Topics of today:

1. Small Parsimony / Big Parsimony
2. Fitch's algorithm
3. Small Parsimony with SCJ
4. Quiz-review

Small (and big) parsimony problems

$d_{M}\left(\mathbb{G}_{1}, \mathbb{G}_{2}\right)$: distance between two genomes under some model M

Binary tree $T\left\{\begin{array}{l}\text { topology of } T \text { is known } \\ \text { each leaf } u \text { of } T \text { corresponds to a given genome } \mathbb{G}_{u}\end{array}\right.$

Function \mathcal{A} : assigns a genome $\mathcal{A}(\mathrm{u})$ to each node u of T

Weight $w(\mathrm{uv})$ of a branch uv of T under $\left\{\begin{array}{l}\operatorname{assignment} \mathcal{A} \\ \operatorname{model} \mathrm{M}\end{array} \quad: \mathrm{w}(\mathrm{uv})=\mathrm{d}_{\mathrm{M}}(\mathcal{A}(\mathrm{u}), \mathcal{A}(\mathrm{v}))\right.$

Small parsimony problem under the model M :

Find an assignment \mathcal{A} that minimizes the total branch weight of T :

$$
\mathcal{W}(\mathrm{T})=\min _{\mathcal{A} \in \mathfrak{A}} \sum_{\mathrm{uv} \in E(\mathrm{~T})} \mathrm{d}_{\mathrm{M}}(\mathcal{A}(\mathrm{u}), \mathcal{A}(\mathrm{v}))
$$

Big parsimony problem under the model M :
Given a set of k genomes $\mathbb{G}_{1}, \mathbb{G}_{2}, \ldots, \mathbb{G}_{\mathrm{k}}$,
find $\left\{\begin{array}{l}\text { tree } T \text { whose } k \text { leaves are in one-to-one correspondence with the genomes } \mathbb{G}_{1}, \mathbb{G}_{2}, \ldots, \mathbb{G}_{\mathrm{k}} \\ \text { assignment } \mathcal{A} \text { of genomes to the nodes of } \mathrm{T}\end{array}\right.$
minimizing the total branch weight $\mathcal{W}(T)$

Small parsimony with Fitch's algorithm

General model:
$\left\{\begin{array}{l}\text { binary rooted tree } T \text {, with } n \text { nodes } \\ \text { genomes are represented by sequences of a fixed length } \ell \text {, over a finite alphabet } \Sigma \text { (with }|\Sigma|=m \text {) } \\ \text { hamming distance (hd) gives the weight of the branches }\end{array}\right.$
Assuming positions being mutually independent, the problem can be solved for each position separately: The algorithm determines an optimal value for each position p of each node v , denoted by $s_{\mathrm{v}}[p]$

Bottom-up phase: defines set $B(\mathrm{v}, p)$ of possible values for each $s_{\mathrm{v}}[p]$, based on v 's children x_{1} and x_{2}
$\left\{\begin{array}{l}\text { if } \mathrm{v} \text { is a leaf: } B(\mathrm{v}, p)=\left\{\mathrm{s}_{\mathrm{v}}[p]\right\} \\ \text { else }\left\{\begin{array}{l}\text { compute } B(\mathrm{v}, p)=B\left(\mathrm{x}_{1}, p\right) \cap B\left(\mathrm{x}_{2}, p\right) \\ \text { if } B(\mathrm{v}, p)=\emptyset: B(\mathrm{v}, p)=B\left(\mathrm{x}_{1}, p\right) \cup B\left(\mathrm{x}_{2}, p\right)\end{array}\right.\end{array}\right.$
Complexity: $O(m n)$ (bottom-up traversal takes $O(n)$, computation of each node takes $O(m)$)
Top-down phase: defines final value $s_{v}[p]$, based on set $B(v, p)$ and v 's parent u
$\left\{\begin{array}{l}\text { if } \mathrm{v} \text { has a parent } \mathrm{u} \text { and } s_{\mathrm{u}}[p] \in B(\mathrm{v}, p): s_{\mathrm{v}}[p]=s_{\mathrm{u}}[p] \\ \text { otherwise (including the root), arbitrarily assign any value from } B(\mathrm{v}, p) \text { to } s_{\mathrm{v}}[p]\end{array}\right.$
Complexity: $O(m n)$ (top-down traversal takes $O(n)$, computation of each node takes $O(m)$)
Total complexity: $O(m n)$ per position; with ℓ positions: $O(\ell m n)$

Small parsimony with Fitch's algorithm

Bottom-up phase:

Top-down phase:

Small parsimony under SCJ with Fitch's algorithm

$$
\text { set of gene families } \mathcal{F}
$$

$$
\text { set of extremities } \xi(\mathcal{F})=\left\{f^{t}: f \in \mathcal{F}\right\} \cup\left\{f^{h}: f \in \mathcal{F}\right\} \quad(|\xi(\mathcal{F})|=2|\mathcal{F}|)
$$

$$
\text { set of all possible adjacencies } \widehat{\alpha}(\mathcal{F})=\{\text { subsets of } \xi(\mathcal{F}) \text { with size } 2\}
$$

$$
\Rightarrow|\widehat{\alpha}(\mathcal{F})|=\binom{|\xi(\mathcal{F})|}{2}=\binom{2|\mathcal{F}|}{2}=\frac{2|\mathcal{F}|(2|\mathcal{F}|-1)}{2}=O\left(|\mathcal{F}|^{2}\right)
$$

Note: $\widehat{\alpha}(\mathcal{F})$ has many pairs of conflicting adjacencies $x y, x z$ with $y \neq z$
genome assigned
to vertex $u$$\left\{\begin{array}{l}\text { represented by a sequence } s_{u} \text { of length } \ell=|\widehat{\alpha}(\mathcal{F})| \text { over the binary alphabet }\{0,1\} \\ \text { cannot contain conflicting adjacencies: } \\ \quad \text { for each pair of conflicting adj. in } \widehat{\alpha}(\mathcal{F}) \text {, at most one of the two can be set to } 1 \text { in } s_{u}\end{array}\right.$

$$
\begin{aligned}
& f=\{1,2\} \\
& \widehat{\alpha}(\xi)=3 n^{n}, 2^{k} 2^{h}, 2^{h} 2^{k},
\end{aligned}
$$

Small parsimony under SCJ with Fitch's algorithm

$x y$ at position $p_{1} \quad x z$ at position p_{2}

Possible bottom-up
scenarios involving
two conflicting adjacencies
(a)

(b)

Conflicts can be avoided by assigning the value 0 to each ambiguous position of the root genome:
r is the root of T : for each position p of $s_{\mathrm{r}} \begin{cases}s_{\mathrm{r}}[p]=1 & \text { if } B(\mathrm{r}, p)=\{1\} \\ s_{\mathrm{r}}[p]=0 & \text { otherwise }\end{cases}$
It is easy to verify that: $d_{\text {SCJ }}(u, v)=h d\left(s_{u}, s_{v}\right)$

Close-related problems are NP-hard...

Small parsimony under breakpoint distance

Big parsimony under SCJ

References

Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology
(Walter M. Fitch)
Systematic Zoology, vol. 20, pp. 406-416 (1971)

SCJ: A Breakpoint-Like Distance that Simplifies Several Rearrangement Problems
(Pedro Feijão and João Meidanis)
TCBB volume 8 Number: 5 (2011)

Quiz - Review

Inversion model 1

1 In the DCJ model any operation reconstructing a target adjacency is optimal, but the same is not true for the inversion model because...

A a target adjacency can be bad

B a target adjacency can be already present in the genome
C reconstructing a target adjacency can be unsafe

2 A cycle is bad when...
A it cannot be sorted by inversions
B it interleaves another bad cycle
C it contains only bad target adjacencies

3 Which data structure helps finding safe inversions?
A relational diagram
overlap graph
C component tree

4 A bad component can be fixed...
(A) with a neutral inversion
B with a split inversion
C with a safe inversion

Inversion model 2

1 Each leaf of the component tree represents...
A a bad component
Ba hurdle
C a fortress

4 Merging two good (or trivial) components..
A can merge bad components into a good one
B creates a new bad component
C is never recommended

2 The cost of covering a component tree can be expressed in terms of...
A the number of bad nodes
B the length of the longest traversal of the tree C the number of leaves

$\cos f: L$
$\cos t=L+1$
3 Fixing a super hurdle with a neutral inversion
A is a good strategy
(B) creates a new hurdle

C destroys a good component

DCJ-indel model 1

1 The indel-potential is defined as...
A the number of runs in a component
(B) the smallest number of runs that can be obtained after sorting with internal gaining DCJs
C the number of indel-edges in a component

2 The indel-potential of a component depends on..
A its number of runs
B its number of indel-edges
C its length

3 The number of runs in a cycle can be...
(A) $0,1,2,4,6,8, \ldots$
B any non-negative integer
C any positive integer

4 The number of runs in a path can be...
A $0,1,2,4,6,8, \ldots$
B any non-negative integer $0,1,2,3,4,5 \ldots$
C any positive integer $1,2,3,4,5 \ldots$

DCJ-indel model 2
1 A recombination can reduce the overall number of runs by at most...
A 1
B 2
C 3

2 A recombination can reduce the overall overall indel-potential by at most...
A 1
B 2
C 3

3 A recombination involving a cycle is...
A gaining
B neutral
ס
$\varnothing \Rightarrow$
0

1	λ
0	0
1	1
2	2
3	2
4	3
5	3

(C)losing

4 A recombination involving a cycle can be...
A deducting
(B) part of an optimal sorting sequence if $\Delta_{\lambda}=-2$
C none of those

DCJ-indel model - Path recombinations

With respect to the endpoints:

$$
\begin{aligned}
& \mathbb{A} f \mathbb{A}+\mathbb{B} \uparrow \mathbb{B} \begin{cases}\mathbb{A}-\mathbb{B}+\mathbb{A}-\mathbb{B} & \text { (gaining) } \\
\mathbb{A}-\mathbb{B}+\mathbb{A}-\mathbb{B} & \text { (gaining) }\end{cases} \\
& \mathbb{A} f \mathbb{B}+\mathbb{A} \uparrow \mathbb{B} \begin{cases}\mathbb{A} & \mathbb{B}-\mathbb{B} \\
\mathbb{A}-\mathbb{B}+\mathbb{A}-\mathbb{B} & \text { (neutral) }\end{cases} \\
& \mathbb{A} \nmid \mathbb{A}+\mathbb{A} \notin \mathbb{A} \begin{cases}\mathbb{A}-\mathbb{A}+\mathbb{A}-\mathbb{A} & \text { (neutral) } \\
\mathbb{A}-\mathbb{A}+\mathbb{A}-\mathbb{A} & \text { (neutral) }\end{cases}
\end{aligned}
$$

With respect to the runs:

$$
\begin{aligned}
& \mathcal{A B}+\mathcal{A B} \begin{cases}\boldsymbol{B A B B}+\mathcal{E} & \left(\Delta_{\lambda}=-2\right) \\
\mathcal{A A}+\mathcal{B B} & \left(\Delta_{\lambda}=-2\right) \\
\mathcal{A B B A}+\varepsilon & \left(\Delta_{\lambda}=-2\right)\end{cases} \\
& \mathcal{A}(\mathcal{B})+\mathcal{A} \begin{cases}\mathcal{A} \mathcal{A}+(\mathcal{B}) & \left(\Delta_{\lambda}=-1\right) \\
\mathcal{A A}(\mathcal{B})+\varepsilon & \left(\Delta_{\lambda}=-1\right)\end{cases} \\
& (\mathcal{A}) \mathcal{B}+\mathcal{B} \begin{cases}(\mathcal{A})+\mathcal{B B} & \left(\Delta_{\lambda}=-1\right) \\
(\mathcal{A}) \mathcal{B B}+\varepsilon & \left(\Delta_{\lambda}=-1\right)\end{cases}
\end{aligned}
$$

Deducting path recombinations: $\left\{\begin{array}{l}\text { gaining with } \Delta_{\lambda}=-2 \\ \text { gaining with } \Delta_{\lambda}=-1 \\ \text { neutral with } \Delta_{\lambda}=-2\end{array}\right.$

DCJ-indel model - Path recombinations

Putting together (examples):

$$
\begin{array}{ccc}
\mathbb{A B}_{\mathcal{A B}} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B} \\
\mathbb{A B}_{\mathcal{A B}} & \mathbb{A B}_{\mathcal{A B}} & \begin{array}{c}
\mathbb{A} \mathbb{B}_{\varepsilon} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B}
\end{array}=\begin{array}{c}
\mathbb{A}-\mathcal{A} \mathcal{A B}-\mathbb{B}
\end{array}+\begin{array}{l}
\mathbb{A}-\mathbb{B}
\end{array} \quad \text { (neutral, with } \Delta_{\lambda}=-1 \text {) }
\end{array}
$$

$$
\begin{array}{ccc}
\mathbb{A B}_{\mathcal{A B}} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B}
\end{array}+\begin{gathered}
\mathbb{A}_{\mathcal{A B}} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B}
\end{gathered}=\begin{array}{|c}
\mathbb{B}_{\mathcal{B}} \\
\mathbb{A} \mathcal{A B} \mathcal{A B}-\mathbb{B}
\end{array}+\begin{gathered}
\mathbb{A B}_{\varepsilon} \\
\mathbb{A}-\mathbb{B}
\end{gathered} \quad \begin{aligned}
& \text { (neutral, with } \Delta_{\lambda}=-1 \text {) }
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{A B}_{\mathcal{A B}} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B} \\
\mathbb{A B}_{\mathcal{B A}} \\
\mathbb{A}-\mathcal{B} \mathcal{A}-\mathbb{B}
\end{gathered}=\stackrel{\mathbb{B}_{\boldsymbol{B}}}{\mathbb{A}-\mathcal{A B} \mathcal{B} \mathcal{A}-\mathbb{B}}+\begin{gathered}
\mathbb{A B}_{\mathcal{C}} \\
\mathbb{A}-\mathbb{B}
\end{gathered} \quad \text { (neutral, with } \Delta_{\lambda}=-2 \text {) }
$$

$$
\begin{gathered}
\mathbb{A B}_{\mathcal{A B}} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B} \\
\mathbb{A B}_{\mathcal{B A}} \\
\mathbb{A}-\mathcal{B} \mathcal{A}-\mathbb{B}
\end{gathered}=\begin{gathered}
\mathbb{A B}_{\boldsymbol{b}} \\
\mathbb{A}-\mathcal{A} \mathcal{A}-\mathbb{B}
\end{gathered}+\begin{gathered}
\mathbb{A} \mathbb{B}_{\mathfrak{B}} \\
\mathbb{A}-\mathcal{B} \mathcal{B}-\mathbb{B}
\end{gathered} \quad \text { (neutral, with } \Delta_{\lambda}=-2 \text {) }
$$

$$
\begin{array}{ccc}
\mathbb{A B}_{\mathcal{A B}} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B} \\
\mathbb{B}_{\mathcal{R A}} & \mathbb{A B}_{\mathcal{C}} \\
\mathbb{A}-\mathcal{B} \mathcal{A}-\mathbb{B}
\end{array}=\mathbb{A}-\mathcal{B} \mathcal{A} \mathcal{A B}-\mathbb{B} \quad+\quad \begin{gathered}
\mathbb{A} \mathbb{B}_{\boldsymbol{C}} \\
\mathbb{A}-\mathbb{B}
\end{gathered} \quad \begin{aligned}
& \text { (neutral, with } \Delta_{\lambda}=-2 \text {) }
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathbb{A B}_{\mathcal{A B}} \\
\mathbb{A}-\mathcal{A B}-\mathbb{B} \\
\mathbb{B}_{\mathcal{R A}} & \\
\mathbb{A}-\mathcal{B} \mathcal{A}-\mathbb{B}
\end{array}=\begin{gathered}
\mathbb{A} \mathbb{B}_{\mathcal{B}} \\
\mathbb{A}-\mathcal{B} \mathcal{B}-\mathbb{B}
\end{gathered}+\begin{gathered}
\mathbb{A}-\mathcal{A} \mathcal{A}-\mathbb{B}
\end{gathered} \quad \text { (neutral, with } \Delta_{\lambda}=-2 \text {) }
$$

DCJ-indel model - Path recombination
Putting together (examples):

$$
\left.\begin{array}{ccccc}
\mathbb{A B B}_{\mathcal{A B}} & \mathbb{A B}_{\mathcal{R A}} & \mathbb{A B}_{\mathcal{A}} & \mathbb{A B}_{\varepsilon} \\
\mathbb{A}-\mathcal{A B A B}-\mathbb{B} & + & \mathbb{A}-\mathcal{B} \mathcal{A} \mathcal{B}-\mathbb{B} & = & \mathbb{A}-\mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B} \mathcal{A} \mathcal{A}-\mathbb{B} \\
4 & 4 & +6) & 7 & \mathbb{A}-\mathbb{B}
\end{array} \text { (neutral, with } \Delta_{\lambda}=-2\right)
$$

DCJ and DCJ-indel models - Capping

Add caps to close all paths of the graph into cycles, preserving the distance

Canonical capping (no indel edges): maximizes the number of cycles

paths	linking cycle	$\boldsymbol{\Delta n}$	$\boldsymbol{\Delta c}$	$\boldsymbol{\Delta}(2 \mathbb{A} \mathbb{B})$	$\boldsymbol{\Delta}_{\text {DCJ }}$
$\mathbb{A} \mathbb{B}$	$(\mathbb{A} \mathbb{B})$	+0.5	+1	-0.5	0
$\mathbb{A} \mathbb{A}+\mathbb{B} \mathbb{B}$	$(\mathbb{A}, \mathbb{B} \mathbb{B})$	+1	+1	0	0
$\mathbb{A} \mathbb{A}$	$\left(\mathbb{A}, \Gamma_{\mathbb{B}}\right)$	+1	+1	0	0
$\mathbb{B} \mathbb{B}$	$\left(\mathbb{B} \mathbb{B}, \Gamma_{\mathbb{A}}\right)$	+1	+1	0	0

Singular capping (with indel edges): optimizes the number of cycles and of runs at the same time

