## DCJ-indel distance of natural genomes

Leonard Bohnenkämper, Marília D. V. Braga January 28, 2021

|                                                         | Non-Singular          | Singular           |
|---------------------------------------------------------|-----------------------|--------------------|
|                                                         | $\Phi_G(m)$ arbitrary | $\Phi_G(m) \leq 1$ |
| Unbalanced                                              | Natural               | Singular           |
| $ \Phi_{\mathbb{A}}(m)-\Phi_{\mathbb{B}}(m) $ arbitrary | genomes               | Genomes            |
| Balanced                                                | Balanced              | Canonical          |
| $ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m)  = 0$     | Genomes               | Genomes            |

|                                                         | Non-Singular          | Singular           |
|---------------------------------------------------------|-----------------------|--------------------|
|                                                         | $\Phi_G(m)$ arbitrary | $\Phi_G(m) \leq 1$ |
| Unbalanced                                              |                       |                    |
| $ \Phi_{\mathbb{A}}(m)-\Phi_{\mathbb{B}}(m) $ arbitrary |                       |                    |
| Balanced                                                |                       |                    |
| $ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m)  = 0$     |                       |                    |

|                                                         | Non-Singular          | Singular           |
|---------------------------------------------------------|-----------------------|--------------------|
|                                                         | $\Phi_G(m)$ arbitrary | $\Phi_G(m) \leq 1$ |
| Unbalanced                                              |                       |                    |
| $ \Phi_{\mathbb{A}}(m)-\Phi_{\mathbb{B}}(m) $ arbitrary |                       |                    |
| Balanced                                                |                       | original           |
| $ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m)  = 0$     |                       | DCJ model          |

|                                                           | Non-Singular          | Singular           |
|-----------------------------------------------------------|-----------------------|--------------------|
|                                                           | $\Phi_G(m)$ arbitrary | $\Phi_G(m) \leq 1$ |
| Unbalanced                                                |                       | DCJ-Indel          |
| $ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary |                       | model              |
| Balanced                                                  |                       | original           |
| $ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m)  = 0$       |                       | DCJ model          |

|                                                         | Non-Singular          | Singular           |
|---------------------------------------------------------|-----------------------|--------------------|
|                                                         | $\Phi_G(m)$ arbitrary | $\Phi_G(m) \leq 1$ |
| Unbalanced                                              |                       | DCJ-Indel          |
| $ \Phi_{\mathbb{A}}(m)-\Phi_{\mathbb{B}}(m) $ arbitrary |                       | model              |
| Balanced                                                | ILP by                | original           |
| $ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m)  = 0$     | Shao et al.           | DCJ model          |

|                                                         | Non-Singular          | Singular           |
|---------------------------------------------------------|-----------------------|--------------------|
|                                                         | $\Phi_G(m)$ arbitrary | $\Phi_G(m) \leq 1$ |
| Unbalanced                                              | ILP                   | DCJ-Indel          |
| $ \Phi_{\mathbb{A}}(m)-\Phi_{\mathbb{B}}(m) $ arbitrary | today                 | model              |
| Balanced                                                | ILP by                | original           |
| $ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m)  = 0$     | Shao et al.           | DCJ model          |

Given a pair of genomes A, B. Let  $\Phi_G(m)$  be the copy number of family m in genome  $G \in \{A, B\}$ .

|                                     | Non-Singular          | Singular           |
|-------------------------------------|-----------------------|--------------------|
|                                     | $\Phi_G(m)$ arbitrary | $\Phi_G(m) \leq 1$ |
| Unbalanced                          | ILP                   | DCJ-Indel          |
| $ \Phi_A(m) - \Phi_B(m) $ arbitrary | today                 | model              |
| Balanced                            | ILP by                | original           |
| $ \Phi_A(m) - \Phi_B(m)  = 0$       | Shao et al.           | DCJ model          |
|                                     |                       |                    |

NP-Hard

There is no way to sort  $(1 \ 2 \ 2 \ \overline{3} \ 4)$  into  $(1 \ 2 \ 3 \ 2 \ 2 \ 4)$  by DCJs alone.

There is no way to sort  $(1 \ 2 \ 2 \ \overline{3} \ 4)$  into  $(1 \ 2 \ 3 \ 2 \ 2 \ 4)$  by DCJs alone.

We need indel operations

There is no way to sort  $(1 \ 2 \ 2 \ \overline{3} \ 4)$  into  $(1 \ 2 \ 3 \ 2 \ 2 \ 4)$  by DCJs alone.

We need indel operations

 $\rightarrow\,$  But how many 2s to delete/insert?









#### How to handle a shared family *m* with $\Phi_A(m) \neq \Phi_B(m)$

| Exemplary Matching (EM)                                | Intermediate Matching (IM)                                                  | Maximal Matching (MM)                                                                                                |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Exactly one occurrence matched                         | At least one occurrence matched                                             | As many occurrences as possible matched                                                                              |  |  |
| $n_m = 1$ genes of family $m$ matched                  | $1 \leq n_m \leq \min(\Phi_A(m), \Phi_B(m))$<br>genes of family $m$ matched | $n_m = min(\Phi_A(m), \Phi_B(m))$ genes of family $m$ matched                                                        |  |  |
| Lowest common ancestor: Each shared marker occurs once |                                                                             | Lowest common ancestor: Each<br>shared marker occurs at least as<br>often as in the genome with fewer<br>occurrences |  |  |

#### Enforcing MM in the capped MRG



#### The capped MRG for MM Natural Genomes

Given two natural genomes  $\mathbb{A}$ ,  $\mathbb{B}$  their capped multi-relational graph CMRG( $\mathbb{A}$ ,  $\mathbb{B}$ ) is described as follows

1.  $V = V(\xi(\mathbb{A})) \cup V(\xi(\mathbb{B})) \cup \Gamma$ : There is a vertex for each extremity/cap in each genome.

Each vertex v has a label  $\ell(v)$  corresponding to the extremity it represents.

- 2.  $E = E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B}) \cup E_{\xi} \cup E_{\xi'} \cup E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$ 
  - $E_{\alpha}(\mathbb{G}) = \{uv : u, v \in V(\xi(\mathbb{G})) \text{ and } \ell(u)\ell(v) \in \alpha(\mathbb{G})\}$
  - $E_{\xi} = \{uv : u \in V(\xi(\mathbb{A})) \text{ and } v \in V(\xi(\mathbb{B})) \text{ and } \ell(u) = \ell(v)\}$

•

 $E_{ID}(\mathbb{G}) = \{uv : u, v \in V(\xi(\mathbb{G})) \text{ and } u, v \text{ are extremities of}$ the same gene of family mwith  $\Phi_{\mathbb{G}}(m) > min(\Phi_{\mathbb{A}}(m), \Phi_{\mathbb{B}}(m))\}$ 

#### Capped consistent

#### decomposition Q[S, P]

- is induced by a maximal sibling-set S and a maximal capping-set P
  is the union of S with P with all adjacency edges and indel edges of genes not matched in S
  covers all vertices of CMRG(A, B)
  is composed of cycles only













$$d_{DCJ}^{ID}(A,B) = \min_{S \in \mathfrak{S}_{MAX}, P \in \mathfrak{P}_{MAX}} \{ d_{DCJ}^{ID}(Q[S,P]) \} = n_* + p_* - \max_{S \in \mathfrak{S}_{MAX}, P \in \mathfrak{P}_{MAX}} \{ w(Q[S,P]) \} ,$$

 $\begin{cases} \mathfrak{S}_{\mathrm{MAX}} \text{ is the set of all maximal sibling-sets of } CMRG(\mathbb{A}, \mathbb{B}) \\ \mathfrak{P}_{\mathrm{MAX}} \text{ is the set of all maximal capping-sets of } CMRG(\mathbb{A}, \mathbb{B}) \\ n_* \text{ and } p_* \text{ are constant for any capped consistent decomposition} \end{cases}$ 

with 
$$w(Q[S, P]) = |\mathcal{C}^Q| - \sum_{C \in \mathcal{C}^Q \cup \mathcal{S}^Q} (\lambda(C))$$

where

 $\mathcal{C}^Q$  are cycles containing extremity edges  $\mathcal{S}^Q$  are circular singletons

#### Recap: Shao-Lin-Moret

#### Match the parts of the ILP to their function!

$$\mathsf{A} \qquad \ell_i \leq \ell_j + i(1 - x_{\{v_i, v_j\}}) \qquad \forall \ \{v_i, v_j\} \in E$$

$$\mathsf{B} \qquad \sum_{\{u,v\}\in E} x_{\{u,v\}} = 2 \qquad \forall \ u \in V$$

- $\mathsf{C} \qquad i \cdot z_i \leq \ell_i \qquad \qquad \forall \ 1 \leq i \leq |V|$
- D  $x_e = 1$   $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$
- $E \qquad x_e = x_d \qquad \qquad \forall \ e, d \in E_{\xi} \text{ such that} \\ e \text{ and } d \text{ are siblings}$

- Each adjacency edge is in the decomposition
- 2 Sibling edges are only selected together
- 3 A cycle is only counted at the vertex with the smalles label
- 4 A decomposition consists only of simple cycles
- 5 Cycle labels of adjacent vertices are the same

### **Recap: Capping and indels**

|   | $\mathbf{id}$              | sources                                                                                                                                                                | linking AB-cycle                                                                                                                   | Т       | $\Delta n$     | $\Delta c$   | $\Delta(2i)$ | $\Delta\lambda$ | $\Delta d$                               |
|---|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|--------------|--------------|-----------------|------------------------------------------|
| P | WM                         | $AA_{\mathcal{AB}} + BB_{\mathcal{AB}}$                                                                                                                                | $(AA_{\mathcal{AB}}, BB_{\mathcal{BA}})$                                                                                           |         | +1             | +1           | 0            | -2              | -2                                       |
| Q | ₩₩M                        | $2 \times AA_{\mathcal{AB}} + BB_{\mathcal{A}} + BB_{\mathcal{B}}$                                                                                                     | $(AA_{\mathcal{AB}}, BB_{\mathcal{B}}, AA_{\mathcal{BA}}, BB_{\mathcal{A}})$                                                       |         | +2             | $^{+1}$      | 0            | -4              | -3                                       |
|   | MM₩ <u>₩</u>               | $2 \times BB_{AB} + AA_{A} + AA_{B}$                                                                                                                                   | $(BB_{\mathcal{AB}}, AA_{\mathcal{B}}, BB_{\mathcal{BA}}, AA_{\mathcal{A}})$                                                       |         | +2             | $^{+1}$      | 0            | -4              | -3                                       |
| T | WZM                        | $AA_{\mathcal{AB}} + BB_{\mathcal{A}} + AB_{\mathcal{AB}}$                                                                                                             | $(AB_{AB}, AA_{BA}, BB_{A})$                                                                                                       |         | +1.5           | $^{+1}$      | -0.5         | -3              | -2                                       |
|   | WWM                        | $2 \times AA_{\mathcal{AB}} + BB_{\mathcal{A}}$                                                                                                                        | $(AA_{\mathcal{B}\mathcal{A}}, BB_{\mathcal{A}}, AA_{\mathcal{A}\mathcal{B}}, BB_{\varepsilon} \prec I_{B})$                       | μ       | +2             | +1           | 0            | -3              | -2                                       |
|   | WN <u>M</u><br>WW <u>M</u> | $\begin{array}{l} AA_{\mathcal{A}\mathcal{B}} + BB_{\mathcal{B}} + AB_{\mathcal{B}\mathcal{A}} \\ 2 \times AA_{\mathcal{A}\mathcal{B}} + BB_{\mathcal{B}} \end{array}$ |                                                                                                                                    | υ       | $^{+1.5}_{+2}$ | $^{+1}_{+1}$ | $-0.5 \\ 0$  | $^{-3}_{-3}$    | $\begin{vmatrix} -2 \\ -2 \end{vmatrix}$ |
|   | $MN\overline{W}$           | $BB_{\mathcal{AB}} + AA_{\mathcal{A}} + AB_{\mathcal{BA}}$                                                                                                             | $(AB_{\mathcal{B}\mathcal{A}}, AA_{\mathcal{A}}, BB_{\mathcal{A}\mathcal{B}})$                                                     |         | +1.5           | $^{+1}$      | -0.5         | $^{-3}$         | -2                                       |
|   | MMW                        | $2 \times BB_{AB} + AA_{A}$                                                                                                                                            | $(BB_{\mathcal{B}\mathcal{A}}, AA_{\mathcal{A}}, BB_{\mathcal{A}\mathcal{B}}, AA_{\varepsilon} \prec \Gamma_A)$                    | $ \cap$ | +2             | +1           | 0            | -3              | -2                                       |
|   | MZ₩                        | $BB_{\mathcal{AB}} + AA_{\mathcal{B}} + AB_{\mathcal{AB}}$                                                                                                             | $(AB_{AB}, AA_{B}, BB_{BA})$                                                                                                       |         | +1.5           | +1           | -0.5         | -3              | -2                                       |
|   | MM₩                        | $2 \times BB_{AB} + AA_{B}$                                                                                                                                            | $(BB_{\mathcal{A}\mathcal{B}}, AA_{\mathcal{B}}, BB_{\mathcal{B}\mathcal{A}}, AA_{\varepsilon} \prec \Gamma_A)$                    | $\cap$  | +2             | +1           | 0            | -3              | -2                                       |
| S | ZN                         | $AB_{AB} + AB_{BA}$                                                                                                                                                    | $(AB_{AB}, AB_{BA})$                                                                                                               |         | +1             | +1           | -1           | -2              | -1                                       |
|   | WM                         | $AA_{\mathcal{A}} + BB_{\mathcal{A}}$                                                                                                                                  | $(AA_{\mathcal{A}}, BB_{\mathcal{A}})$                                                                                             |         | $^{+1}$        | $^{+1}$      | 0            | -1              | -1                                       |
|   | WM                         | $AA_{\mathcal{B}} + BB_{\mathcal{B}}$                                                                                                                                  | $(AA_{\mathcal{B}}, BB_{\mathcal{B}})$                                                                                             |         | $^{+1}$        | +1           | 0            | -1              | -1                                       |
|   | WM                         | $AA_{\mathcal{AB}} + BB_{\mathcal{A}}$                                                                                                                                 | $(AA_{\mathcal{B}\mathcal{A}}, BB_{\mathcal{A}})$                                                                                  |         | $^{+1}$        | +1           | 0            | -1              | -1                                       |
|   | WM                         | $AA_{\mathcal{AB}} + BB_{\mathcal{B}}$                                                                                                                                 | $(AA_{\mathcal{AB}}, BB_{\mathcal{B}})$                                                                                            |         | +1             | $^{+1}$      | 0            | -1              | -1                                       |
|   | WΖ                         | $AA_{\mathcal{AB}} + AB_{\mathcal{AB}}$                                                                                                                                | $(AA_{\mathcal{B}\mathcal{A}}, BB_{\varepsilon} \prec \Gamma_B, AB_{\mathcal{A}\mathcal{B}})$                                      | υ       | +1.5           | $^{+1}$      | -0.5         | $^{-2}$         | -1                                       |
|   | WN                         | $AA_{\mathcal{AB}} + AB_{\mathcal{BA}}$                                                                                                                                | $(AA_{\mathcal{AB}}, BB_{\varepsilon} \prec \Gamma_B, AB_{\mathcal{BA}})$                                                          | υ       | +1.5           | $^{+1}$      | -0.5         | $^{-2}$         | -1                                       |
|   | WW                         | $AA_{\mathcal{AB}} + AA_{\mathcal{AB}}$                                                                                                                                | $(AA_{\mathcal{A}\mathcal{B}}, BB_{\varepsilon} \prec \Gamma_B, AA_{\mathcal{B}\mathcal{A}}, BB_{\varepsilon} \prec \Gamma_B)$     | υ       | +2             | $^{+1}$      | 0            | -2              | -1                                       |
|   | MW                         | $BB_{AB} + AA_{A}$                                                                                                                                                     | $(AA_{\mathcal{A}}, BB_{\mathcal{AB}})$                                                                                            |         | +1             | $^{+1}$      | 0            | -1              | -1                                       |
|   | MW                         | $BB_{AB} + AA_{B}$                                                                                                                                                     | $(AA_{\mathcal{B}}, BB_{\mathcal{B}\mathcal{A}})$                                                                                  |         | $^{+1}$        | $^{+1}$      | 0            | -1              | -1                                       |
|   | MZ                         | $BB_{AB} + AB_{AB}$                                                                                                                                                    | $(BB_{\mathcal{B}\mathcal{A}}, AB_{\mathcal{A}\mathcal{B}}, AA_{\varepsilon} \prec \Gamma_A)$                                      | $\cap$  | +1.5           | $^{+1}$      | -0.5         | $^{-2}$         | -1                                       |
|   | MN                         | $BB_{AB} + AB_{BA}$                                                                                                                                                    | $(BB_{\mathcal{A}\mathcal{B}}, AB_{\mathcal{B}\mathcal{A}}, AA_{\varepsilon} \prec \Gamma_A)$                                      | $ \cap$ | +1.5           | $^{+1}$      | -0.5         | $^{-2}$         | -1                                       |
|   | MM                         | $BB_{AB} + BB_{AB}$                                                                                                                                                    | $(BB_{\mathcal{A}\mathcal{B}}, AA_{\varepsilon} \prec \Gamma_{A}, BB_{\mathcal{B}\mathcal{A}}, AA_{\varepsilon} \prec \Gamma_{A})$ | $\cap$  | +2             | $^{+1}$      | 0            | -2              | -1                                       |
| M | ZZ <u>₩</u> M              | $2 \times AB_{AB} + AA_{B} + BB_{A}$                                                                                                                                   | $(AB_{A\mathcal{B}}, AA_{\mathcal{B}}, BA_{\mathcal{B}A}, BB_{\mathcal{A}})$                                                       |         | +2             | +1           | -1           | -4              | -2                                       |
|   | NNUM                       | $2 \vee AB = 1 \pm AA + \pm BB =$                                                                                                                                      | (AB + AA + BA + BB +)                                                                                                              |         | $\pm 2$        | +1           | _1           | -4              | _2                                       |

13

#### **Recap: Indels via Transitions**



#### **Recap: Indels via Transitions**



$$\lambda(C) = \frac{\aleph(C)}{2} + r(C)$$

with  $r(C) = \begin{cases} 1 & \text{if } C \text{ is indel-enclosing} \\ 0 & \text{otherwise} \end{cases}$ 

# $\begin{array}{ll} \mbox{Set label to 0 on active indel-edge in } \mathbb{A} \\ r_{v} \leq 1 - x_{\{u,v\}} & \forall \ \{u,v\} \in E_{\textit{ID}}(\mathbb{A}) \,, \end{array}$

 $\begin{array}{ll} \text{Set label to 0 on active indel-edge in } \mathbb{A} \\ r_v \leq 1 - x_{\{u,v\}} & \forall \ \{u,v\} \in E_{\textit{ID}}(\mathbb{A}) \,, \\ \text{Set label to 1 on active indel-edge in } \mathbb{B} \\ r_{v'} \geq x_{\{u',v'\}} & \forall \ \{u',v'\} \in E_{\textit{ID}}(\mathbb{B}) \end{array}$ 

Set label to 0 on active indel-edge in  $\mathbb A$ 

 $r_{v} \leq 1 - x_{\{u,v\}}$ Set label to 1 on active indel-edge in  $\mathbb B$ 

$$r_{v'} \ge x_{\{u',v'\}}$$
  
Record the transition in variable

$$t_{\{u,v\}} \ge r_v - r_u$$

 $\forall \{u,v\} \in E_{ID}(\mathbb{A}),$ 

$$\forall \ \{u',v'\} \in E_{ID}(\mathbb{B})$$

 $\forall \{u, v\} \in E$ 

Set label to 0 on active indel-edge in  $\mathbb A$ 

 $r_{
m v} \leq 1 - x_{\{u,v\}}$ Set label to 1 on active indel-edge in  ${\mathbb B}$ 

$$r_{v'} \ge x_{\{u',v'\}}$$
  
Record the transition in variable  
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}})$$

$$\forall \{u,v\} \in E_{ID}(\mathbb{A}),$$

$$\forall \{u',v'\} \in E_{ID}(\mathbb{B})$$

 $\forall \{u, v\} \in E$ 

$$w(Q[S, P]) = |\mathcal{C}^{Q}| - \sum_{C \in \mathcal{C}^{Q} \cup S^{Q}} \left(\frac{\aleph(C)}{2} + r(C)\right) = |\mathcal{C}^{Q}| - \frac{\aleph(Q)}{2} - \sum_{C \in \mathcal{C}^{Q} \cup S^{Q}} r(C)$$
$$= |\mathcal{C}^{Q}| - \frac{\aleph(Q)}{2} - |\{C \in \mathcal{C}^{Q} : C \text{ is indel-enclosing}\}| - |S^{Q}|$$
$$= |\{C \in \mathcal{C}^{Q} : C \text{ is not indel-enclosing}\}| - \frac{\aleph(Q)}{2} - |S^{Q}|$$

where  $\mathcal{S}^{Q}$  are circular singletons in the decompostion,

 $r(C) = \begin{cases} 1 & \text{if } C \text{ is indel-enclosing} \\ 0 & \text{otherwise} \end{cases}$ 

Idea: Set the cycle label to 0.

 $\ell_i \leq i(1 - x_{\{v_i, v_j\}}) \quad \forall \ \{v_i, v_j\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$ 

Idea: Each circular chromosome  $k \in K$  is a potential circular singleton.

$$\sum_{e \in E_{ID}(k)} x_e - |k| + 1 \le s_k \quad \forall k \in K$$

$$w(Q[S,P]) = |\{C \in \mathcal{C}^Q : C ext{ is not indel-enclosing}\}| - rac{leph(Q)}{2} - |\mathcal{S}^Q||$$

#### **Objective:**

Maximize 
$$\sum_{1 \leq i \leq |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

#### Match the following parts of the ILP to their function!

$$\begin{array}{cccc} A & \ell_{i} \leq i(1 - x_{\{v_{i}, v_{j}\}}) & \forall \{v_{i}, v_{j}\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B}) \\ & & 1 & \text{Setting run-variable} \\ & & (preparing to find transitions) \\ B & r_{v} \leq 1 - x_{\{u,v\}} & \forall \{u,v\} \in E_{ID}(\mathbb{A}), \\ & r_{v'} \geq x_{\{u',v'\}} & \forall \{u',v'\} \in E_{ID}(\mathbb{B}) \\ C & t_{\{u,v\}} \geq r_{v} - r_{u} - (1 - x_{\{u,v\}}) & \forall \{u,v\} \in E \\ D & \sum_{e \in E_{Id}^{k}} x_{e} - |k| + 1 \leq s_{k} & \forall k \in K \\ \end{array}$$

$$\begin{array}{c} & \text{Removal of indelenclosing cycles} \\ & \text{3 Recording transitions} \\ & \text{4 Flagging circular singletons} \end{array}$$

#### Excursus: ILP solvers



#### Refinement - Restricting where transitions occurr

 $\begin{array}{ll} \text{Only permit transitions in adjacencies in } \mathbb{A} \\ t_e = 0 & \forall \ e \in E \setminus E_\alpha(\mathbb{A}) \end{array}$ 

Only permit transitions next to indels  $\sum_{\substack{d \in E_{ID}(\mathbb{A}), \\ d \cap e \neq \varnothing}} x_d - t_e \ge 0 \qquad \forall e \in E_{\alpha}(\mathbb{A})$ 

Objective:

Maximize 
$$\sum_{1 \leq i \leq |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

| (C.01) | $x_{e} = 1$                                                       | $\forall e \in I$         | $E_{lpha}(\mathbb{A}) \cup E_{lpha}(\mathbb{B})$     | (D.01)                    | $x_e  \in  \{0,1\}$          | $\forall \ e \in E$           |
|--------|-------------------------------------------------------------------|---------------------------|------------------------------------------------------|---------------------------|------------------------------|-------------------------------|
| (C.02) | $\sum x_{\{u,v\}} = 2$                                            | $\forall \ u \in$         | V                                                    | (D.02)                    | $0 \ \leq \ell_i \leq i$     | $\forall \ 1 \leq i \leq  V $ |
|        | $\{u,v\}\in E$                                                    |                           |                                                      | (D.03)                    | $z_i \in \{0,1\}$            | $\forall \ 1 \leq i \leq  V $ |
| (C.03) | $x_e = x_d$                                                       | $\forall e, d$<br>e and d | ∈ E <sub>ξ</sub> such that<br>I are siblings         | (D.04)                    | $\textit{r}_{v} \in \{0,1\}$ | $\forall v \in V$             |
| (C 04) | $\ell \leq \ell + i(1 - \chi_{\ell})$                             | ∀ ſv.                     | v.l C F                                              | (D.05)                    | $t_e\in\{0,1\}$              | $\forall \ e \in E$           |
| (0.04) | $v_i \leq v_j + i(1 \land \{v_i, v_j\})$                          | v (v,,                    | , j C L ,                                            | (D.06)                    | $s_k \in \{0, 1\}$           | $\forall \ k \in K$           |
| (C.06) | $i \cdot z_i \leq \ell_i$                                         | $\forall 1 \leq$          | $i \leq  V $                                         | . ,                       | K - C / J                    |                               |
| (C.05) | $\ell_i \leq i(1 - x_{\{v_i, v_j\}})$                             |                           | $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A})$        | $\cup E_{ID}(\mathbb{B})$ |                              |                               |
| (C.07) | $r_{v} \leq 1 - x_{\{u,v\}}$                                      |                           | $\forall \{u,v\} \in E_{ID}(\mathbb{A}),$            |                           |                              |                               |
|        | $r_{v'} \ge x_{\{u',v'\}}$                                        |                           | $\forall \{u', v'\} \in E_{ID}(\mathbb{B})$          | )                         |                              |                               |
| (C.08) | $t_{\{u,v\}} \ge r_v - r_u - (1 - 1)$                             | $x_{\{u,v\}})$            | $\forall \ \{u,v\} \in E$                            |                           |                              |                               |
| (C.09) | $\sum x_d - t_e \ge 0$                                            |                           | $\forall e \in E_{\alpha}(\mathbb{A})$               |                           |                              |                               |
|        | $d \in \overline{E_{ID}}(\mathbb{A}), \\ d \cap e \neq \emptyset$ |                           |                                                      |                           |                              |                               |
| (C.10) | $t_e = 0$                                                         |                           | $\forall \ e \in E \setminus E_{\alpha}(\mathbb{A})$ |                           |                              |                               |
| (C.11) | $\sum  x_e -  k  + 1 \le s_k$                                     |                           | $\forall k \in K$                                    |                           |                              |                               |
|        | $e \in E_{id}^k$                                                  |                           |                                                      |                           |                              |                               |

Domains:

Objective:

Maximize 
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints

| constrair | 11.5.                                                  |                        |                                                      |                     | Domunis.                  |                          |                             | _   |
|-----------|--------------------------------------------------------|------------------------|------------------------------------------------------|---------------------|---------------------------|--------------------------|-----------------------------|-----|
| (C.01)    | $x_{e} = 1$                                            | $\forall e \in I$      | $E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$ |                     | (D.01)                    | $x_e \in \{0,1\}$        | $\forall \ e \in E$         |     |
| (C.02)    | $\sum x_{\{u,v\}} = 2$                                 | $\forall u \in$        | V                                                    |                     | (D.02)                    | $ 0  \leq \ell_i \leq i$ | $\forall 1 \leq i \leq  V $ |     |
|           | $\{u,v\}\in E$                                         |                        |                                                      |                     | (D.03)                    | $z_i \in \{0,1\}$        | $\forall 1 \leq i \leq  V $ |     |
| (C.03)    | $x_{P} = x_{d}$                                        | $\forall e, d$         | $\in E_{\epsilon}$ such that                         |                     | (D.04)                    | $r_v \in \{0, 1\}$       | $\forall v \in V$           | -   |
| (2.24)    |                                                        | e and d                | are siblings                                         |                     | (D.05)                    | $t_e \in \{0, 1\}$       | $\forall e \in E$           |     |
| (C.04)    | $\ell_i \leq \ell_j + i(1 - x_{\{v_i, v_i\}})$         | $\forall \{v_i, v_i\}$ | $v_j \} \in E$ ,                                     |                     | (                         | - (0, 1)                 |                             |     |
| (C.06)    | $i \cdot z_i \leq \ell_i$                              | $\forall 1 \leq$       | $i \leq  V $                                         |                     | (D.06)                    | $s_k \in \{0, 1\}$       | $\forall \ k \in K$         |     |
| (C.05)    | $\ell_i \leq i(1 - x_{\{v_i, v_j\}})$                  |                        | $\forall \{v_i, v_j\} \in E_I$                       | $_{D}(\mathbb{A})$  | $\cup E_{ID}(\mathbb{B})$ |                          |                             |     |
| (C.07)    | $r_{v} \leq 1 - x_{\{u,v\}}$                           |                        | $\forall \{u, v\} \in E_{ID}$                        | (A),                |                           |                          |                             |     |
|           | $r_{v'} \ge x_{\{u',v'\}}$                             |                        | $\forall \{u', v'\} \in E$                           | $I_{D}(\mathbb{B})$ |                           |                          |                             |     |
| (C.08)    | $t_{\{u,v\}} \ge r_v - r_u - (1 - z)$                  | $x_{\{u,v\}})$         | $\forall \ \{u,v\} \in E$                            |                     |                           |                          |                             |     |
| (C.09)    | $\sum x_d - t_e \ge 0$                                 |                        | $\forall \ e \in E_{\alpha}(\mathbb{A})$             |                     |                           |                          |                             |     |
|           | $d \in E_{ID}(\mathbb{A}), \\ d \cap e \neq \emptyset$ |                        |                                                      |                     |                           |                          |                             |     |
| (C.10)    | $t_e = 0$                                              |                        | $\forall e \in E \setminus E_{\alpha}(A)$            | A)                  |                           |                          |                             |     |
| (C.11)    | $\sum_{k}  x_{e} -  k  + 1 \le s_k$                    |                        | $\forall k \in K$                                    |                     |                           |                          | Shao et                     | al. |
|           | $e \in E_{id}^{\kappa}$                                |                        |                                                      |                     |                           |                          |                             |     |

Domaine

Objective:

Maximize 
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

| (C.01) | $x_{e} = 1$                                            | $\forall \ e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$ | (D.01)                    | $x_e \in \{0,1\}$        | $\forall e \in E$             |
|--------|--------------------------------------------------------|----------------------------------------------------------------------|---------------------------|--------------------------|-------------------------------|
| (C.02) | $\sum x_{\{u,v\}} = 2$                                 | $\forall u \in V$                                                    | (D.02)                    | $0 \ \leq \ell_i \leq i$ | $\forall \ 1 \leq i \leq  V $ |
|        | $\{u,v\} \in E$                                        |                                                                      | (D.03)                    | $z_i \in \{0,1\}$        | $\forall \ 1 \leq i \leq  V $ |
| (C.03) | $x_e = x_d$                                            | $\forall e, d \in E_{\xi}$ such that<br>e and d are siblings         | (D.04)                    | $r_v \in \{0,1\}$        | $\forall v \in V$             |
| (C.04) | $\ell_i \leq \ell_i + i(1 - x_{\{v_i, v_i\}})$         | $\forall \{v_i, v_i\} \in E$ ,                                       | (D.05)                    | $t_e \in \{0,1\}$        | $\forall e \in E$             |
| (C.06) | $i \cdot z_i \leq \ell_i$                              | $\forall 1 \leq i \leq  V $                                          | (D.06)                    | $s_k \in \{0,1\}$        | $\forall \ k \in K$           |
| (C.05) | $\ell_i \leq i(1 - x_{\{v_i, v_i\}})$                  | $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A})$                        | $\cup E_{ID}(\mathbb{B})$ |                          |                               |
| (C.07) | $r_{v} \leq 1 - x_{\{u,v\}}$                           | $\forall \{u,v\} \in E_{ID}(\mathbb{A}),$                            |                           |                          |                               |
|        | $r_{v'} \ge x_{\{u',v'\}}$                             | $\forall \ \{u', v'\} \in E_{ID}(\mathbb{B})$                        |                           |                          |                               |
| (C.08) | $t_{\{u,v\}} \geq r_v - r_u - (1 - z)$                 | $x_{\{u,v\}})  \forall \ \{u,v\} \in E$                              |                           |                          |                               |
| (C.09) | $\sum_{i=1}^{n} x_d - t_e \ge 0$                       | $\forall \; e \in \mathit{E}_{\alpha}(\mathbb{A})$                   |                           |                          |                               |
|        | $d \in E_{ID}(\mathbb{A}), \\ d \cap e \neq \emptyset$ |                                                                      |                           |                          |                               |
| (C.10) | $t_e = 0$                                              | $\forall \ e \in E \setminus E_{\alpha}(\mathbb{A})$                 |                           |                          |                               |
| (C.11) | $\sum  x_e -  k  + 1 \le s_k$                          | $\forall k \in K$                                                    |                           | DIN                      | G extension                   |
|        | $e \in E_{id}^k$                                       |                                                                      |                           |                          | G extension                   |

Domains:

#### Objective:

$$\text{Maximize } \sum_{1 \leq i \leq |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

| (C.01) | $x_{e} = 1$                                                       | $\forall \ e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$ | (D.01)                    | x <sub>e</sub> |
|--------|-------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|----------------|
| (C.02) | $\sum x_{\{u,v\}} = 2$                                            | $\forall \ u \in V$                                                  | (D.02)                    | 0              |
|        | $\{u,v\} \in E$                                                   |                                                                      | (D.03)                    | zi             |
| (C.03) | $x_e = x_d$                                                       | $\forall e, d \in E_{\xi}$ such that                                 | (D.04)                    | r <sub>v</sub> |
|        |                                                                   | e and d are siblings                                                 | (D.05)                    | ta             |
| (C.04) | $\ell_i \leq \ell_j + i(1 - x_{\{v_i, v_j\}})$                    | $\forall \{v_i, v_j\} \in E,$                                        | (0,00)                    | -6             |
| (C.06) | $i \cdot z_i \leq \ell_i$                                         | $\forall \ 1 \leq i \leq  V $                                        | (D.06)                    | s <sub>k</sub> |
| (C.05) | $\ell_i \leq i(1 - x_{\{v_i, v_i\}})$                             | $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A})$                        | $\cup E_{ID}(\mathbb{B})$ |                |
| (C.07) | $r_{v} \leq 1 - x_{\{u,v\}}$                                      | $\forall \{u,v\} \in E_{ID}(\mathbb{A}),$                            |                           |                |
|        | $r_{v'} \ge x_{\{u',v'\}}$                                        | $\forall \{u', v'\} \in E_{ID}(\mathbb{B})$                          | )                         |                |
| (C.08) | $t_{\{u,v\}} \ge r_v - r_u - (1 - 1)$                             | $x_{\{u,v\}})  \forall \ \{u,v\} \in E$                              |                           |                |
| (C.09) | $\sum x_d - t_e \ge 0$                                            | $\forall e \in E_{\alpha}(\mathbb{A})$                               |                           |                |
|        | $d \in \overline{E_{ID}}(\mathbb{A}), \\ d \cap e \neq \emptyset$ |                                                                      |                           |                |
| (C.10) | $t_{e} = 0$                                                       | $\forall \ e \in E \setminus E_{lpha}(\mathbb{A})$                   |                           |                |
| (C.11) | $\sum_{k}  x_{e}  -  k  + 1 \le s_k$                              | $\forall k \in K$                                                    |                           |                |
|        | $e \in E_{\cdot}^{K}$                                             |                                                                      |                           |                |

#### Domains:

| (D.01) | $x_e \in \{0, 1\}$                    | $\forall e \in E$             |
|--------|---------------------------------------|-------------------------------|
| (D.02) | $0 \ \leq \ell_i \leq i$              | $\forall \ 1 \leq i \leq  V $ |
| (D.03) | $z_i \in \{0,1\}$                     | $\forall \ 1 \leq i \leq  V $ |
| (D.04) | $\textit{r}_{\textit{V}} \in \{0,1\}$ | $\forall \ v \in V$           |
| (D.05) | $t_e  \in  \{0,1\}$                   | $\forall \ e \in E$           |
| (D.06) | $s_k \in \{0,1\}$                     | $\forall \ k \in K$           |
|        |                                       |                               |

## Circ. singleton handling

#### Objective:

$$\text{Maximize } \sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

| Constrain                               | its:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Domains:                                                             |                           |                          |                               |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|--------------------------|-------------------------------|
| (C.01)                                  | $x_{e} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\forall \ e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$ | (D.01)                    | $x_e\in\{0,1\}$          | $\forall e \in E$             |
| (C.02)                                  | $\sum x_{\{u,v\}} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\forall \ u \in V$                                                  | (D.02)                    | $0 \ \leq \ell_i \leq i$ | $\forall \ 1 \leq i \leq  V $ |
|                                         | $\{u,v\} \in E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | (D.03)                    | $z_i \in \{0,1\}$        | $\forall \ 1 \leq i \leq  V $ |
| (C.03)                                  | $x_e = x_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\forall e, d \in E_{\xi}$ such that<br>e and d are siblings         | (D.04)                    | $r_{V}\in\{0,1\}$        | $\forall v \in V$             |
| (C.04)                                  | $\ell_i < \ell_i + i(1 - x_{1, \dots, 1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\forall \{v_i, v_i\} \in E$                                         | (D.05)                    | $t_e  \in  \{0,1\}$      | $\forall e \in E$             |
| ( , , , , , , , , , , , , , , , , , , , | $v_i = v_j + v_j $ |                                                                      | (D.06)                    | $s_k \in \{0,1\}$        | $\forall \ k \in K$           |
| (C.06)                                  | $1 \cdot z_i \leq \ell_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\forall \ 1 \leq i \leq  V $                                        |                           | _                        |                               |
| (C.05)                                  | $\ell_i \leq i(1 - x_{\{v_i, v_j\}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A})$                        | $\cup E_{ID}(\mathbb{B})$ |                          |                               |
| (C.07)                                  | $r_v \leq 1 - x_{\{u,v\}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\forall \ \{u,v\} \in E_{ID}(\mathbb{A}) ,$                         |                           |                          |                               |
|                                         | $r_{v'} \ge x_{\{u',v'\}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\forall \{u', v'\} \in E_{ID}(\mathbb{B})$                          |                           |                          |                               |
| (C.08)                                  | $t_{\{u,v\}} \ge r_v - r_u - (1 - z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x_{\{u,v\}})  \forall \ \{u,v\} \in E$                              |                           |                          |                               |
| (C.09)                                  | $\sum x_d - t_e \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\forall \ e \in E_{lpha}(\mathbb{A})$                               |                           |                          |                               |
|                                         | $d \in \overline{E_{ID}}(\mathbb{A}), \\ d \cap e \neq \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                           |                          |                               |
| (C.10)                                  | $t_{e} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\forall \ e \in E \setminus E_{lpha}(\mathbb{A})$                   |                           |                          |                               |
| (C.11)                                  | $\sum_{e \in E_{id}^k} x_e -  k  + 1 \le s_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\forall k \in K$                                                    |                           | Ind                      | el enclosing                  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                           |                          | Cycles                        |

#### Objective:

$$\text{Maximize } \sum_{1 \leq i \leq |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

| (C.01) | $x_{e} = 1$                                                       | $\forall \ e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$ | (D.01)                    | $x_e \in \{0, 1\}$       | $\forall e \in E$             |   |
|--------|-------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|--------------------------|-------------------------------|---|
| (C.02) | $\sum x_{\{u,v\}} = 2$                                            | $\forall \ u \in V$                                                  | (D.02)                    | $0 \ \leq \ell_i \leq i$ | $\forall \ 1 \leq i \leq  V $ |   |
|        | $\{u,v\}\in E$                                                    |                                                                      | (D.03)                    | $z_i \in \{0,1\}$        | $\forall \ 1 \leq i \leq  V $ |   |
| (C.03) | $x_e = x_d$                                                       | $\forall e, d \in E_{\xi}$ such that                                 | (D.04)                    | $r_v \in \{0,1\}$        | $\forall v \in V$             |   |
| (0,04) | $\ell_{i} \leq \ell_{i} + i(1 - \chi_{i} - z)$                    | ∀ [uu uu] ⊂ E                                                        | (D.05)                    | $t_e \in \{0,1\}$        | $\forall e \in E$             |   |
| (0.04) | $\varepsilon_i \leq \varepsilon_j + i(1 - x_{\{v_i, v_j\}})$      | $\vee \{v_i, v_j\} \in L$ ,                                          | (D_06)                    | $s_{1} \in \{0, 1\}$     | V K C K                       |   |
| (C.06) | $i \cdot z_i \leq \ell_i$                                         | $\forall \ 1 \leq i \leq  V $                                        | (0.00)                    | $S_K \subset [0, 1]$     | VACA                          |   |
| (C.05) | $\ell_i \leq i(1 - x_{\{v_i, v_j\}})$                             | $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A})$                        | $\cup E_{ID}(\mathbb{B})$ |                          |                               |   |
| (C.07) | $r_{v} \leq 1 - x_{\{u,v\}}$                                      | $\forall \{u,v\} \in E_{ID}(\mathbb{A}),$                            |                           |                          |                               |   |
|        | $r_{v'} \ge x_{\{u',v'\}}$                                        | $\forall \{u', v'\} \in E_{ID}(\mathbb{B})$                          |                           |                          |                               |   |
| (C.08) | $t_{\{u,v\}} \geq r_v - r_u - (1 - z)$                            | $x_{\{u,v\}})  \forall \ \{u,v\} \in E$                              |                           |                          |                               |   |
| (C.09) | $\sum x_d - t_e \ge 0$                                            | $\forall \ e \in E_{\alpha}(\mathbb{A})$                             |                           |                          |                               |   |
|        | $d \in \overline{E_{ID}}(\mathbb{A}), \\ d \cap e \neq \emptyset$ |                                                                      |                           |                          |                               |   |
| (C.10) | $t_{e} = 0$                                                       | $\forall e \in E \setminus E_{\alpha}(\mathbb{A})$                   |                           |                          |                               |   |
| (C.11) | $\sum  x_e -  k  + 1 \le s_k$                                     | $\forall k \in K$                                                    |                           |                          | Transitio                     | n |
|        | $e \in E_{id}^k$                                                  |                                                                      |                           |                          | countin                       | ~ |
|        | 10                                                                |                                                                      |                           |                          | counting                      | Б |

Domains:

Objective:

Maximize 
$$\sum_{1 \leq i \leq |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

| (C.01) | $x_{e} = 1$                                                       | $\forall e \in I$         | $E_{lpha}(\mathbb{A}) \cup E_{lpha}(\mathbb{B})$     | (D.01)                    | $x_e  \in  \{0,1\}$          | $\forall \ e \in E$           |
|--------|-------------------------------------------------------------------|---------------------------|------------------------------------------------------|---------------------------|------------------------------|-------------------------------|
| (C.02) | $\sum x_{\{u,v\}} = 2$                                            | $\forall \ u \in$         | V                                                    | (D.02)                    | $0 \ \leq \ell_i \leq i$     | $\forall \ 1 \leq i \leq  V $ |
|        | $\{u,v\}\in E$                                                    |                           |                                                      | (D.03)                    | $z_i \in \{0, 1\}$           | $\forall \ 1 \leq i \leq  V $ |
| (C.03) | $x_e = x_d$                                                       | $\forall e, d$<br>e and d | ∈ E <sub>ξ</sub> such that<br>I are siblings         | (D.04)                    | $\textit{r}_{v} \in \{0,1\}$ | $\forall v \in V$             |
| (C 04) | $\ell \leq \ell + i(1 - \chi_{\ell})$                             | ∀ ſv.                     | v.l C F                                              | (D.05)                    | $t_e\in\{0,1\}$              | $\forall \ e \in E$           |
| (0.04) | $v_i \leq v_j + i(1 \land \{v_i, v_j\})$                          | v (v,,                    | , j C L ,                                            | (D.06)                    | $s_k \in \{0, 1\}$           | $\forall \ k \in K$           |
| (C.06) | $i \cdot z_i \leq \ell_i$                                         | $\forall 1 \leq$          | $i \leq  V $                                         | . ,                       | K - C / J                    |                               |
| (C.05) | $\ell_i \leq i(1 - x_{\{v_i, v_j\}})$                             |                           | $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A})$        | $\cup E_{ID}(\mathbb{B})$ |                              |                               |
| (C.07) | $r_{v} \leq 1 - x_{\{u,v\}}$                                      |                           | $\forall \{u,v\} \in E_{ID}(\mathbb{A}),$            |                           |                              |                               |
|        | $r_{v'} \ge x_{\{u',v'\}}$                                        |                           | $\forall \{u', v'\} \in E_{ID}(\mathbb{B})$          | )                         |                              |                               |
| (C.08) | $t_{\{u,v\}} \ge r_v - r_u - (1 - 1)$                             | $x_{\{u,v\}})$            | $\forall \ \{u,v\} \in E$                            |                           |                              |                               |
| (C.09) | $\sum x_d - t_e \ge 0$                                            |                           | $\forall e \in E_{\alpha}(\mathbb{A})$               |                           |                              |                               |
|        | $d \in \overline{E_{ID}}(\mathbb{A}), \\ d \cap e \neq \emptyset$ |                           |                                                      |                           |                              |                               |
| (C.10) | $t_e = 0$                                                         |                           | $\forall \ e \in E \setminus E_{\alpha}(\mathbb{A})$ |                           |                              |                               |
| (C.11) | $\sum  x_e -  k  + 1 \le s_k$                                     |                           | $\forall k \in K$                                    |                           |                              |                               |
|        | $e \in E_{id}^k$                                                  |                           |                                                      |                           |                              |                               |

Domains:

#### ILPs can be very fast



## ILPs can be very fast

| Genome    | Max. multiplicity | #duplicate | #duplicate | d <sup>id</sup> <sub>DCJ</sub> | solving time [s] |
|-----------|-------------------|------------|------------|--------------------------------|------------------|
| pair      | of dupl. marker   | markers    | occ.       |                                |                  |
| dbus-dmel | 23                | 303        | 832        | 4661                           | 6.02             |
| dbus-dpse | 17                | 361        | 934        | 4688                           | 5.29             |
| dbus-dsec | 15                | 295        | 766        | 4710                           | 5.64             |
| dbus-dsim | 13                | 281        | 721        | 4767                           | 5.05             |
| dbus-dyak | 19                | 318        | 785        | 4756                           | 5.00             |
| dmel-dpse | 23                | 469        | 1319       | 3799                           | 32218.93         |
| dmel-dsec | 23                | 326        | 902        | 901                            | 6.78             |
| dmel-dsim | 23                | 322        | 893        | 1093                           | 5.73             |
| dmel-dyak | 23                | 362        | 972        | 1379                           | 7.22             |
| dpse-dsec | 17                | 464        | 1227       | 3866                           | 13.82            |
| dpse-dsim | 17                | 449        | 1198       | 3962                           | 6.81             |
| dpse-dyak | 19                | 481        | 1259       | 3951                           | 8.96             |
| dsec-dsim | 15                | 314        | 843        | 1138                           | 5.67             |
| dsec-dyak | 19                | 354        | 903        | 1516                           | 6.56             |
| dsim-dyak | 19                | 347        | 864        | 1661                           | 23.07            |

## **Resolved Phylogeny**



Not quite, but for an improved procedure, stay tuned for next lecture :)

#### Literature

- Gurobi mip solver introduction. https://www.gurobi.com/resource/mip-basics/. Accessed: 2021-01-26.
- Bohnenkämper, L., Braga, M. D., Doerr, D., and Stoye, J. (0).
   Computing the rearrangement distance of natural genomes.
   Journal of Computational Biology, 0(0):null.

PMID: 33393848.