Topics of today:

Overview of studied models/problems

NP-hard problems:

1. Decomposing the cropped breakpoint graph of unsigned canonical genomes
2. DCJ median problem
3. DCJ double distance
4. DCJ distance of balanced genomes

Overview of models / computational problems - 1995-2020

	- Model -	Canonical distance	Double distance	Halving	Guided Halving	Median	Balanced distance
Break point	Multi mixed/circular	P	P	P	P	P	NP?
	Multi linear	P	P	NP	NP	NP	NP?
	Uni linear/circular	P	(open)	(NP)	(NP)	NP	NP
SCJ	Multi mixed	P	P	P	P	P	?
	Multi linear	P	P	P	P	P	?
	(Multi circular - initial and target)	(P)	(P)	(P)	(P)	(P)	(?)
	(Uni linear/circular - initial and target)	(P)	(open)	(open)	(open)	(open)	(?)
DCJ	Multi mixed/circular	P	NP	P	NP	NP	NP (ILP)
	Restricted multi linear	P	open	open	NP?	NP?	NP?
	Uni linear/circular (Inversion)	P	open	P	NP?	NP	NP?
	Strict multi linear (Inv/Trsl/Fus/Fis)	P	open	open	NP?	NP?	NP?

	- Model - _	Singular genomes	Natural genomes	Family-free genomes	
DCJ-indel distance	Multi mixed/circular Restricted multi linear	P	NP (ILP)	NP (ILP)	previous lectures this and next lectures
	Uni linear/circular (Inversion)	P	NP?	NP?	

Cropped breakpoint graph of two unsigned canonical chromosomes

Each vertex of a cropped breakpoint graph has degree 0, 2 or 4:

Unsigned canonical circular chromosomes

$$
\left.\begin{array}{l}
\widehat{\mathbb{A}}=\left(\begin{array}{lllll}
1 & 5 & 3 & 2 & 4
\end{array}\right) \\
\widehat{\mathbb{B}}=\left(\begin{array}{ll}
1 & 2
\end{array}\right) 4456
\end{array}\right)
$$

NP-hard problem:
decompose a cropped breakpoint graph into the maximum number of edge-disjoint even cycles alternating colors
\Rightarrow Inversion distance of unsigned chromosomes is NP-hard

Corresponding breakpoint diagrams of signed canonical chromosomes:

$\mathbb{A}_{1}=\left(\begin{array}{lll}1 & 5 & \overline{3} \\ 2 & \overline{4} & 6\end{array}\right)$

$\mathbb{A}_{2}=\left(\begin{array}{llll}1 & 5 & \overline{3} & \overline{2}\end{array} \mathrm{Cl}_{6}\right)$

$\mathbb{A}_{3}=\left(\begin{array}{llll}1 & \overline{5} & \overline{3} & \overline{2}\end{array} \mathrm{Cl}_{6}\right)$
$\mathbb{A}_{4}=\left(\begin{array}{llll}1 & \overline{5} & \overline{3} & \overline{2} \\ 4 & 6\end{array}\right)$

Balanced bicolored graph decomposition (BGDEC)

Each vertex of a balanced bicolored graph has degree 0, 2 or 4
The number of red and of blue edges inciding in each vertex is identical

Problem:
Entirely decompose a balanced bicolored graph into the maximum number of edge-disjoint alternating even cycles

DCJ median of three canonical genomes

Given three canonical genomes $\mathbb{A}, \mathbb{B}, \mathbb{C}$, find another canonical genome \mathbb{M} that minimizes the sum

$$
d_{\mathrm{DCJ}}(\mathbb{M}, \mathbb{A})+\mathrm{d}_{\mathrm{DCJ}}(\mathbb{M}, \mathbb{B})+\mathrm{d}_{\mathrm{DCJ}}(\mathbb{M}, \mathbb{C})
$$

Example:
Breakpoint graph of \mathbb{A}, \mathbb{B} and \mathbb{C}

$$
\mathbb{A}=\left(\begin{array}{ll}
15 & \overline{3} \overline{2} \overline{4} 6
\end{array}\right)
$$

$$
\mathbb{B}=\left(\begin{array}{ll}
1 & \overline{3} 4
\end{array}\right)\left(\begin{array}{l}
2 \overline{5} 6
\end{array}\right)
$$

$$
\mathbb{C}=\left(\begin{array}{ll}
1 & 234
\end{array}\right)
$$

Median candidate

$$
\begin{aligned}
& \mathbb{M}=\mathbb{A}=\left(\begin{array}{ll}
1 & 5 \\
\overline{3} & \overline{2} \overline{4} 6
\end{array}\right) \\
& d_{\mathrm{DCJ}}(\mathbb{M}, \mathbb{A})=0 \\
& d_{\mathrm{DCJ}}(\mathbb{M}, \mathbb{B})=6-4=2 \\
& d_{\mathrm{DCJ}}(\mathbb{M}, \mathbb{C})=6-2=4
\end{aligned}
$$

Reducing BGDEC to the DCJ median of three canonical genomes

DCJ double distance

DCJ double distance $d_{\mathrm{DCJ}}^{2}(\mathbb{S}, \mathbb{D})$ of sing-dup-canonical genomes \mathbb{S} and \mathbb{D} :

$$
\mathrm{d}_{\mathrm{DCJ}}^{2}(\mathbb{S}, \mathbb{D})=\mathrm{d}_{\mathrm{DCJ}}(2 \cdot \mathbb{S}, \mathbb{D})
$$

Transforming $2 \cdot \mathbb{S}$ and \mathbb{D} into matched canonical genomes \mathbb{C}_{1} and \mathbb{C}_{2} :
for each family $f \in \mathcal{F}_{\star}$, determine which occurrence of f in $2 \cdot \mathbb{S}$ matches each occurrence of f in \mathbb{D} \Rightarrow Matched occurrences receive the same index in \mathbb{C}_{1} and in \mathbb{C}_{2}
\mathfrak{C} : set of all possible pairs of matched canonical genomes obtained from duplicated genomes $2 \cdot \mathbb{S}$ and \mathbb{D}

$$
\mathrm{d}_{\mathrm{DCJ}}(2 \cdot \mathbb{S}, \mathbb{D})=\min _{\left(\mathbb{C}_{1}, \mathbb{C}_{2}\right) \in \mathfrak{C}}\left\{\mathrm{d}_{\mathrm{DCJ}}\left(\mathbb{C}_{1}, \mathbb{C}_{2}\right)\right\}
$$

Reducing BGDEC to the DCJ double distance

DCJ distance of balanced genomes

Balanced genomes \mathbb{A} and $\mathbb{B}\left\{\begin{array}{l}\mathcal{F}_{\star}=\mathcal{F}(\mathbb{A})=\mathcal{F}(\mathbb{B}) \\ \mathcal{G}_{\star}=\mathcal{G}(\mathbb{A})=\mathcal{G}(\mathbb{B}) \\ \text { for each family } f \in \mathcal{F}_{\star}, \Phi(f, \mathbb{A})=\Phi(f, \mathbb{B})\end{array}\right.$
Transforming \mathbb{A} and \mathbb{B} into matched canonical genomes \mathbb{A}^{\ddagger} and \mathbb{B}^{\ddagger} :
for each family $f \in \mathcal{F}_{\star}$, determine which occurrence of f in \mathbb{A} matches each occurrence of f in \mathbb{B}
\Rightarrow Matched occurrences receive the same index in \mathbb{A}^{\ddagger} and in \mathbb{B}^{\ddagger}

The number of common genes between any pair of matched genomes \mathbb{A}^{\ddagger} and \mathbb{B}^{\ddagger} is $n_{*}=\left|\mathcal{G}_{\star}\right|$
\mathfrak{M} : set of all possible pairs of matched canonical genomes obtained from balanced genomes \mathbb{A} and \mathbb{B}
DCJ distance of \mathbb{A} and \mathbb{B} :

$$
\mathrm{d}_{\mathrm{DCJ}}(\mathbb{A}, \mathbb{B})=\min _{\left(\mathbb{A}^{\ddagger}, \mathbb{B}^{\ddagger}\right) \in \mathfrak{M}}\left\{\mathrm{d}_{\mathrm{DCJ}}\left(\mathbb{A}^{\ddagger}, \mathbb{B}^{\ddagger}\right)\right\}
$$

Multi-relational graph $M R G(\mathbb{A}, \mathbb{B})$

Example: $\mathbb{A}=\left[\begin{array}{llll}1 & 3 & 2 & 1\end{array} 11\right]$ and $\mathbb{B}=[\overline{2} \overline{3} \overline{1} 131]$

References

Multichromosomal median and halving problems under different genomic distances
(Eric Tannier, Chunfang Zheng and David Sankoff)
BMC Bioinformatics volume 10, Article number: 120 (2009)

An Exact Algorithm to Compute the Double-Cut- and-Join Distance for Genomes with Duplicate Genes
(Mingfu Shao, Yu Lin, and Bernard M. E. Moret)
JCB, vol. 22, no. 5, pp 425-435 (2015)

