
Topics of today:

1. Small Parsimony / Big Parsimony

2. Fitch’s algorithm

3. Small Parsimony with SCJ

4. Quiz-review

Small (and big) parsimony problems

dM(G1,G2): distance between two genomes under some model M

Binary tree T

(
topology of T is known

each leaf u of T corresponds to a given genome Gu

Function A: assigns a genome A(u) to each node u of T

(if u is a leaf of T, then A(u) = Gu)

Weight w(uv) of a branch uv of T under

(
assignment A

model M
: w(uv) = dM (A(u),A(v))

Small parsimony problem under the model M:

Find an assignment A that minimizes the total branch weight of T:

W(T) = min
A2A

X

uv2E(T)

dM (A(u),A(v))

Big parsimony problem under the model M:

Given a set of k genomes G1,G2, ... ,Gk,

find

(
tree T whose k leaves are in one-to-one correspondence with the genomes G1,G2, ... ,Gk

assignment A of genomes to the nodes of T

minimizing the total branch weight W(T)

①
•

to

G
, Gz 63

Small parsimony with Fitch’s algorithm

General model:8
><

>:

binary rooted tree T, with n nodes

genomes are represented by sequences of a fixed length `, over a finite alphabet ⌃ (with |⌃| = m)

hamming distance (hd) gives the weight of the branches

Assuming positions being mutually independent, the problem can be solved for each position separately:

The algorithm determines an optimal value for each position p of each node v, denoted by sv[p]

Bottom-up phase: defines set B(v, p) of possible values for each sv[p], based on v’s children x1 and x2
8
>><

>>:

if v is a leaf : B(v, p) = {sv[p]}

else

(
compute B(v, p) = B(x1, p) \ B(x2, p)

if B(v, p) = ; : B(v, p) = B(x1, p) [B(x2, p)

Complexity: O(mn) (bottom-up traversal takes O(n), computation of each node takes O(m))

Top-down phase: defines final value sv[p], based on set B(v, p) and v’s parent u
(
if v has a parent u and su[p] 2 B(v, p) : sv[p] = su[p]

otherwise (including the root), arbitrarily assign any value from B(v, p) to sv[p]

Complexity: O(mn) (top-down traversal takes O(n), computation of each node takes O(m))

Total complexity: O(mn) per position; with ` positions: O(`mn)

Small parsimony with Fitch’s algorithm

Bottom-up phase:

!!!!
aaaa
|l{C, G}

�
�

@
@

|l{A, C, G}

�
�
A
A

|l{A, C}

|l
A

|l
C

|l
G

�
�

@
@

|l{C, G, T}

�
�
A
A

|l{C, G}

|l
C

|l
G

|l
T

Top-down phase:

!!! aaa
xhC

�� @@
xhC

�� AA
xhCxh

A

xh
C

xh
G

�� @@
xhC

�� AA
xhCxh

C

xh
G

xh
T

W = 4

!!! aaa
xhG

�� @@
xhG

�� AA
xhCxh

A

xh
C

xh
G

�� @@
xhG

�� AA
xhGxh

C

xh
G

xh
T

W = 4

!!! aaa
xhG

�� @@
xhG

��AA
xhAxh

A

xh
C

xh
G

�� @@
xhG

��AA
xhGxh

C

xh
G

xh
T

W = 4

• A

@ 0

← th
& O & e En O

• @ a • O O

Small parsimony under SCJ with Fitch’s algorithm

8
>>>>>>>>>><

>>>>>>>>>>:

set of gene families F

set of extremities ⇠(F) = {f t : f 2 F} [{f h : f 2 F} (|⇠(F)| = 2|F|)

set of all possible adjacencies b↵(F) = {subsets of ⇠(F) with size 2}

) |b↵(F)| =
�|⇠(F)|

2

�
=

�2|F|
2

�
= 2|F|(2|F|�1)

2 = O(|F|2)

Note: b↵(F) has many pairs of conflicting adjacencies xy , xz with y 6= z

genome assigned
to vertex u

8
>>><

>>>:

represented by a sequence su of length ` = |b↵(F)| over the binary alphabet {0, 1}

cannot contain conflicting adjacencies:

for each pair of conflicting adj. in b↵(F), at most one of the two can be set to 1 in su

Fe 3 i. z}

IfF) = I hit
,
shh

,

Eat
,

A 2h
,
Itzt

,

2h
,
ztg

Small parsimony under SCJ with Fitch’s algorithm

Possible bottom-up

scenarios involving

two conflicting adjacencies

xy at position p1 xz at position p2

(a)

⌘
⌘⌘

Q
QQ

zj
B(v, p1)

{1}

zj
{1}

zj
{1}

)

⌘
⌘⌘

Q
QQ

zj
B(v, p2)

{0}

zj
{0}

zj
{0}

(b)

⌘
⌘⌘

Q
QQ

zj
B(v, p1)

{1}

zj
{1}

zj
{0, 1}

)

⌘
⌘⌘

Q
QQ

zj
B(v, p2)

{0}

zj
{0}

zj
{0} or {0, 1}

Conflicts can be avoided by assigning the value 0 to each ambiguous position of the root genome:

r is the root of T: for each position p of sr

(
sr[p] = 1 if B(r, p) = {1}
sr[p] = 0 otherwise

It is easy to verify that: dscj(u, v) = hd(su, sv)

Close-related problems are NP-hard...

Small parsimony under breakpoint distance

Big parsimony under SCJ

References

Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology

(Walter M. Fitch)

Systematic Zoology, vol. 20, pp. 406–416 (1971)

SCJ: A Breakpoint-Like Distance that Simplifies Several Rearrangement Problems

(Pedro Feijão and João Meidanis)

TCBB volume 8 Number: 5 (2011)

Quiz - Review

Inversion model 1

1 In the DCJ model any operation reconstructing a target adjacency is optimal, but
the same is not true for the inversion model because...

A a target adjacency can be bad

B a target adjacency can be already present in the genome

C reconstructing a target adjacency can be unsafe

2 A cycle is bad when...

A it cannot be sorted by inversions

B it interleaves another bad cycle

C it contains only bad target adjacencies

4 A bad component can be fixed...

A with a neutral inversion

B with a split inversion

C with a safe inversion

3 Which data structure helps finding safe inversions?

A relational diagram

B overlap graph

C component tree

123
. . .

t'
I
. . -
2
.
. .

W

1 - 2

O

O

O

O

'

→

Inversion model 2

1 Each leaf of the component tree represents...

A a bad component

B a hurdle

C a fortress

4 Merging two good (or trivial) components..

A can merge bad components into a good one

B creates a new bad component

C is never recommended

2 The cost of covering a component tree can be expressed in terms of...

A the number of bad nodes

B the length of the longest traversal of the tree

C the number of leaves

3 Fixing a super hurdle with a neutral inversion

A is a good strategy

B creates a new hurdle

C destroys a good component

O O
O boo. aaa

EMT
9.

° ÷n÷: .:*.
cost = Lt t

O

DCJ-indel model 1

1 The indel-potential is defined as...

A the number of runs in a component

B the smallest number of runs that can be obtained after sorting with internal
gaining DCJs

C the number of indel-edges in a componenta bad component

2 The indel-potential of a component depends on..

A its number of runs

B its number of indel-edges

C its length

3 The number of runs in a cycle can be...

A 0,1,2,4,6,8,...

B any non-negative integer

C any positive integer

4 The number of runs in a path can be...

A 0,1,2,4,6,8,...

B any non-negative integer

C any positive integer

0

Biogas

:
O 0,443, 4,5 - - -

1. 2,3, 4,5 .
-
-

DCJ-indel model 2

1 A recombination can reduce the overall number of runs by at most...

A 1 B 2 C 3

2 A recombination can reduce the overall overall indel-potential by at most...

A 1 B 2 C 3

3 A recombination involving a cycle is...

A gaining

B neutral

C losing

4 A recombination involving a cycle can be...

A deducting

B part of an optimal sorting sequence

C none of those

o
:#¥:B is :::÷.

° ÷t÷
:O00 ⇒ O si

O if by =
- 2

DCJ-indel model - Path recombinations

With respect to the endpoints:

A�A + B�B

8
<

:
A�B + A�B (gaining)

A�B + A�B (gaining)

A�B + A�B

8
<

:
A�A + B�B (losing)

A�B + A�B (neutral)

A�A + A�A

8
<

:
A�A + A�A (neutral)

A�A + A�A (neutral)

With respect to the runs:

AB + AB

8
<

:
AA + BB (�� = �2)

ABBA + " (�� = �2)

A(B) + A

8
<

:
AA + (B) (�� = �1)

AA(B) + " (�� = �1)

(A)B + B

8
<

:
(A) + BB (�� = �1)

(A)BB + " (�� = �1)

Deducting path recombinations:

8
>><

>>:

gaining with �� = �2

gaining with �� = �1

neutral with �� = �2

(BAAB t E (Dx .
- - 2)

l l

l l

-1
I

DCJ-indel model - Path recombinations

Putting together (examples):

ABAB ABAB ABAB AB"

A�AB�B + A�AB�B = A�ABAB�B + A�B (neutral, with �� = �1)

ABAB ABAB ABAB AB"

A�AB�B + A�AB�B = A�ABAB�B + A�B (neutral, with �� = �1)

ABAB ABBA ABA AB"

A�AB�B + A�BA�B = A�ABBA�B + A�B (neutral, with �� = �2)

ABAB ABBA ABA ABB

A�AB�B + A�BA�B = A�AA�B + A�BB�B (neutral, with �� = �2)

ABAB ABBA ABB AB"

A�AB�B + A�BA�B = A�BAAB�B + A�B (neutral, with �� = �2)

ABAB ABBA ABB ABA
A�AB�B + A�BA�B = A�BB�B + A�AA�B (neutral, with �� = �2)

⇤ �
0 0
1 1
2 2
3 2
4 3
5 3
6 4
7 4

-

• o

• o

• a

• co

DCJ-indel model - Path recombinations

Putting together (examples):

ABAB ABBA ABA AB"

A�AB�B + A�BA�B = A�ABBA�B + A�B (neutral, with �� = �2)

ABAB ABBA ABA AB"

A�ABAB�B + A�BA�B = A�ABABBA�B + A�B (neutral, with �� = �2)

ABAB ABBA ABA AB"

A�ABAB�B + A�BABA�B = A�ABABBABA�B + A�B (neutral, with �� = �2)

⇤ �
0 0
1 1
2 2
3 2
4 3
5 3
6 4
7 4

2 2 (4) 3 (2)

4 2 (5) 5 (3)

4 4 16)
"

'
'

+

"
'

ca,

DCJ and DCJ-indel models - Capping

Add caps to close all paths of the graph into cycles, preserving the distance

Canonical capping (no indel edges): maximizes the number of cycles

A
|
B

A
|
B

A�A

B�B

A�A

paths linking cycle �n �c �(2AB) �dcj

AB (AB) +0.5 +1 �0.5 0

AA + BB (AA, BB) +1 +1 0 0

AA (AA, �B) +1 +1 0 0

BB (BB, �A) +1 +1 0 0

Singular capping (with indel edges): optimizes the number of cycles and of runs at the same time

A
|
B

A
|
B

A�A
/

B�B

A A
|/|
B B

A�A A
|/
B

A
|\

B�B B

A�A

B�B

A�A A
|/
B

A
|\

B�B B

A A�A
\ |
B

A
/ \
B B

paths linking cycle �n �c �(2AB) �� ��
dcj

AAAB + BBAB (AAAB , BBBA) +1 +1 0 �2 �2

2 ⇥ AAAB + BBA + BBB (AAAB , BBB , AABA , BBA) +2 +1 0 �4 �3

ABAB + ABBA (ABAB , ABBA) +1 +1 �1 �2 �1

AB (AB) +0.5 +1 �0.5 0 0

AA + BB (AA, BB) +1 +1 0 0 0

-
- -

I

, s
'

÷:i
[I-.

O
-

O
-

