
Topics of today:

1. Short introduction to / review of ILP

2. DCJ distance of balanced genomes

3. ILP for computing the DCJ distance of balanced genomes

Linear Programming (LP)

Linear

Optimization

Problem

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

Given a set of decision variables

(each variable has a domain, stating its valid values)

Given a set of linear constraints in the given variables

where...

feasible solution: tuple of valid values that satisfies all constraints

infeasible solution: tuple of valid values that violates at least one constraint

solution space: set of all feasible solutions

(if no solution is feasible, the solution space is empty

and the optimization problem itself is infeasible)

The problem is finding a best feasible solution by minimizing or maximizing

the linear objective function in the given variables

(the objetive function defines the quality of the feasible solutions)

LP - simple example: optimal meal problem

Let the following table give the nutritional values

of a portion of each of two types of food

Vitamin

A C D Calories

Food P 225 100 200 600

Food B 600 100 75 300

Min. intake 1800 550 600

A solution to this optimization problem is a meal composed of portions of Food P and Food B

The variables are

(
xp : # of portions of Food P

xb: # of portions of Food B

The number of portions cannot be negative,

therefore the respective domains are

xp � 0 and xb � 0

For achieving the minimum intake of each vitamin, any meal has

to respect the constraints on the amount of vitamins:

225xp + 600xb � 1800 (Vitamin A)

100xp + 100xb � 550 (Vitamin C)

200xp + 75xb � 600 (Vitamin D)

The objective is the minimization of calories in the meal: minimize 600xp + 300xb.

(As not eating violates the vitamin constraints, the empty meal is an infeasible solution.)

LP - simple example: optimal meal problem

Graphical illustration:

The lines represent the constraints

The colored area corresponds to the solution space

(set of feasible solutions), and the gradient indicates

the value of the objective function in the solution

space

The optimal meal consists of:8
><

>:

xp = 1.5 (# of portions of Food P)

xb = 4 (# of portions of Food B)

for a total of 2100 calories

Example

and picture

taken from

“Lecture

Notes on

Integer

Linear Pro-

gramming”,

by Roel van

den Broek

The computation time of an LP is polynomial in the number of variables and constraints.

Integer Linear Programming (ILP)

Variation of LP, where each variable is restricted to integer values

Powerful tool in combinatorial optimization:

many problems feature discrete decisions that can be modeled in an ILP

In contrast to linear programs, which are all solvable to optimality in polynomial time (in the number of variables

and constraints), often there is no known polynomial bound on the computation time of integer linear programs

Each ILP has a corresponding LP relaxation, by allowing the variables to assume non-integers values:

I Each feasible solution in the ILP is also feasible in the LP relaxation, but not vice versa.

I The optimal solution of the LP relaxation is a lower/upper bound for the optimal solution of the ILP.

ILP - simple example: optimal meal problem

Consider the LP for solving the optimal meal problem, and suppose that we want to avoid meals that consist of

partial portions of the two types of food.

For this goal we only need to set the domains of the variables xp and xb to be non-negative integers:

min 600xp + 300xb (objective function)

s.t.

225xp + 600xb � 1800 (Vitamin A)

100xp + 100xb � 550 (Vitamin C)

200xp + 75xb � 600 (Vitamin D)

xp � 0, xb � 0
(domains)

xp , xb are integers

The ILP formulation has three optimal solutions that result in 2400 calories

8
><

>:

xp = 2, xb = 4

xp = 1, xb = 6

xp = 0, xb = 8

ILP - NP-hard problem with simple formulation
Maximum Independent Set problem of a graph G = (V ,E)

independent set:

(
subset of vertices S ✓ V

no two vertices in S are adjacent in graph G

ILP formulation:

Let V = {v1, v2, ..., vn}

Associate a binary variable to each vertex vi : xi =

(
1 if vi is in the independent set,

0 otherwise

Constraint: at most one vertex of each edge (vi vj) 2 E can be included in the independent set: xi + xj  1

Objective: maximize the sum of all n binary xk variables.

max
Pn

k=1
xk (objective function)

s.t.

xi + xj  1 8(vi vj) 2 E (non-adjacent)

xk 2 {0, 1} 8vk 2 V (domain)

(Maximum Independent Set problem is NP-hard, but modeling it as an ILP is straightforward)

DCJ distance of balanced genomes

Balanced genomes A and B

8
>><

>>:

F? = F(A) = F(B)

G? = G(A) = G(B)

for each family f 2 F?, �(f ,A) = �(f ,B)

Transforming A and B into matched canonical genomes A‡ and B‡:

for each family f 2 F?, determine which occurrence of f in A matches each occurrence of f in B

) Matched occurrences receive the same index in A‡ and in B‡

The number of common genes between any pair of matched genomes A‡ and B‡ is n⇤ = |G?|

M : set of all possible pairs of matched canonical genomes obtained from balanced genomes A and B

DCJ distance of A and B:

ddcj(A,B) = min
(A‡,B‡)2M

{ddcj(A‡
,B‡

)}

Multi-relational graph of balanced genomes

Example: A = [132131] and B = [132] [131]

········· ········· ········· ········· ·········

········· ········· ········· ·········

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

r r r r r r r r r r r r1t
1

1h
1

3t
1

3h
1

2t
1

2h
1

1t
2

1h
2

3t
2

3h
2

1t
3

1h
3

r r r r r r r r r r r r
1t
2

1h
2

3t
1

3h
1

2t
1

2h
1

1h
1

1t
1

3t
2

3h
2

1t
3

1h
3

ddcj = 6 � 2 � 2

2
= 3

········· ········· ········· ········· ·········

········· ········· ········· ·········

⇥
⇥
⇥
⇥

⇥
⇥
⇥
⇥

S
S
S
S

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

r r r r r r r r r r r r1t
1

1h
1

3t
1

3h
1

2t
1

2h
1

1t
2

1h
2

3t
2

3h
2

1t
3

1h
3

r r r r r r r r r r r r
1t
1

1h
1

3t
1

3h
1

2t
1

2h
1

1h
2

1t
2

3t
2

3h
2

1t
3

1h
3

ddcj = 6 � 3 � 2

2
= 2

··········· ··········· ··········· ··········· ···········

··········· ··········· ··········· ···········

⇥
⇥
⇥
⇥
⇥
⇥

⇥
⇥
⇥
⇥
⇥
⇥

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

r r r r r r r r r r r rA 1t 1h 3t 3h 2t 2h 1t 1h 3t 3h 1t 1h

r r r r r r r r r r r r
B 1t 1h 3t 3h 2t 2h 1h 1t 3t 3h 1t 1h

Multi-relational graph of balanced genomes

Given two balanced genomes A and B, their multi-relational graph MRG(A,B) = (V ,E) is described as follows:

1. V = V (⇠(A)) [V (⇠(B)) : there is a vertex for each extremity of each gene in A

and a vertex for each extremity of each gene in B

Each vertex v has a label `(v), that corresponds to the gene extremity it represents.

2. E = E↵(A) [E↵(B) [E⇠, where:

I Adjacency edges:

(
E↵(A) = {uv : u, v 2 V (⇠(A)) and `(u)`(v) 2 ↵(A)}

E↵(B) = {uv : u, v 2 V (⇠(B)) and `(u)`(v) 2 ↵(B)}

I Extremity edges: E⇠ = {uv : u 2 V (⇠(A)) and v 2 V (⇠(B)) and `(u) = `(v)}

Vertices can have degree greater than two in the multi-relational graph:

For each family f 2 F?, let mf = �(f ,A,B).

The number of extremity edges inciding in each vertex representing an extremity of an occurrence of f is mf .

Sibling-sets of MRG (A,B)

f(A) and f(B): genes (occurrences of the same family f 2 F?) in genomes A and B.

Siblings: pair of extremity edges that connect f h
(A) to f h

(B) and f t
(A) to f t

(B)

Sibling-set S ✓ E⇠

(
is composed of pairs of siblings

does not contain any pair of incident edges

There is a bijection between pairs of (partially) matched genomes and sibling-sets of MRG(A,B):
I Denote by A‡S and B‡S the matched genomes corresponding to the sibling-set S

I If S is maximal, A‡S and B‡S are canonical genomes

Consistent decompositions of MRG (A,B)

Consistent decomposition D[S]

8
>>>>>>>><

>>>>>>>>:

� is induced by a maximal sibling-set S

� is the union of S with all adjacency edges

� covers all vertices of MRG(A,B)
� is composed of cycles and paths:

weight of D[S]: w(D[S]) = |CD |+ |PD
AB|
2

ddcj(D[S]) = n⇤ � w(D[S])

The DCJ distance of balanced A and B can then be computed by the following equation:

ddcj(A,B) = min
S2Smax

{ddcj(D[S])} = n⇤ � max
S2Smax

{w(D[S])} ,

where

(
Smax is the set of all maximal sibling-sets of MRG(A,B)
n⇤ is constant for any consistent decomposition

If ddcj(D[S]) = ddcj(A,B), the consistent decomposition D[S] is said to be optimal.

Capped multi-relational graph CMRG (A,B)
Example: A = [132131] and B = [132] [131] , p⇤ = max{(A),(B)} = 2, a⇤ = |(A)� (B)| = 1

Add 2p⇤ cap extremities

to each genome

Add the new adjacencies

(including the a⇤ adj. between caps)

to E↵(A) and to E↵(B)

E⇠0 : set of edges connecting

cap extremities

E = E↵(A) [E↵(B) [E⇠ [E⇠0

··········· ··········· ··········· ··········· ···········

··········· ··········· ··········· ···········

⇥
⇥
⇥
⇥
⇥
⇥

⇥
⇥
⇥
⇥
⇥
⇥

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B

··········· ··········· ···········

··········· ··········· ··········· ···········

··········· ··········· ···········

··········· ··········· ··········· ···········

r r r r r r r r r r r rr r r r�1 �2 �3 �41t 1h 3t 3h 2t 2h 1t 1h 3t 3h 1t 1h

r r r r r r r r r r r rr r r r
�0
1

�0
2

�0
3

�0
41t 1h 3t 3h 2t 2h 1h 1t 3t 3h 1t 1h

CMRG(A,B) includes all possible cappings of each maximal sibling-set

Two distinct cappings of the maximal sibling-set composed of blue + orange edges:

Non-optimal capping

········· ········· ········· ········· ·········

········· ········· ········· ·········

⇥
⇥
⇥
⇥

⇥
⇥
⇥
⇥

S
S
S
S

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

········· ········· ·········

········· ········· ········· ·········

r r r r r r r r r r r rr r r r�1 �2 �3 �41t
1

1h
1

3t
1

3h
1

2t
1

2h
1

1t
2

1h
2

3t
2

3h
2

1t
3

1h
3

r r r r r r r r r r r rr r r r
�0
1

�0
2

�0
3

�0
4

1t
1

1h
1

3t
1

3h
1

2t
1

2h
1

1h
2

1t
2

3t
2

3h
2

1t
3

1h
3

ddcj = n + p⇤ � c = 6 + 2 � 5 = 3

Optimal capping

········· ········· ········· ········· ·········

········· ········· ········· ·········

⇥
⇥
⇥
⇥

⇥
⇥
⇥
⇥

S
S
S
S

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

········· ········· ·········

········· ········· ········· ·········

r r r r r r r r r r r rr r r r�1 �2 �3 �41t
1

1h
1

3t
1

3h
1

2t
1

2h
1

1t
2

1h
2

3t
2

3h
2

1t
3

1h
3

r r r r r r r r r r r rr r r r
�0
1

�0
2

�0
3

�0
4

1t
1

1h
1

3t
1

3h
1

2t
1

2h
1

1h
2

1t
2

3t
2

3h
2

1t
3

1h
3

ddcj = n + p⇤ � c = 6 + 2 � 6 = 2

Capped consistent decompositions of CMRG (A,B)
Capping-set P ✓ E⇠0 : does not contain any pair of incident edges

Capped consistent

decomposition Q[S ,P]

8
>>>>>>>><

>>>>>>>>:

� is induced by a maximal sibling-set S and a maximal caping-set P

� is the union of S with P and with all adjacency edges

� covers all vertices of CMRG(A,B)
� is composed of cycles only:

weight of Q[S ,P]: w(Q[S ,P]) = |CQ |
ddcj(Q[S ,P]) = n⇤ + p⇤ � w(Q[S ,P])

For each maximal sibling set S : ddcj(D[S]) = min
P2Pmax

{ddcj(Q[S ,P])}

The DCJ distance of balanced genomes A and B can be computed by the following equation:

ddcj(A,B) = min
S2Smax,P2Pmax

{ddcj(Q[S ,P])} = n⇤ + p⇤ � max
S2Smax,P2Pmax

{w(Q[S ,P])} ,

where

8
><

>:

Smax is the set of all maximal sibling-sets of CMRG(A,B)
Pmax is the set of all maximal capping-sets of CMRG(A,B)
n⇤ and p⇤ are constant for any capped consistent decomposition

If ddcj(Q[S ,P]) = ddcj(A,B), the capped consistent decomposition Q[S ,P] is said to be optimal.

ILP to find an optimal capped consistent decomposition of CMRG (A,B)

Selecting a capped consistent decomposition:

Each edge e 2 E has a binary variable xe =

(
1 if e is selected to be in the decomposition,

0 otherwise

All adjacency edges must be in the decomposition:

xa = 1 8 a 2 E↵(A) [E↵(B)

Consistency

(
either both edges of a pair of siblings are selected

or both edges of a pair of siblings are not selected

xe = xd 8 e, d 2 E⇠, e, d are siblings

The decomposition must be a collection of cycles - all vertices must have degree 2:

X

uv2E

xuv = 2 8 u 2 V

(Guarantees maximality of the selected sibling-set)

ILP to find an optimal capped consistent decomposition of CMRG (A,B)

Counting cycles:

For each vertex vi , variable `i � 0 corresponds to the label of vi and is upper bounded by i :

`i  i for 1  i  |V |

All vertices in the same cycle in the decomposition must have the same label and this can be achieved

by assigning the same label to the two vertices connected by a selected edge:

`i
`j




`j + i(1� xvi vj)

`i + j(1� xvi vj)

)
8 vi vj 2 E

For each vertex vi , binary variable ci 2 {0, 1} tests whether `i is equal to its upper bound i :

`i � ici 8 1  i  |V |

Since all vertices in the same cycle have the same label and all upper bounds are distinct, there is exactly

one vertex in each cycle whose label can be equal to its upper bound.

ILP to find an optimal capped consistent decomposition of CMRG (A,B)

DCJ distance of balanced genomes

ddcj(A,B) = min
S2Smax,P2Pmax

{ddcj(Q[S ,P])}

= n⇤ + p⇤ � max
S2Smax,P2Pmax

{w(Q[S ,P])}

= n⇤ + p⇤ � max
S2Smax,P2Pmax

n���CQ[S ,P]

���
o

Objective function:

max

X

1i|V |
ci

References

An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes

(Mingfu Shao, Yu Lin, and Bernard M. E. Moret)

JCB, vol. 22, no. 5, pp 425–435 (2015)

