, (of the under-repr. genome), it is used to link the chain

otherwise there is no remaining AA, /BB, (of the under-repr. genome) and an adjacency Ia/s links the chain

Any optimal capping that links all possible chains of deducting recombinations as described above and, for the
remaining paths, maximizes the number of linking cycles of type 2 minimizes the number of caps:

The number of adjacencies between caps is exactly a. =

{The number of caps to be added is exactly px = max{ka, kp}.



Capped relational graph of singular genomes - example

transforming 2 X AAgz + BBy + BBg

Deducting chain of path recombinations into 3 x AB. + ABp
ith hA), =-3
wit overa bey =
Abap + BBy ABe + ABga
2runs + 1run no run + 2 runs
A=2 + =1 A=0+ A=2
by
(Afe;=—1)
& e el o e«
9-o—F gaining L
DCJ
AB. + ABg
N norun + 3 runs
A=0 + =2
€1 €1

@ e

Abgp + BBp ABe + AByp (Ad,=—1)
2runs + 1run no run + 2 runs neutral _
A=2 4+ x=1 A=0+ A=2 DCJ
(A, =—1)

5 e, 5 e €1

| R O W

ey e e €6




Capped relational graph of singular genomes - example

AZ[3121] [32433 3] and BZ[bllbz 2] [3 b3 4] N p*=2 and ax =0
A al afpt ghpt qh 3h Components: 2 x AAz, BB4, BBg
*r—@
P
a =n—icl - 223 xe) -5
- —4-0-0+6-3
B bi bf1t 1hbl  bhot  of 3t 3hbi  bigt  gh —7
maj aftot oh1t qh2 ysay  allat ghal  al3zt i
e A A N NV Linking cycle: (AAys, BBg, AAgy, BB4)

di)DcJ =n+ p« _|C‘+Z>‘(C)
=442-142
=7

. . e’ Lo e
mbl b1t 1hbh  bh2t ohy2 vs3t 3hbY bhat g4hva

The four sources of a chain of deducting recombinations are optimally linked into a single cycle.



Indel-potential via transitions

One indel-enclosing cycle:

indel edges ,

A(C) is the number of runs in cycle C

R(C) is the number of transitions in cycle C

ANRTrTA

0 0 0 0 cycles

1 0 1 1 cycles and singletons
2121 2] cycles

4 14|13 cycles

6 6 1 4 cycles

Indel-potential of a component C:

0 if A(C) =0 (C is indel-free)
1 if A(C) =1

MO 11 oifA(C) > 2

M ()

1, component C is indel-enclosing
0, component C is indel-free




Quiz 2

1 Which of the following statements about the capped relational graph are true?

@In an optimal capping, the distance computed based on the capped relational diagram
must be equivalent to the distance computed based on the original relational diagram.

Let RG(A,B) be a relational graph of canonical genomes.

An optimal capping of RG(A, B) that maximizes the number of cycles
linking a pair AA 4+ BB has a minimum number of caps (= max{ka, kg}).

—
X Let max{ra,, kB, } = max{ka , KB}

An optimal capping of the relational graph of singular genomes As and Bs requires more
caps than an optimal capping of the relational graph of canonical genomes A. and B..

@The indel-potential can be equivalently computed based on the number of runs or based
on the number of transitions.
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