Algorithms in Comparative Genomics

Universität Bielefeld, WS 2020/2021 Dr. Marília D. V. Braga · Leonard Bohnenkämper https://gi.cebitec.uni-bielefeld.de/teaching/2020winter/cg

Exercise sheet 6, 03.12.2020

Exercise 1 (Canonical inversion model)

Given the canonical circular chromosomes

 $\mathbb{A} = (1 \ 10 \ \overline{12} \ 11 \ 13 \ 15 \ 14 \ 16 \ 2 \ 4 \ 3 \ 5 \ 8 \ 7 \ 6 \ 9 \ 17)$ and

 $\mathbb{B}=$ (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17).

- 1. Draw the relational diagram $RD(\mathbb{A}, \mathbb{B})$ or the breakpoint diagram $BD(\mathbb{A}, \mathbb{B})$.
- 2. Identify all cycles on the diagram, giving their lengths and their types (good / bad).
- 3. Identify all interleaving components on the diagram, giving their numbers of cycles and their types (good / bad / hurdle / super hurdle).
- 4. Is the diagram of \mathbb{A} and \mathbb{B} a fortress?
- 5. What is the inversion distance $d_{INV}(\mathbb{A}, \mathbb{B})$?
- 6. Give an optimal sequence of inversions that sort \mathbb{A} into \mathbb{B} .

Exercise 2 (Swaping elements)

let $\iota(n) = \langle 1, 2, 3 \dots n - 1, n \rangle$ be the *identity* permutation of *n* elements.

1. Let $\pi(n)$ be any permutation of *n* elements - for instance, we could have $\pi(5) = \langle 2, 5, 1, 3, 4 \rangle$.

The swap operation simply swaps two consecutive elements of a permutation.

Give an algorithm that finds the minimum number of swap operations that sort a permutation $\pi(n)$ into the identity $\iota(n)$.

2. Not let $\sigma(n)$ be a signed permutation of *n* elements - for instance, we could have $\sigma(5) = \langle 2, -5, -1, 3, 4 \rangle$.

The *signed swap* operation swaps two consecutive elements of a signed permutation and inverts their signs.

Give an algorithm that finds the minimum number of signed swap operations that sort a signed permutation $\sigma(n)$ into the identity $\iota(n)$.

(10 pts)

(6 pts)