
Algorithms in Comparative Genomics

Universität Bielefeld, WS 2020/2021
Dr. Maŕılia D. V. Braga · Leonard Bohnenkämper

https://gi.cebitec.uni-bielefeld.de/teaching/2020winter/cg

Exercise sheet for the holidays, 17.12.2020

Exercise 1 (Christmas Tree Median) (10* pts)

Mct(G1, ...,G2k+3)

Md(...)G2k+3-1 G2k+3

G2k+3-3 G2k+3-2

· · ·

Md(...)

G1 G3

G2

Given 2k+3 canonical genomes G1,G2,G3, ...G2k+3 and an algorithm to compute the median Md(A,B,C)
of three genomes (A,B,C) under a distance model d . The Christmas Tree Median1 is defined as

Mct(G1,G2,G3, ...G2k+3-2,G2k+3-1,G2k+3) = Md(G2k+3-1,Mct(G1,G2,G3, ...G2k+3-2),G2k+3) (1)

with recursion base

Mct(G1,G2,G3) = Md(G1,G2,G3) (2)

1. Compute the Christmas Tree Median of the following genomes under the breakpoint distance (d =
dBP): G1 = (1 2 3 4), G2 = (2̄ 1̄ 4̄ 3̄), G3 = (2 3 4 1), G4 = [1 3̄ 2̄ 4], G5 = [2̄ 1̄ 4̄ 3̄]

2. Disprove (e.g. via counter example): The Christmas Tree Median under the breakpoint distance is
always a breakpoint median.

3. Given the order of the genomes may not be permuted, is the Christmas Tree Median under the SCJ
distance (d = dSCJ) unique? Argue why/why not (Spoiler).

4. Prove or disprove: No metric d on a set with two or more distinct elements exists, under which the
Christmas Tree Median is always a true Median2 (Spoiler 1, 2, 3, 4, 5).

Exercise 2 (Double Distances) (8* pts)
Regard the genomes S = (1 2 3 4 5) and D = (1̄ 5 5̄ 1 2 4̄ 3̄ 2 3 4).

1. Calculate the breakpoint double distance d2
BP(S,D) = dBP(S ⊕ S,D) and give an optimal matching

Mopt on S ⊕ S and D.

2. Calculate the SCJ double distance d2
SCJ(S,D) between S and D.

3. Is the optimal matching for the breakpoint double distance Mopt also optimal under the SCJ di-
stance? Can you generalize your observation?

1which I made up; don’t look for this in the literature ;)
2The true median of a set K ⊆ S under metric d on space S being the element Md ∈ S that minimizes

∑
k∈K d(Md , k).

https://gi.cebitec.uni-bielefeld.de/teaching/2020winter/cg
https://uni-bielefeld.sciebo.de/s/QnPqwFZ4YAmJYV7
https://uni-bielefeld.sciebo.de/s/t12CF5SLvTljjf1
https://uni-bielefeld.sciebo.de/s/f34c0zc9zrFvsSc
https://uni-bielefeld.sciebo.de/s/VqJtn6tIidQqP9I
https://uni-bielefeld.sciebo.de/s/Ce5UpypnL9j6vXk
https://uni-bielefeld.sciebo.de/s/YmTR5bSxhTCY7Jz

4. Computing the DCJ double distance is NP-hard. Using the matching from subtask 1 what is the
DCJ distance dDCJ(Mopt,D) between Mopt and D?

5. Find another matching M̃opt on S ⊕ S, which minimizes dSCJ(M̃opt,G), but produces a different

DCJ distance from the one computed in subtask 4, i.e. dDCJ(M̃opt,G) 6= dDCJ(Mopt,G).

Exercise 3 (Fun with Programming) (6*pts)
Let’s do something a bit different! Implement the following tasks in a language of your choice. Maybe use
a language you don’t see every day - the more obscure, the better (though please dont hand in brainfuck

code :)

1. Read two unichromosomal linear genomes as lists of signed integers from the command line (either as
a parameter or during runtime) and output the type of genome pair (canonical, singular, balanced,
natural). For example:

>./myprogram -g1 1 -3 -2 4 5 -g2 1 2 3 4 5

>This is a canonical genome pair (i.e. natural, singular and balanced).

2. If the genomes are canonical, calculate their SCJ-distance and display it via the command line.

3. Calculate an optimal SCJ-sorting scenario sorting the first genome into the second and display it
by writing out the current chromosomes and where the next cut/join is applied in each step; i.e.

[1 | -3 -2 4 5]

[1] [-3 -2 | 4 5]

[1 *] [-3 -2 *] [4 5]

[1 2 3 *] [* 4 5]

[1 2 3 4 5]

Exercise 4 (Extending DCJ) (3* pts)
Let dDCJ/Inv/SCJ(G1,G2) be the minimum operations to transform canonical genomes G1, G2 into each
other, where each operation may be an SCJ- or DCJ-operation or an inversion.

1. Show that
dDCJ/Inv/SCJ(G1,G2) = dDCJ(G1,G2) (3)

(Spoiler)

2. What might be disadvantages of having such a general model as DCJ?

Exercise 5 (Santa’s Unsigned Inversion Distance) (8* pts)
A snowstorm has caused chaos in Santa’s workshop! The n presents which are usually nicely ordered
from 1, ..., n are now in a random permutation r1, .., rn. Fortunately the elves can use magic to invert any
segment ri , ri+1, ...ri+k−1, ri+k to ri+k , ri+k−1, ..., ri+1, ri in constant time.

1. Sort the following pile of presents twice using

(a) signed inversions (as discussed in the lecture)

(b) unsigned inversions (as the elves use)

1 4 2 3 5.

2. Give a short description of how and why a signed inversion sorting scenario can be mapped to an
unsigned one and why it is therefore possible to sort the presents in O(n) time.

3. After a while you notice that the elves seem to be doing a lot of unnecessary inversions. You start
to suspect that sorting unsigned permutations that are not already sorted with unsigned inversions
can always be done in fewer steps than with signed inversions. Why might that be?

4. The algorithm you described in subtask 2 sorts a list of length n in O(n) time. Why doesn’t this
conflict with the the theoretical bound of Ω(nlog(n)) you are familiar with for sorting? (Spoiler)

Have fun, stay safe and enjoy your holidays!

https://uni-bielefeld.sciebo.de/s/jiYI0hDiQFBcVol
https://uni-bielefeld.sciebo.de/s/li0XTlPEsPQsW55

