Topics of today:

Overview of studied models/problems

NP-hard problems:

- 1. Decomposing the cropped breakpoint graph of *unsigned* canonical genomes
- 2. DCJ median problem
- 3. DCJ double distance
- 4. DCJ distance of balanced genomes

Overview of models / computational problems - 1995-2020

	—— Model ——	Canonical distance	Double distance	Halving	Guided Halving	Median	Balanced distance
Break point	Multi mixed/circular Multi linear Uni linear/circular	P P P	P P (open)	P NP (NP)	P NP (NP)	P NP NP	NP? NP? NP
SCJ	Multi mixed	P	P	P	P	P	?
	Multi linear	P	P	P	P	P	?
	(Multi circular - initial and target)	(P)	(P)	(P)	(P)	(P)	(?)
	(Uni linear/circular - initial and target)	(P)	(open)	(open)	(open)	(open)	(?)
DCJ	Multi mixed/circular	Р	NP	P	NP	NP?	NP (ILP)
	Restricted multi linear	Р	open	open	NP?	NP?	NP?
	Uni linear/circular (Inversion)	Р	open	P	NP?	NP	NP?
	Strict multi linear (Inv/Trsl/Fus/Fis)	Р	open	open	NP?	NP?	NP?

	—— Model ——	Singular genomes	Natural genomes	Family-free genomes
DCJ-indel	Multi mixed/circular Restricted multi linear	Р	NP (ILP)	NP (ILP)
	Uni linear/circular (Inversion)	Р	NP?	NP?

previous lectures this and next lectures

Cropped breakpoint graph of two unsigned canonical chromosomes

Each vertex of a cropped breakpoint graph has degree 0, 2 or 4:

Corresponding breakpoint diagrams of signed canonical chromosomes:

Balanced bicolored graph decomposition (BGDEC)

Each vertex of a balanced bicolored graph has degree 0, 2 or 4 The number of red and of blue edges inciding in each vertex is identical

Problem:

Entirely decompose a balanced bicolored graph into the maximum number of edge-disjoint alternating even cycles

> ↓ NP-hard

DCJ median of three canonical genomes

Given three canonical genomes \mathbb{A} , \mathbb{B} , \mathbb{C} , find another canonical genome \mathbb{M} that minimizes the sum

 $d_{\text{DCJ}}(\mathbb{M},\mathbb{A}) + d_{\text{DCJ}}(\mathbb{M},\mathbb{B}) + d_{\text{DCJ}}(\mathbb{M},\mathbb{C})$

Reducing BGDEC to the DCJ median of three canonical genomes

DCJ double distance

DCJ double distance $d^2_{\scriptscriptstyle \mathrm{DCJ}}(\mathbb{S},\mathbb{D})$ of sing-dup-canonical genomes \mathbb{S} and \mathbb{D} :

$$\mathsf{d}^2_{\mathrm{DCJ}}(\mathbb{S},\mathbb{D})=\mathsf{d}_{\mathrm{DCJ}}(2\!\cdot\!\mathbb{S},\mathbb{D})$$

Transforming $2 \cdot \mathbb{S}$ and \mathbb{D} into **matched** canonical genomes \mathbb{C}_1 and \mathbb{C}_2 :

for each family $f \in \mathcal{F}_{\star}$, determine which occurrence of f in 2. \mathbb{S} matches each occurrence of f in \mathbb{D}

 \Rightarrow Matched occurrences receive the same index in \mathbb{C}_1 and in \mathbb{C}_2

 \mathfrak{C} : set of all possible pairs of matched canonical genomes obtained from duplicated genomes $2{\cdot}\mathbb{S}$ and \mathbb{D}

$$\mathsf{d}_{\mathrm{DCJ}}(2 \cdot \mathbb{S}, \mathbb{D}) = \min_{(\mathbb{C}_1, \mathbb{C}_2) \in \mathfrak{C}} \{ \mathsf{d}_{\mathrm{DCJ}}(\mathbb{C}_1, \mathbb{C}_2) \}$$

Reducing BGDec to the DCJ double distance

 \Rightarrow

DCJ distance of balanced genomes

Balanced genomes
$$\mathbb{A}$$
 and \mathbb{B}

$$\begin{cases}
\mathcal{F}_{\star} = \mathcal{F}(\mathbb{A}) = \mathcal{F}(\mathbb{B}) \\
\mathcal{G}_{\star} = \mathcal{G}(\mathbb{A}) = \mathcal{G}(\mathbb{B}) \\
\text{for each family } f \in \mathcal{F}_{\star}, \ \Phi(f, \mathbb{A}) = \Phi(f, \mathbb{B})
\end{cases}$$

Transforming $\mathbb A$ and $\mathbb B$ into matched canonical genomes $\mathbb A^\ddagger$ and $\mathbb B^\ddagger\colon$

for each family $f \in \mathcal{F}_{\star}$, determine which occurrence of f in \mathbb{A} matches each occurrence of f in \mathbb{B}

 \Rightarrow Matched occurrences receive the same index in \mathbb{A}^\ddagger and in \mathbb{B}^\ddagger

The number of common genes between any pair of matched genomes \mathbb{A}^{\ddagger} and \mathbb{B}^{\ddagger} is $n_* = |\mathcal{G}_{\star}|$

 \mathfrak{M} : set of all possible pairs of matched canonical genomes obtained from balanced genomes $\mathbb A$ and $\mathbb B$

DCJ distance of $\mathbb A$ and $\mathbb B$:

$$\mathsf{d}_{\mathrm{DCJ}}(\mathbb{A},\mathbb{B}) = \min_{(\mathbb{A}^{\ddagger},\mathbb{B}^{\ddagger})\in\mathfrak{M}} \{\mathsf{d}_{\mathrm{DCJ}}(\mathbb{A}^{\ddagger},\mathbb{B}^{\ddagger})\}$$

Multi-relational graph $MRG(\mathbb{A}, \mathbb{B})$

Example: $\mathbb{A} = [132131]$ and $\mathbb{B} = [\overline{2}\overline{3}\overline{1}131]$

References

Multichromosomal median and halving problems under different genomic distances

(Eric Tannier, Chunfang Zheng and David Sankoff)

BMC Bioinformatics volume 10, Article number: 120 (2009)

An Exact Algorithm to Compute the Double-Cut- and-Join Distance for Genomes with Duplicate Genes

(Mingfu Shao, Yu Lin, and Bernard M. E. Moret)

JCB, vol. 22, no. 5, pp 425-435 (2015)