Topics of today:

1. Small Parsimony / Big Parsimony

N

. Fitch's algorithm

3. Small Parsimony with SCJ

4. Quiz-review



Small (and big) parsimony problems

dyi(G1, Gp): distance between two genomes under some model M

topology of T is known /

Binary tree T . ’
each leaf u of T corresponds to a given genome G, /
. 7
Function A: assigns a genome A(u) to each node u of T G c
(if u is a leaf of T, then A(u) = Gy) [} 61 3

assignment A

model M w(uv) = du (A(w), A(v))

Weight w(uv) of a branch uv of T under {

Small parsimony problem under the model M:

Find an assignment A that minimizes the total branch weight of T:

W) = min 37 du (). AK)

uv €E(T)
Big parsimony problem under the model M:
Given a set of k genomes G4, G, ..., Gy,
find tree T whose k leaves are in one-to-one correspondence with the genomes G, G, ..., Gy
n

assignment A of genomes to the nodes of T

minimizing the total branch weight W(T)



Small parsimony with Fitch's algorithm

General model:
binary rooted tree T, with n nodes
genomes are represented by sequences of a fixed length ¢, over a finite alphabet ¥ (with || = m)
hamming distance (hd) gives the weight of the branches

Assuming positions being mutually independent, the problem can be solved for each position separately:

The algorithm determines an optimal value for each position p of each node v, denoted by s,[p]

Bottom-up phase: defines set B(v, p) of possible values for each sy[p], based on v's children x; and x»

if vis a leaf : B(v, p) = {sv[p]}

elge 4 COMPute B(v, p) = B(x1, p) N B(x2, p)
if B(v,p) =0 : B(v, p) = B(x1, p) U B(x2, p)

Complexity: O(mn) (bottom-up traversal takes O(n), computation of each node takes O(m))

Top-down phase: defines final value sy[p], based on set B(v, p) and v's parent u

if v has a parent u and sy[p] € B(v, p) : sv[p] = su[p]
otherwise (including the root), arbitrarily assign any value from B(v, p) to sy[p]

Complexity: O(mn) (top-down traversal takes O(n), computation of each node takes O(m))

Total complexity: O(mn) per position; with £ positions: O(¢mn)



Small parsimony with Fitch's algorithm

{c.6}

Bottom-up phase:

Top-down phase:




Small parsimony under SCJ with Fitch's algorithm ?_’ $r.24
D(E)= bt b $)

ikzk ‘1*):",

2§

set of gene families F
set of extremities £(F) = {ft: f € FYU{fh: f e F} (J&(F) =2|F|)

set of all possible adjacencies &(F) = {subsets of {(F) with size 2}
= |a(F)| = (\5(2F)I) — (2I;I) — 2|f|(2£f\71) = 0(|F]?)

Note: @(F) has many pairs of conflicting adjacencies xy, xz with y # z

represented by a sequence s, of length £ = |a(F)| over the binary alphabet {0, 1}

genome assigned
to vertex u cannot contain conflicting adjacencies:

for each pair of conflicting adj. in @(F), at most one of the two can be set to 1 in sy



Small parsimony under SCJ with Fitch's algorithm

xy at position p; xz at position p
B(v, p1) B(v, p2)
(a) {1} = {0}
Possible bottom-up O/O\O O/CD\O
scenarios involving
- . . {1} {1} {0} {0}
two conflicting adjacencies
B(v, p1) B(v, p2)
(b) {1} = {0}
{1} {0, 1} {0} {0} or {0, 1}

Conflicts can be avoided by assigning the value 0 to each ambiguous position of the root genome:

silpl=1 i B(x.p) = {1}

r is the root of T: for each position p of sy .
sz[p] =0 otherwise

It is easy to verify that: dsc;(u, v) = hd(su, sv)



Close-related problems are NP-hard...

Small parsimony under breakpoint distance

Big parsimony under SCJ
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Quiz - Review



Inversion model 1 123,

-1 2
1 In the DCJ model any operation reconstructing a target adjacency is optimal, but 1.2 ...
the same is not true for the inversion model because... [}
A a target adjacency can be bad 1-2
B a target adjacency can be already present in the genome
@reconstructing a target adjacency can be unsafe
2 A cycle is bad when... 4 A bad component can be fixed...
A it cannot be sorted by inversions @with a neutral inversion
B it interleaves another bad cycle B with a split inversion
@ it contains only bad target adjacencies C with a safe inversion

3 Which data structure helps finding safe inversions?

A relational diagram
@ overlap graph =

C component tree
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Inversion model 2

1 Each leaf of the component tree represents... 4 Merging two good (or trivial) components..

A a bad component @can merge bad components into a good one
a hurdle B creates a new bad component ) |
/ \
C a fortress (¢ C is never recommended fg

Q

2 The cost of covering a component tree can be expressed in terms of...

A the number of bad nodes
B the length of the longest traversal of the tree 0
@the number of leaves (o}
wsk = b code = L4

3 Fixing a super hurdle with a neutral inversion

A is a good strategy

creates a new hurdle

C destroys a good component



DCJ-indel model 1

1 The indel-potential is defined as...

A the number of runs in a component

the smallest number of runs that can be obtained after sorting with internal

gaining DClJs

C the number of indel-edges in a component

2 The indel-potential of a component depends on..

@its number of runs

B its number of indel-edges

C its length

3 The number of runs in a cycle can be...

@ 0,1,2,4,6,8,...

B any non-negative integer

C any positive integer

4 The number of runs in a path can be...
A 0,1,2,4,638,...
any non-negative integer 0,(,2,3, 4S--~

C any positive integer |Iq_.5tl.(‘j'~~ ©



DCJ-indel model 2

1 A recombination can reduce the overall number of runs by at most... 41

v
Al C 3

2 A recombination can reduce the overall overall indel-potential by at most...

A1 C3

3 A recombination involving a cycle is...

A gaining

OO O
@Iosing

4 A recombination involving a cycle can be...

A deducting

part of an optimal sorting sequence cx, A}, =-2

C none of those

“lop

sl
s :\P P\-




DCJ-indel model - Path recombinations

With respect to the endpoints: With respect to the runs:
A-B + A-E (gaining) AA + BB (Ay=-2)
AfFA 4 B AB + AB
A-B + A-B (gaining) ABBA 4+ & (Ax=-2)
b ———{eainz). AA 4+ (B) (Ay=-1)
A-B + A-B (neutral) AAB) + e (Ax=-1)
A—" 4+ A—A (neutral) (A) + BB (Ax=-1)
AFA + S4A (AB + B
A=A+ —A (neutral) (A)BB + e (Ax=-1)

gaining with Ay = -2
Deducting path recombinations: < gaining with Ay = —1

neutral with Ay = -2



DCJ-indel model - Path recombinations

Putting together (examples):

ABys ABys ABys AB.
A—AB-B A-AB-B = A—ABABE A-B  (neutral, with Ay = —1)
ABys ABys ABys AB.
A—AB-B A—AB-B = A-ABAB-B \—B (neutral, with Ay = —1)
ABy3 ABgg A]B‘ AIB;
A—AB-B A-BA-B = A—-ABBA-B A-B (neutral, with Ay = —2)
ABys ABgy ABg ABg
A—AB-B A-BA-B = A—AATB A—BB-B  (neutral, with Ay = —2)
ABy3 ABgg ABg ABe
A—AB-B A-BA-B = A-BAAB-B A-B (neutral, with Ay = —2)
ABys ABga ABg ABy
A—AB-B A-BA-E = A-BB-B A—AA-B  (neutral, with Ay = —2)

~N oo alw N =o >
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DCJ-indel model - Path recombinations

Putting together (examples):

ABas ABgy ABy

A—AB-B  + A-BA-B = A—ABBA- +
2 Z (g) 3 (2)
AByg3 ABgy ABy

A-ABAB-B +  A-BAB = A-ABABBA-E  +
4 2 (&) s ()
ABas ABgs ABy

A—ABAB-B + A-BABA-B = A-ABABBABA-E +

4 Yo (¢) RN (Y

AB,
A-B

AB,
A-B

AB,
A-B

(neutral, with Ay = —2)

(neutral, with Ay = —2)

(neutral, with Ay = —2)

~N oo AW N+ o>

B alw w| - o]




DCJ and DCJ-indel models - Capping

Add caps to close all paths of the graph into cycles, preserving the distance

———
e ———

. . . .. paths linking cycle [ An [ Ac[A(2AB) [ Apcy
Canonical capping (no indel edges): maximizes the number of cycles
- AB (AB) +05|+1| —o05 0
AA + BE AA, BB 1| +1 0 0
A A A—A A—A + ( ) | L+
| | AA (AATR) | +1[+1 0 0
B B B—B BB (BB, ry) | +1]+1 0 0
Singular capping (with indel edges): optimizes the number of cycles and of runs at the same time
‘? ‘T— A_,A A A A_““‘/A “‘4\ paths. linking cycle an[ac[a@as)[ax|al,
7 1/ 1% { &
B B BB B R B BB B4 (| Adws + BBas (AAag, BBga) +1[+1 of —2| -2
(12 x Ahas + B34+ BB (Ahas (BBg) Abga BEL) | +2|+1 o —4| -3
| 4245 + ABra (ABag, ABga) +1[ 41 —1| —2| -1
AB (B) +05|+1| —o05| o 0
A— A
AA + BB (AA, BB) +1[ 41 ol o 0
B—B




