Algorithms in Comparative Genomics

Universität Bielefeld, WS 2020/2021 Dr. Marília D. V. Braga · Leonard Bohnenkämper https://gi.cebitec.uni-bielefeld.de/teaching/2020winter/cg

Exercise sheet 13, 4.2.2021

Exercise 1 (Bounds for SCJ distance)

Theoretical bounds for the SCJ distance with respect to the DCJ distance are

 $\mathrm{d}_{\mathrm{DCJ}}(\mathbb{G}_1,\mathbb{G}_2) \leq \mathrm{d}_{\mathrm{SCJ}}(\mathbb{G}_1,\mathbb{G}_2) \leq 4\mathrm{d}_{\mathrm{DCJ}}(\mathbb{G}_1,\mathbb{G}_2)$

Give examples of pairs of mutually distinct genomes showing that these bounds are tight.

Exercise 2 (SCJ/breakpoint median)

Given three canonical genomes $\mathbb{C}_1 = [12345]$, $\mathbb{C}_2 = [12\overline{3}\overline{5}4]$ and $\mathbb{C}_3 = [2\overline{3}\overline{4}51]$:

- 1. Compute a general SCJ median \mathbb{M}_{SCJ} of \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 .
- 2. Is there another SCJ median of \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 that is distinct from \mathbb{M}_{SCJ} ? (Justify your answer by giving a distinct median or explaining why it does not exist.)
- 3. Is \mathbb{M}_{SCJ} also a breakpoint median of \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 ?

If no: Compute a breakpoint median of \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 .

If *yes*: Is there another breakpoint median of \mathbb{C}_1 , \mathbb{C}_2 and \mathbb{C}_3 that is distinct from \mathbb{M}_{SCJ} ? (Justify your answer by giving a distinct median or explaining why it does not exist.)

Exercise 3 (DCJ halving)

For duplicated genome $\mathbb{D} = (35\overline{4}2\overline{5})(24)(1\overline{1}\overline{3}):$

- 1. Draw the natural graph $NG(\mathbb{D})$.
- 2. Compute the DCJ halving distance $h = h_{DCJ}(\mathbb{D})$.
- 3. Give a halving scenario with h optimal DCJ operations that transform \mathbb{D} into a perfectly duplicated genome $2 \cdot \mathbb{H}$.

Exercise 4 (Inversion distance with component tree)

Given canonical circular chromosomes

 $A = (0 \ \overline{3} \ 1 \ 2 \ 4 \ 6 \ 5 \ 7 \ \overline{15} \ \overline{13} \ \overline{14} \ \overline{12} \ \overline{10} \ \overline{11} \ \overline{9} \ 8)$ $B = (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15)$

1. Draw the relational (or the breakpoint) diagram of \mathbb{A} and \mathbb{B} .

(You can use the Java program InversionVisualization provided on the course website: enter the values for chromosome \mathbb{A} , without the first value (0) and assume that the first vertex of the outputted diagram is 0^{h} and the last vertex is 0^{t} .)

- 2. Based on the diagram, construct both the chained component tree $\Upsilon_{\bullet}(\mathbb{A}, \mathbb{B})$ and the component tree $\Upsilon_{\circ}(\mathbb{A}, \mathbb{B})$.
- 3. Find an optimal cover (i.e. a cover with minimum cost) for $\Upsilon_{\circ}(\mathbb{A}, \mathbb{B})$.
- 4. Compute the inversion distance $d_{INV}(\mathbb{A}, \mathbb{B})$.

(4 pts)

(6 pts)

(4 pts)

(6 pts)