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Types of genomes

Given a pair of genomes A,B. Let ΦG (m) be the copy number of

family m in genome G ∈ {A,B}.

Non-Singular Singular

ΦG (m) arbitrary ΦG (m) ≤ 1

Unbalanced Natural Singular

|ΦA(m)− ΦB(m)| arbitrary genomes Genomes

Balanced Balanced Canonical

|ΦA(m)− ΦB(m)| = 0 Genomes Genomes

NP-Hard
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Natural Genomes and indels

There is no way to sort (1 2 2 3̄ 4) into (1 2 3 2 2 4) by DCJs

alone.

We need indel operations

→ But how many 2s to delete/insert?
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Excursus: Matching models

This depends on the assumed phylogeny!

?

(1 2 2 3̄ 4) (1 2 3 2 2 4)
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Excursus: Matching models

How to handle a shared family m with ΦA(m) 6= ΦB(m)

Exemplary Matching (EM) Intermediate Matching (IM) Maximal Matching (MM)

Exactly one occurrence matched At least one occurrence matched As many occurrences as possible

matched

nm = 1 genes of family m matched 1 ≤ nm ≤ min(ΦA(m),ΦB (m))

genes of family m matched

nm = min(ΦA(m),ΦB (m)) genes

of family m matched

Lowest common ancestor: Each

shared marker occurs once

Lowest common ancestor: Each

shared marker occurs at least as

often as in the genome with fewer

occurrences

6



Enforcing MM in the capped MRG

γ1 1t 1h 1t 1h 1t 1h 2t 2h 2t 2h γ2

γ3 1t 1h 1h 1t 2t 2h 2h 2t 2h 2t γ4
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The capped MRG for MM Natural Genomes

Given two natural genomes A, B their capped multi-relational graph CMRG(A,B) is

described as follows

1. V = V (ξ(A)) ∪ V (ξ(B)) ∪ Γ: There is a vertex for each extremity/cap in each

genome.

Each vertex v has a label `(v) corresponding to the extremity it represents.

2. E = Eα(A) ∪ Eα(B) ∪ Eξ ∪ Eξ′ ∪ EID(A) ∪ EID(B)

• Eα(G) = {uv : u, v ∈ V (ξ(G)) and `(u)`(v) ∈ α(G)}
• Eξ = {uv : u ∈ V (ξ(A)) and v ∈ V (ξ(B)) and `(u) = `(v)}
• Eξ′ ... edges connecting caps

•

EID(G) = {uv : u, v ∈ V (ξ(G)) and u, v are extremities of

the same gene of family m

with ΦG(m) > min(ΦA(m),ΦB(m))}
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Consistent decompositions in the CMRG

Capped consistent

decomposition Q[S ,P]

− is induced by a maximal sibling-set S and a maximal capping-set P

− is the union of S with P with all adjacency edges

and indel edges of genes not matched in S

− covers all vertices of CMRG(A,B)

− is composed of cycles only

9



Consistent Decompositions ≡ Matchings

3h1t 1h 3h 3t 2h 2t 3t

3h1t 1h 2t 2h 2t 2h 3t

γ1 γ2

γ3 γ4
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Finding the best decomposition

d IDDCJ (A, B) = min
S∈Smax,P∈Pmax

{d IDDCJ (Q[S, P])} = n∗ + p∗ − max
S∈Smax,P∈Pmax

{w(Q[S, P])} ,

where


Smax is the set of all maximal sibling-sets of CMRG(A, B)

Pmax is the set of all maximal capping-sets of CMRG(A, B)

n∗ and p∗ are constant for any capped consistent decomposition

with w(Q[S, P]) = |CQ | −
∑

C∈CQ∪SQ (λ(C))

where

CQ are cycles containing extremity edges

SQ are circular singletons
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Recap: Shao-Lin-Moret

Match the parts of the ILP to their function!

A `i ≤ `j + i(1− x{vi ,vj}) ∀ {vi , vj} ∈ E

1 Each adjacency edge

is in the decomposi-

tion

B
∑

{u,v}∈E
x{u,v} = 2 ∀ u ∈ V

2 Sibling edges are only

selected together

C i · zi ≤ `i ∀ 1 ≤ i ≤ |V |
3 A cycle is only

counted at the vertex

with the smalles label

D xe = 1 ∀ e ∈ Eα(A) ∪ Eα(B)

4 A decomposition con-

sists only of simple

cycles

E xe = xd ∀ e, d ∈ Eξ such that

e and d are siblings

5 Cycle labels of adja-

cent vertices are the

same
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Recap: Capping and indels
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Recap: Indels via Transitions

λ(C ) = ℵ(C)
2 + r(C )

with r(C ) =

{
1 if C is indel-enclosing

0 otherwise
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Transition counting in the ILP

Set label to 0 on active indel-edge in A
rv ≤ 1− x{u,v} ∀ {u, v} ∈ EID(A) ,

Set label to 1 on active indel-edge in B
rv ′ ≥ x{u′,v ′} ∀ {u′, v ′} ∈ EID(B)

Record the transition in variable

t{u,v} ≥ rv − ru

−(1− x{u,v})

∀ {u, v} ∈ E
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What about r(C )?

w(Q[S, P]) = |CQ | −
∑

C∈CQ∪SQ
(
ℵ(C)

2
+ r(C)) = |CQ | −

ℵ(Q)

2
−

∑
C∈CQ∪SQ

r(C)

= |CQ | −
ℵ(Q)

2
− |{C ∈ CQ : C is indel-enclosing}| − |SQ |

= |{C ∈ CQ : C is not indel-enclosing}| −
ℵ(Q)

2
− |SQ |

where SQ are circular singletons in the decompostion,

r(C) =

{
1 if C is indel-enclosing

0 otherwise
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Removing indel-enclosing cycles from the count

Idea: Set the cycle label to 0.

`i ≤ i(1− x{vi ,vj}) ∀ {vi , vj} ∈ EID(A) ∪ EID(B)
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Counting circular singletons

Idea: Each circular chromosome k ∈ K is a potential circular

singleton.∑
e∈EID(k)

xe − |k |+ 1 ≤ sk ∀k ∈ K
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Final Objective Function

w(Q[S ,P]) = |{C ∈ CQ : C is not indel-enclosing}| − ℵ(Q)
2 − |SQ |

Objective:

Maximize
∑

1≤i≤|V |

zi −
1

2

∑
e∈E

te −
∑
k∈K

sk

19



Quiz

Match the following parts of the ILP to their function!

A `i ≤ i(1− x{vi ,vj}) ∀ {vi , vj} ∈ EID (A) ∪ EID (B)

1 Setting run-variable

(preparing to find

transitions)

B rv ≤ 1− x{u,v} ∀ {u, v} ∈ EID (A) ,

rv′ ≥ x{u′,v′} ∀ {u′, v′} ∈ EID (B)

2 Removal of indel-

enclosing cycles

C t{u,v} ≥ rv − ru − (1− x{u,v}) ∀ {u, v} ∈ E

3 Recording transitions

D
∑

e∈Ek
id

xe − |k| + 1 ≤ sk ∀k ∈ K

4 Flagging circular sin-

gletons
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Excursus: ILP solvers
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Refinement - Restricting where transitions occurr

Only permit transitions in adjacencies in A
te = 0 ∀ e ∈ E \ Eα(A)

Only permit transitions next to indels∑
d∈EID(A),
d∩e 6=∅

xd − te ≥ 0 ∀ e ∈ Eα(A)
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Full ILP Solution

Objective:

Maximize
∑

1≤i≤|V |
zi− 1

2

∑
e∈E

te −
∑
k∈K

sk

Constraints:

(C.01) xe = 1 ∀ e ∈ Eα(A) ∪ Eα(B)

(C.02)
∑

{u,v}∈E
x{u,v} = 2 ∀ u ∈ V

(C.03) xe = xd ∀ e, d ∈ Eξ such that

e and d are siblings

(C.04) `i ≤ `j + i(1− x{vi ,vj}) ∀ {vi , vj} ∈ E ,

(C.06) i · zi ≤ `i ∀ 1 ≤ i ≤ |V |

(C.05) `i ≤ i(1− x{vi ,vj}) ∀ {vi , vj} ∈ EID (A) ∪ EID (B)

(C.07) rv ≤ 1− x{u,v} ∀ {u, v} ∈ EID (A) ,

rv′ ≥ x{u′,v′} ∀ {u′, v′} ∈ EID (B)

(C.08) t{u,v} ≥ rv − ru − (1− x{u,v}) ∀ {u, v} ∈ E

(C.09)
∑

d∈EID (A),
d∩e 6=∅

xd − te ≥ 0 ∀ e ∈ Eα(A)

(C.10) te = 0 ∀ e ∈ E \ Eα(A)

(C.11)
∑

e∈Ek
id

xe − |k| + 1 ≤ sk ∀k ∈ K

Domains:

(D.01) xe ∈ {0, 1} ∀ e ∈ E

(D.02) 0 ≤ `i ≤ i ∀ 1 ≤ i ≤ |V |

(D.03) zi ∈ {0, 1} ∀ 1 ≤ i ≤ |V |

(D.04) rv ∈ {0, 1} ∀ v ∈ V

(D.05) te ∈ {0, 1} ∀ e ∈ E

(D.06) sk ∈ {0, 1} ∀ k ∈ K
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Shao et al.
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Indel enclosing
cycles
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(C.04) `i ≤ `j + i(1− x{vi ,vj}) ∀ {vi , vj} ∈ E ,

(C.06) i · zi ≤ `i ∀ 1 ≤ i ≤ |V |

(C.05) `i ≤ i(1− x{vi ,vj}) ∀ {vi , vj} ∈ EID (A) ∪ EID (B)

(C.07) rv ≤ 1− x{u,v} ∀ {u, v} ∈ EID (A) ,

rv′ ≥ x{u′,v′} ∀ {u′, v′} ∈ EID (B)

(C.08) t{u,v} ≥ rv − ru − (1− x{u,v}) ∀ {u, v} ∈ E

(C.09)
∑

d∈EID (A),
d∩e 6=∅

xd − te ≥ 0 ∀ e ∈ Eα(A)

(C.10) te = 0 ∀ e ∈ E \ Eα(A)

(C.11)
∑

e∈Ek
id

xe − |k| + 1 ≤ sk ∀k ∈ K

Domains:

(D.01) xe ∈ {0, 1} ∀ e ∈ E

(D.02) 0 ≤ `i ≤ i ∀ 1 ≤ i ≤ |V |

(D.03) zi ∈ {0, 1} ∀ 1 ≤ i ≤ |V |

(D.04) rv ∈ {0, 1} ∀ v ∈ V

(D.05) te ∈ {0, 1} ∀ e ∈ E

(D.06) sk ∈ {0, 1} ∀ k ∈ K
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ILPs can be very fast

2000 3000 4000 5000 6000 7000 8000 9000 10000
#Duplicate occurrences per genome

0

50

100

150

200

250

300

350

400

So
lv

in
g 

tim
e 

[s
]

24



ILPs can be very fast

Genome

pair

Max. multiplicity

of dupl. marker

#duplicate

markers

#duplicate

occ.

d id
DCJ solving time [s]

dbus-dmel 23 303 832 4661 6.02

dbus-dpse 17 361 934 4688 5.29

dbus-dsec 15 295 766 4710 5.64

dbus-dsim 13 281 721 4767 5.05

dbus-dyak 19 318 785 4756 5.00

dmel-dpse 23 469 1319 3799 32218.93

dmel-dsec 23 326 902 901 6.78

dmel-dsim 23 322 893 1093 5.73

dmel-dyak 23 362 972 1379 7.22

dpse-dsec 17 464 1227 3866 13.82

dpse-dsim 17 449 1198 3962 6.81

dpse-dyak 19 481 1259 3951 8.96

dsec-dsim 15 314 843 1138 5.67

dsec-dyak 19 354 903 1516 6.56

dsim-dyak 19 347 864 1661 23.07
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Resolved Phylogeny

Not quite, but for an improved procedure, stay tuned for next lecture :)
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