Algorithms in Comparative Genomics

Universität Bielefeld, WS 2020/2021 Dr. Marília D. V. Braga · Leonard Bohnenkämper https://gi.cebitec.uni-bielefeld.de/teaching/2020winter/cg

Exercise sheet 4, 19.11.2020

Exercise 1 (Circular breakpoint median)

1. Let \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 be canonical circular genomes. For another canonical circular genome \mathbb{M} , let:

$$s_{BP}(\mathbb{M}) = d_{BP}(\mathbb{M}, \mathbb{C}_1) + d_{BP}(\mathbb{M}, \mathbb{C}_2) + d_{BP}(\mathbb{M}, \mathbb{C}_3).$$

Show that

 $s_{BP}(\mathbb{M}) \geq 2n - 2a_3 - a_2$,

where $n = |\mathcal{G}_{\star}|$ and $a_i = |\{xy : \phi(xy, \mathbb{C}_{1..3}) = i\}|$, i. e., a_3 is the number of adjacencies common to \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 and a_2 is the number of adjacencies that occur in exactly two genomes among \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 .

- 2. Let \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 be canonical circular **unichromosomal** genomes. Show how the problem of computing a circular unichromosomal breakpoint median of \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 can be reduced to the Travelling Salesman Problem (TSP).
- 3. (3* extra pts) Explain how to extend the NP-hardness proof of breakpoint median of unichromosomal circular genomes to the breakpoint median of unichromosomal linear genomes.

Exercise 2 (DCJ halving)

For each of the following duplicated genomes, compute the DCJ halving distance $h_i = h_{DCJ}(\mathbb{D}_i)$ and find a perfectly duplicated genome $2 \cdot \mathbb{H}_i$ with a matching between the genes of $2 \cdot \mathbb{H}_i$ and \mathbb{D}_i , giving a halving scenario with h_i optimal DCJ operations that transform \mathbb{D}_i into $2 \cdot \mathbb{H}_i$.

1.
$$\mathbb{D}_1 = [35425] [21] [341]$$

2. $\mathbb{D}_2 = (35\overline{4}2\overline{5}) (21\overline{1}34)$

Exercise 3 (DCJ halving)

Denote by $\rho \mathbb{G}$ the genome obtained after applying a DCJ operation ρ to a genome \mathbb{G} .

Now consider the duplicated genome:

$$\mathbb{D} = [\bar{4} \ 1 \ \bar{4} \ \bar{3} \ 2] \ [\bar{2} \ 3 \ 1] \ [5 \ \bar{5}].$$

List all possible optimal (1st step) DCJ halving operations that could be applied to \mathbb{D} , that is, the set of DCJ operations $R = \{\rho : h_{\text{DCJ}}(\mathbb{D}) = h_{\text{DCJ}}(\rho \mathbb{D}) + 1\}$.

(6 pts)

(4 pts)

 $(6 + 3^* \text{ pts})$