Chapter 3

Sorting by reversals

Summary
3.1 Permutations, intervals and reversals 16
3.2 The breakpoint graph and the reversal distance 18
3.3 Safe and unsafereversals0 00l i e, 25
3.4 Sorting a signed permutation 00000000, 26
3.5 The symmetry of sorting by reversals 27
3.6 Component-specificreversals00, 27

The classical algorithmic problems in pairwise comparative genomics are to compute the
rearrangement distance between two genomes [33], that correspond to the minimum number of
rearrangement events that are required to transform one genome into the other, and to determine
an optimal sequence of events to transform one genome into the other. These problems have
several variations, according to the events that may be considered [63].

Our research is mostly focused on rearrangement problems restricted to reversal events and,
in this chapter, we talk about sorting one unichromosomal genome into another by reversals
when gene duplications and insertions are not allowed. Observe that we also assume that the
order of the genes is known in both genomes, which often is not true in practice [66]. One of the
first studies that proposed algorithms to compute the reversal distance between two genomes was
developed by Kececioglu and Sankoff [38], with an approach that does not take into account the
orientation of the genes. Later this approach, called unsigned sorting by reversals, was proven

to lead to an NP-hard problem [22]. We worked on a different approach, called signed sorting

13

Chapter 3. Sorting by reversals

by reversals, or simply sorting by reversals, in which the orientation of the genes is taken into
account. Kececioglu and Sankoff [38] had already observed that some aspects of signed sorting by
reversals were easier to analyze, and, indeed, this approach can be solved in polynomial time [32,
33|, as we will describe in this chapter.

Despite the simplifications (not considering duplications or insertions and assuming that the
order of the genes is known in both genomes) mentioned above, the sorting by reversals problem
is very interesting. From the biological point of view, as we said before, reversals are frequently
observed, specially in prokaryotes. And reversals are also interesting from the algorithmic point
of view. First we note that it is always possible to sort a genome into another by reversals. In
the worst case, we need two reversals to put each marker of the first genome in the position
that it occupies in the second genome (one reversal to put the marker in the proper position
and eventually a second reversal to inverse its orientation). Thus, if the two considered genomes
has n homologous markers, in the worst case we need 2n reversals to sort one genome into the
other. We will see later in this chapter that in general at most n reversals are sufficient to sort

a genome into another and a fictitious example is given in Figure 6.

3 4
i 1

A ii'.:; — e — T DEP@E -3 2 1-2 A
—— —
3 1 2
 E— T GO DEeE -3 4 -1 -2
4
>< —
s e e
) 1 15
5'|:|:—1 = |I 57 mhda s odaE 1 -4 3 -2
N
3
3 11 I T 1 154
5:_1:;? ! ! ,I 13 IRy s B 1 2 -3 4
I — —
3 ,
B 5'::T:T — |E = :i [0 4 P IR 4 1 2 3 4 B

Figure 6: Sorting genome A into genome B by reversals only. Homologous markers (usually genes) are
identified by the same numbers and colours. Signs indicate the DNA strand the markers lie on.

Computing the reversal distance, that is, the minimum number of reversals that are required
to transform one genome into the other, and finding an optimal sorting sequence can be solved in

polynomial time [32, 33]. These two problems have been the topic of several works. The fastest

14

algorithm to compute the distance takes O(n) time [4] and the fastest way to find an optimal
sorting sequence is subquadratic [11, 31, 63]. It is possible that this mathematical notion of
reversal distance and the method of searching optimal sequences can underestimate the actual
number of steps that occurred biologically. However, the solutions of these two problems are still
valuable tools that help to analyze and to understand evolutionary scenarios. Currently, there
are at least two available softwares to solve these problems. One is the package GRAPPA3, that is
discussed in more detail in [45] and contains the fastest algorithm to compute the reversal distance
(mentioned above). The other is the software GRIMM*, that is described in [64] and contains one
of the most used programs to sort a genome into another by reversals. These programs were
used in particular by Ross et al. [55] in the analysis of the human sexual chromosomes X and Y

and by Blanc et al. [13] in the analysis of the Rickettsia bacteria.

Observe that with reversals we can simulate a transposition, that is another possible re-
arrangement event in unichromosomal genomes. A transposition is said to happen when two
consecutive markers of a genome exchange their positions. It is always possible to produce the
same result as a transposition with a sequence of three reversals (see Figure 7). Thus a sequence
of m transpositions can always be transformed in a sequence of 3m reversals. However, this
does not mean that there is a clear relation between the reversal distance and the transposition
distance. Eventually a sequence of m transpositions can be replaced by a sequence with less than
3m reversals. Moreover, although the reversal distance can be obtained in polynomial time, the
complexity of computing the transposition distance is still an open problem in the algorithmics

of genome rearrangements [5].

In the rest of this chapter we will introduce our notation and explain the classical approach

of Hannenhali and Pevzner [32, 33, 53] for the sorting by reversals problem.

3The package GRAPPA (Genome Rearrangements Analysis under Parsimony and other Phylogenetic Algorithms)
contains several programs to deal with genome rearrangements and can be downloaded at http://www.cs.unm.
edu/~moret/GRAPPA/.

4The software GRIMM contains also algorithms for multichromosomal genome rearrangements and is available
online at http://grimm.ucsd.edu/GRIMM/.

15

Chapter 3. Sorting by reversals

one transposition OR three reversals
A

[OEPED OEBED OB [OEED
aoas Dadas [OBare
ohas D@D [oaEa@rs

OO ER D DB DD [OEED

Figure 7: A transposition or a sequence of three reversals may produce the same rearrangement in a
genome. Observe that the three reversals can be applied in different orders.

3.1 PERMUTATIONS, INTERVALS AND REVERSALS

We represent the studied genomes by the list of homologous markers (usually genes or blocks
of contiguous genes) between them. These homologous genomic markers are represented by the
integers 1,2,...,n, with a plus or minus sign to indicate the strand they lie on. The order and
orientation of the markers of one genome in relation to the other is represented by a signed
permutation ™ = (w1, T2, ..., Th-1,Ts) Of size n over {—n,...,—1,1,...,n}, such that, for each
value ¢ from 1 to n, either i or —i is mandatorily represented, but not both. The identity
permutation (1,2,3,...,n) is denoted by Z,,.

A subset of numbers p C {1,2,...,n — 1,n} is said to be an interval of a permutation if
there exist 4,5 € {1,...,n}, 1 <i < j <n,such that p = {|m|,|m41],...,|mj—1],|7;|}. Given a
permutation 7 and an interval p of w, we can apply a reversal on the interval p of 7, that is, the
operation which reverses the order and flips the signs of the elements of p, denoted by mop. If 7 =

(1,02, oy T 1y iy Wi s« e oy Tjm 1, Ty Tjt s+ -+ Tn—1,) @A p = {[m|, [migal, - oo i1l 5],

TOp=(T1, M2 een s M1y =Ty =Tj1yens —Titly —Tis Tjhly s Tn1,Tn)-

For example, with the permutation 7 = (—3,2,1, —4) and the interval p = {1,2,4} we have
mop=(—3,4,—1,—2). Due to this, an interval p can also be used to denote a reversal.

We say that a permutation is linear when it represents a linear chromosome, or circular when
it represents a circular chromosome. When a permutation 7 = (my, 7o, ..., 7,1, m,) is circular,
the circular permutation 7@ = (—7,, —Tp—1, ..., —72, —71) (generated by a reversal over all values

of 7) and all circular permutations obtained by a shift in 7 or T are equivalent to w. A shift of 4

16

3.1. Permutations, intervals and reversals

elements in a circular permutation © = (w1, 72, ..., Tn—i, Tn—i+1, Tn—i+2; - - - y Tn—1,) transfers
the last i elements of 7 to the beginning of w. This operation generates the circular permutation
(it 1y Tn—it2y « -« s Tn—1, Ty T1, T2, - - ., Tn—i)- Observe, for example, that the circular permu-
tations m = (—3,2,1,—4) and 7’ = (—1,—2,3,4) are equivalent (we can obtain 7’ by applying a
shift of 3 on 7).

For a given permutation 7 = (my, 7, ..., Th—1, T,), We say that there is a point between each
pair of consecutive values m; and m;+1 in 7. In addition, if 7 is circular, there is one additional
point between 7, and 7;. If 7 is linear, there are two additional points, one before m; and the
other after m,. We denote by pts(w) the number of points in a permutation w. Thus, if 7 is
circular, then pts(m) = n. Otherwise 7 is linear and pts(m) =n + 1.

When we analyze a permutation © = (71,72, ..., Th—1,T,) With respect to another permuta-
tion 7, each point in 7 can be an adjacency or a breakpoint. We say that a pair of consecutive
values (7;,m4+1) in 7 is an adjacency between m and mp when either the values in the pair
(7, mi41) or the values in the pair (—m;41, —7;) are consecutive in mp. Moreover, if the per-
mutations are circular, we assume that 7, is the last value of 7%, and the pair (7p, 1) is an
adjacency when m is the first value in 7. If the permutations are linear, we have an adjacency
before 7y if 71 is also the first value in 77 and an adjacency after m, if 7, is also the last value of
. All points that are not adjacencies between 7 and 7 are called breakpoints. We denote by
adj(m) the number of adjacencies and by brp(rw) the number of breakpoints in a permutation .
It is easy to see that brp(mw) = pts(n) —adj(w). Observe that, if 7 is sorted, that is, 7 = 7p, then
7 has only adjacencies and no breakpoints, and, if © # 7, then 7 has at least one breakpoint.

A sequence or i—sequence of reversals pips ... p; is valid for a permutation 7 if py is an interval
of 7, py is an interval of 7 o pi1, p3 is an interval of (7 o p1) o po, and so on. If pips...p; is a
valid i—sequence of reversals for a permutation 7, then 7 o p1pa...p; denotes the consecutive
application of the reversals pj, p2, ...p; in the order in which they appear. We say that an
i—sequence of reversals p; ... p; sorts a permutation 7 into a permutation 7w if mopy ... p; = mr.

The length of a shortest sequence of reversals sorting a permutation 7 into 7 is called

the reversal distance of m and mp, and is denoted by d(m, 7). Let s = p1p2...p; be a valid

SIf the permutations are circular, without loss of generality, we can assume that the last value in 7 and 77 are
the same; if it is not the case, we take as 7 an equivalent circular permutation with this characteristic.

17

Chapter 3. Sorting by reversals

i—sequence of reversals for a permutation 7. If d(m o s,mp) = d(m,7r) — 4, then s is said to
be an optimal i—sequence. Moreover, if s is an optimal i—sequence and i = d(m,), then s
is simply called an optimal sorting sequence for m and wp. We also define the k—prefix of an
optimal sorting sequence s as the sequence composed by the first k reversals of s. Observe that
if s is a k—prefix of an optimal sequence s sorting 7 into mr, then d(w o &', wp) = d(w, n7) — k,
that is, s’ is an optimal k—sequence for 7 and 7. For example, if we consider two linear permu-
tations m = (—3,2,1,—4) and 7p = Z4, we have d(m,7mr) = 4 and one optimal sorting sequence
is {1,2,4}{1,3,4}{2,3,4}{3}, whose 1—, 2— and 3—prefixes are {1,2,4}, {1,2,4}{1,3,4} and
{1,2,4}{1,3,4}{2,3,4}.

Henceforth we will generally use simply the term sequence or i—sequence to refer to an
optimal sequence or optimal i—sequence of reversals. Moreover, for the purposes of our work,
the initial and the target permutations 7 and 7 are either both linear, or both circular. Without
loss of generality, we often omit the target permutation 7. In this case, mp corresponds to the
identity permutation Z,, = (1,2,3,...,n), where n is the size of the initial permutation 7, and

the notation d() is equivalent to d(m,Z,,).

3.2 THE BREAKPOINT GRAPH AND THE REVERSAL DISTANCE

As mentioned, given a permutation m, calculating d(m) and finding one optimal sequence of
reversals sorting 7 can be computed in polynomial time. The classical approach for analyzing
these two problems was developed by Hannenhalli and Pevzner [8, 32, 33, 53| and is based on
a special structure called the breakpoint graph, whose edges can be black or gray.

For a given permutation m = (my,m2,...,T,_1, T,), we construct the breakpoint graph of 7
as follows. If 7 is linear, we may add the values 0 and n + 1, that represent the extremities of
the chromosome, obtaining the permutation 7' = (0,7, 7o, ..., m—1, T, n + 1). If 7 is circular
(without loss of generality we assume 7, = n), we may add only the value 0, obtaining the
permutation 7’ = (0,7, T2,...,Th—1,n). Then we may link each pair of consecutive values by
a horizontal black edge (each black edge represents a point in the permutation). Lastly, we may
link with gray edges the first extremity of the black edge that appears after zero or a positive

value i (analogously the last extremity of the black edge that appears before a negative value —)

18

3.2. The breakpoint graph and the reversal distance

with the last extremity of the black edge that appears before a positive value ¢ + 1 (analogously
the first extremity of the black edge that appears after a negative value —(i + 1)). Thus, each
gray edge links extremities of black edges. At the end, we have a graph with a collection of
cycles, and in each cycle black and gray edges alternate. When a cycle contains only one black
and one gray edge, it covers an adjacency and is called trivial cycle. The cycles that contain four
or more edges cover at least two breakpoints and are called long cycles. The construction of the

breakpoint graph of a linear permutation is illustrated in Figure 8 (A).

(A)

3 42 +1 -4 0 < 36740 %> 41— -4 — 45
0—-3—+42 —+1 — -4 — +5 omw
06 -3 — 42 = 41 — -4 — +5 o@w
0 -3 —42 = 41— -4 — 45 om&w

(B) (C)
0 £ o 43 4y 052 415 42 2 435 44 & 45

Figure 8: (A) The construction of the breakpoint graph for the linear permutation 7 = (—3,2,1, —4) is
done by the following steps: 1- add the values 0 and +5, that represent the extremities of the chromosome;
2- link each pair of consecutive values by a black edge. 3- link with gray edges the first extremity of the
black edge that appears after zero or a positive value i (analogously the last extremity of the black edge
that appears before a negative value —i) with the last extremity of the black edge that appears before a
positive value i + 1 (analogously the first extremity of the black edge that appears after a negative value
—(i+1)). The obtained breakpoint graph has one long cycle with five breakpoints and no adjacencies.
(B) The breakpoint graph for the circular permutation (—3,2,1, —4), which is equivalent to the circular
permutation (—1,—2,3,4). In this case, in the first step we may add only the value 0 in the beginning of
(—1,-2,3,4), henceforth the procedure is identical. This graph has two cycles: one trivial cycle (which
correspond to the adjacency between 3 and 4) and one long cycle with three breakpoints. (C) The breakpoint
graph for the linear permutation T, = (1,2,3,4). This graph has five trivial cycles (each trivial cycle is
an adjacency) and no breakpoints.

Observe that, for a given permutation 7, the breakpoint graph is different depending on
whether 7 is linear or circular, as we can see comparing the graph for the linear permutation
(—3,2,1,—4) and the circular permutation (—3,2,1,—4) (Figure 8 (A) and (B)). However, they

can be analyzed exactly in the same way, that is, the only difference between circular and linear

19

Chapter 3. Sorting by reversals

permutation analyses is the breakpoint graph construction. Thus, without loss of generality,
henceforth we will often talk about breakpoint graphs, without specifying whether the corre-
sponding permutations are linear or circular. To denote the breakpoint graph of a permutation
7, we will use the same symbol 7.

If a permutation 7 is sorted, it has only adjacencies, and the resulting breakpoint graph is
a collection of pts(m) trivial cycles (see Figure 8 (C)). A breakpoint graph that has only trivial
cycles is said to be sorted. Since a long cycle contains at least two breakpoints, if 7 is unsorted,
then 7 has at most pts(m) —1 cycles. This indicates that, in order to sort a permutation, we may
induce an increase of the number of cycles in its corresponding breakpoint graph. The number
of cycles in the breakpoint graph of a permutation 7 is denoted by cyec(r).

Hannenhalli and Pevzner [32, 33, 53| described the effects of a reversal p over a breakpoint
graph 7. The authors demonstrated that a reversal p is either a split reversal, that increases the
number of cycles by one, (in this case we have cyc(m o p) = cyc(m) + 1), or a joint reversal, that
decreases the number of cycles by one (in this case we have cyc(m o p) = cyc(n) — 1), or a neutral
reversal, that maintains the number of cycles unchanged (in this case we have cyc(mop) = cyc(n)).
In order to characterize these three types of reversals, we assign a direction to each black edge,
according to an arbitrary tour in each cycle of the graph. Then, if the extremities of the reversal
are in black edges in the same cycle and have opposite directions, we have a split reversal. If
the extremities of the reversal are in black edges in different cycles, we have a joint reversal
(independently of the directions of the black edges). Finally, if the extremities of the reversal
are in black edges in the same cycle and have the same direction, we have a neutral reversal
that does not change the number of cycles in the graph. To understand the reasons of these
effects, we should investigate how the reversals affect the topology of the graph. In fact, only
the two black edges that correspond to the extremities of the reversal are modified. Although
some vertices may also have their corresponding values inversed, all the other edges in paths that
alternate gray and black edges remain unchanged (consequently, their relative directions remain
also unchanged). Figure 9 illustrates the three types of reversals.

In order to sort a permutation, we must maximize the number of split reversals in the sorting
sequence. With this information, we can start to conceive the formula for the reversal distance.

If we can find a sequence s that has only split reversals for sorting a breakpoint graph m, the

20

3.2. The breakpoint graph and the reversal distance

(B1) split reversal

(A1) (A2)
two cycles one cycle 0 -3 +2 +1 -4 +5
Nt
[- 1
I -~y
AL cL—p ab—Bc-p m
— L 062308 44 671 2245
split join neutral (B2) joint reversal

0] -3 +4 > -1 -2 -@-+5

A :C-B D A -C -B D
one cycle one cycle 0 -3 +2 +1 -4 +5

(B3) neutral reversal

unchanged paths alternating
gray and black edges

A

r 3 A 0 -3 +2 +1 -4 +5
N /“};\(\ l
] ‘\A < 8 b/ AN
A Bl \ A BB C/iC D @
0 -3 +2 +4 -1 +5

Figure 9: The effects of a reversal over the breakpoint graph. We may assign a direction to each black edge,
by an arbitrary tour in each cycle of the graph. The images A1 and A2 illustrate how a reversal affects the
topology of the graph. The point A,B (respectively A,-C) appears before the point C,D (respectively -B,D)
in the considered permutations. Observe that, with respect to the topology, only the two black edges that
correspond to the extremities of the reversal are modified. All the other edges in paths that alternate gray
and black edges remain unchanged, although the vertices that are between B and C in the permutation
must have their corresponding values inversed. (A1) The two cycles on the top are joined by a reversal
whose extremities are in the represented black edges. Inversely, the unigque cycle on the botton is split by
a reversal whose extremities are in the represented black edges, that have opposite directions. (A2) The
number of cycles in the graph is not changed by a reversal whose extremities are in black edges in the same
cycle, with the same direction. The images B1, B2 and B3 show the effects over the breakpoint graphs
represented in the standard form. (B1) Split reversal: a reversal whose extremities are in black edges in
the same cycle and opposite directions may break the cycle in two. (B2) Joint reversal: A reversal whose
extremities are in black edges in different cycles may join the two cycles in one (independently of the
directions of the black edges). (B3) Neutral reversal: a reversal whose extremities are in black edges in
the same cycle and same directions does not change the number of cycles in the graph.

length of s is pts(m) — cyc(m). However, a split reversal does not always exist. For example, if all
black edges of all cycles in the graph have the same direction, we cannot perform a split reversal
(Figure 10 (A)). Thus, in some cases, we may need to add some joint and/or neutral reversals

in a sorting sequence, and the reversal distance is d(7) > pts(7) — cyc(r).

21

Chapter 3. Sorting by reversals

Fortunately, it is always possible to calculate the number of non-split reversals in a sorting
sequence. We can define an exact formula to the reversal distance, but first we need to define
other properties of the breakpoint graph. When a cycle in the graph has black edges with opposite
directions, it is called an oriented cycle. Otherwise all black edges in the cycle have the same
direction and we have an unoriented cycle. A component of the graph is a collection of cycles,
such that each cycle of the component has at least one gray edge that overlaps with a gray edge of
another cycle in the component. Adjacencies are trivial components, and a non-trivial component
contains at least two breakpoints. When a non-trivial component has at least one oriented cycle,
it is an oriented component. Otherwise it is an unoriented component. Figure 10 (B) shows a
breakpoint graph with an oriented and an unoriented component.

(A) (B)

Unoriented component Oriented component

4

0++34+2++13+4 O++34+2++13+4+-6—:~+5++7

Figure 10: (A) A breakpoint graph in which we cannot perform a split reversal. (B) A breakpoint graph
with an oriented and an unoriented component.

A reversal p is called cut reversal when its extremities are in the same cycle of an unoriented
component. A cut reversal is always neutral and transforms an unoriented component into an
oriented component (Figure 11 (A)), thus we say that a cut reversal eliminates an unoriented
component (observe that a cut reversal does not change the number of cycles in the breakpoint
graph). When the breakpoint graph has more than one unoriented component, it is not always
necessary to use one cut reversal for each unoriented component. An unoriented component Y
separates two other unoriented components X and Z when there is a black edge of Y between
any black edge of X and any black edge of Z. In this case, a reversal that has one extremity in
X and one extremity in Z will regroup the components X, Y and Z into one oriented component
(Figure 11 (B)); this kind of reversal is called merge reversal. A merge reversal is always a joint
reversal that regroups ¢ unoriented components into one oriented component, for ¢ > 2, thus we
say that a merge reversal eliminates ¢ > 2 unoriented components (observe that a merge reversal

decreases the number of cycles in the breakpoint graph by one).

22

3.2. The breakpoint graph and the reversal distance

(A) cut reversal (B) merge reversal

{Y)

ﬁ - N\
05 +3 5425 +15 +45 -6 5 +5<+7 0@+2++4m+7++3++8';'+1193+9
+
+

0++3g-1/-$+4+-6++5++7 4 2B 5 +7 - 4357 +8 5 15 +9

Figure 11: (A) A cut reversal transforms an unoriented into an oriented component and does not change
the number of cycles in the breakpoint graph (it is a neutral reversal). (B) The unoriented component Y
separates the unoriented components X and Z. A merge reversal regroups the unoriented components X,
Y and Z into one oriented component and decreases the number of cycles in the breakpoint graph of one
(it is a joint reversal).

An unoriented component that does not separate two other unoriented components is called
a hurdle. 'We represent by hrd(w) the number of hurdles in a breakpoint graph m. Since a
hurdle does not separate unoriented components, each hurdle X can be eliminated either by a
cut reversal whose extremities are in points of the same cycle of X (Figure 11 (A)), or together
with another hurdle Z by a merge reversal whose extremities are in a point of X and a point
of Z (Figure 11 (B)). A cut reversal eliminates one hurdle and does not change the number of
cycles in the graph, while a merge reversal eliminates two hurdles at once, and decreases the
number of cycles in the graph by one. Thus, each hurdle requires one additional reversal and
we can improve the distance formula to d(m) > pts(m) — cyc(m) + hrd(mw). We say that a hurdle
Z protects an unoriented component Y that is not a hurdle, if Y becomes a hurdle after the
elimination of Z by a cut reversal. In this case, the hurdle Z is called super-hurdle. Eliminating a
super-hurdle by a cut-reversal does not decrease the number of hurdles in the graph (Figure 12),
consequently a super-hurdle may always be eliminated together with another super-hurdle by
a merge reversal, that will regroup the two super-hurdles and their corresponding protected
unoriented components into one oriented component (Figure 11 (B)).

It remains only one particular case to complete the reversal distance formula. When all
the ¢ hurdles of a breakpoint graph are super-hurdles and i is an odd number, the permutation

requires an additional effort to be sorted. A breakpoint graph with this characteristic is called a

23

Chapter 3. Sorting by reversals

N2

0 +2¥‘+4m+7;—+3¥+8m+9
4

{X})

{Y)

0 +2¥+4m+74+3¥+8m +9

Figure 12: The unoriented component Y separates the super-hurdles X and Z. After eliminating the super-
hurdle Z by a cut reversal, the component Y becomes a hurdle, thus the number of hurdles in this graph
is not reduced after applying this cut reversal.

fortress. One additional reversal is sufficient to eliminate the fortress (this reversal may be chosen
among several possibilities, for example a cut reversal to eliminate a hurdle, or a merge reversal
regrouping two hurdles). We denote by frt(m) a value that indicates whether the breakpoint

graph 7 is a fortress or not. Thus, if 7 is a fortress, then frt(w) = 1, otherwise frt(m) = 0.

I,
550 +7

Figure 13: A fortress with 8 super-hurdles (X, Y and Z).

Table 1 summarizes the effects of a reversal that is part of an optimal sorting sequence in a

breakpoint graph. The final formula for the reversal distance is:

d(m) = pts(m) — cyc(mw) + hrd(mw) + frt(m)

Remember that if 7 = (my,72,...,Tp—1,7T,) is a linear permutation, then pts(mw) = n + 1.

Otherwise 7 is a circular permutation and pts(m) = n.

24

3.3. Safe and unsafe reversals

Reversal Type Acyc(w) A;wd(ﬂ) Ath(‘lr)
split split +1 0 n/A
hurdle cut neutral 0 -1 n/A
hurdle merge joint -1 -2 n/A
fortress elim by neutral 0 0 -1

unor. comp. cut

fortress elim by joint -1 -1 -1
unor. comp. &
hurdle merge

Table 1: The effects of a reversal that is part of an optimal sorting sequence in a breakpoint graph. The
columns Acye(ry, Dprax) and Djryr) give, respectively, the variation in the number of cycles, hurdles
and fortress of a permutation after applying each reversal.

3.3 SAFE AND UNSAFE REVERSALS

If a breakpoint graph does not have unoriented components, it can be sorted with split reversals
only. However, if we take no caution to select a split reversal, it may cause the production of
new hurdles, which is an undesirable side effect (Figure 14 (A)). A split reversal that produces
hurdles is called unsafe reversal, while a split reversal that does not produce hurdles is called
safe reversal (Figure 14 (B)). Fortunately, it has been proven that, for any oriented component,

there is always one safe reversal [53].

(A) unsafe reversal (B) safe reversal

+5 4752 +351 +8 o +5RE +75-+35- 48

/7 @)

/
0¥'+2++4m+7++3++8¥+1"—ﬂ+9 42 B 3 T -5

Figure 14: (A) An unsafe reversal breaks a cycle in two, but creates three unoriented component (X, Y
and Z). (B) Alternatively, a safe reversal breaks a cycle in two without creating unoriented components.

Hurdles are very rare, and fortresses are even more rare in permutations that represent real

genomes [9]. In practice, split reversals are sufficient to sort the majority of the permutations,

25

Chapter 3. Sorting by reversals

and the main challenge is to find safe reversals. A simple way to do that is testing each split
reversal to verify whether it is safe or not, until finding a safe reversal. However, there are faster
ways to select a safe reversal, and one approach is based on another structure related to the

breakpoint graph, that is called overlap graph (see more details in [37]).

3.4 SORTING A SIGNED PERMUTATION

With the approach described in this chapter, we can obtain a procedure to sort a permutation

7 by reversals (Algorithm 1).

Algorithm 1 Sorting a signed permutation

Input: A signed permutation =
Output: An optimal sequence of reversals sorting 7

construct the breakpoint graph of 7
s+ € [sis an empty sequence in the beginning)]
if frt(r) =1 then
choose a reversal p to eliminate the fortress
T TOp
s« s+ p [concatenates the reversal p to s]
end if
while there is a pair of super-hurdles X and Y in 7 do
choose a merge reversal p to eliminate X and Y
T TOop
s« s-p [concatenates the reversal p to s]|
end while
while there is a hurdle Z in 7 do
choose a cut reversal p to eliminate 7
T TOop
s+ s-p [concatenates the reversal p to s]
end while
while 7 is not sorted do
choose a safe split reversal p to =
T TOop
s« s-p [concatenates the reversal p to s]
end while
return s [s is an optimal sorting sequence for 7|

The theoretical complexity of Algorithm 1 is O(n®), where n is the size of the input per-
mutation [53]. Further studies improved this theoretical complexity and currently the fastest
algorithm to find an optimal sorting sequence is subquadratic [11, 31, 63], while the reversal

distance can be computed in O(n) time [4].

26

REFERENCES

REFERENCES

[1] Adi, S., Braga, M. D. V., Fernandes, C., Ferreira, C., Martinez, F., Sagot, M.-F., Stefanes,
M., Tjandraatmadja, C. and Wakabayashi, Y., “Repetition-free longest common subsequence”,
Discrete Applied Mathematics, submitted, 2009 (a preliminary version appeared in Latin-
American Algorithms, Graphs and Optimization Symposium (LAGOS), Eletronic Notes in
Discrete Mathematics, Vol. 30, Pages 243-248, 2008).

[2] Andersson S. G. E. and Kurland C. G., “Reductive evolution of resident genomes”, Trends in
Microbiology, Vol. 6, Number 7, 263268, 1998.

[3] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Pro-
tasi, M., Complezity and Approzimation: Combinatorial Optimization Problems and Their
Approzimability Properties, Springer, 1999.

[4] Bader, D. A., Moret, B. M. E. and Yan, M., “A linear-time algorithm for computing inversion
distances between signed permutations with an experimental study”, J. Comput. Biol. 8, 5
(2001), 483-491.

[5] Vineet Bafna, V., Pevzner, P. A., “Sorting by Transpositions”, SIAM Journal on Discrete
Mathematics, vol. 11, issue 2, 224-240, 1998.

[6] Berard S., Bergeron A. and Chauve C., “Conserved structures in evolution scenarios”, RCG
2004, Lecture Notes in Bioinformatics, vol. 3388, 1-15, 2005.

[7] Berard S., Bergeron A., Chauve C. and Paul C., “Perfect sorting by reversals is not always
difficult”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 4, No.
1, 4-16, 2007.

[8] Bergeron A., “A very elementary presentation of the Hannenhalli-Pevzner theory”, Discrete
Applied Mathematics, vol. 146, 134145, 2005.

[9] Bergeron A., Chauve C., Hartmann T. and St-Onge K., “On the properties of sequences of
reversals that sort a signed permutation”, JOBIM 2002, 99-108, 2002.

[10] Bergeron A., Heber S. and Stoye J., “Common intervals and sorting by reversals: a marriage
of necessity”, Bioinformatics, 18 (Suppl. 2): S54-63, 2002.

[11] Bergeron A., Mixtacki J. and Stoye J., “The inversion distance problem”, Mathematics of
evolution and phylogeny (O. Gascuel Ed.) Oxford University Press, 2005.

[12] Bergroth, L., Hakonen, H. and Raita T., “A Survey of Longest Common Subsequence Algo-
rithms”, SPIRE 00: pages 39-48, 2000.

[13] Blanc G., Ogata H., Robert C., Audic S., Suhre K., Vestris G., Claverie J.-M. and Raoult
D., “Reductive genome evolution from the mother of Rickettsia”, PLoS Genetics, volume 3, p.
103-114, 2007.

[14] Blin, G., Fertin, G. and Chauve, C., “The breakpoint distance for signed sequences”, Texts
in Algorithms, vol. 3, pages 3-16, CompBioNets 2004.

[15] Bonizzoni P., Della Vedova G., Dondi R., Fertin G. and Vialette S., “Exemplar Longest
Common Subsequence”, ACM/IEEE Trans. Computational Biology and Bioinformatics, Vol.
4, No. 4, pages 535-543, 2007.

[16] Braga M. D. V., “baobabLuna: the solution space of sorting by reversals”, submitted to

145

REFERENCES

Bioinformatics, 2009.

[17] Braga M. D. V., Gautier C. and Sagot M.-F., “An asymmetric approach to preserve common
intervals while sorting by reversals”, submitted to Algorithms for Molecular Biology, 2009.

[18] Braga M. D. V., Sagot M.-F., Scornavacca C. and Tannier E., “Exploring the solution space
of sorting by reversals with experiments and an application to evolution”, Transactions on
Computational Biology and Bioinformatics, volume 5, number 3, 348-356, 2008 (A preliminary
version appeared in ISBRA 2007, Lecture Notes in Bioinformatics vol. 4463, 293-304).

[19] Brightwell G. and Winkler P., “Counting linear extensions is #P-complete”, STOC ’91:
Proceedings of the twenty-third annual ACM Symposium on Theory of Computing, ACM Press,
1991.

[20] Bryant, D., “The complexity of calculating exemplar distances”, 2000.

[21] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley and Sons Ltd, Chichester, UK, 1996.

[22] Caprara, A., “Sorting by reversals is difficult”, RECOMB, 75-83, 1997.

[23] Cartier, P. and Foata D., “Problémes combinatoires de commutations et réarrangements”,
Lecture Notes in Math, vol. 85, Springer, Berlin, 1969.

[24] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to algorithms,
MIT Press, 2. edition, 2001.

[25] Diekert V. and Rozenberg G. (eds), The book of traces, World Scientific, 1995.

[26] Diekmann Y., Sagot M.F. and Tannier E., “Evolution under reversals: parsimony and conser-
vation of common intervals”, IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 4, No. 2, 301-309 (A preliminary version appeared in COCOON 2005, Lecture
Notes in Computer Science, vol. 3595, 42-51).

[27] Eisen J. A., Heidelberg J. F., White O. and Salzberg S. L., “Evidence for symmetric chro-
mosomal inversions around the replication origin in bacteria”, Genome Biology, vol. 1, No. 6,
2000.

[28] Fulkerson D. R., “Note on Dilworth’s decomposition theorem for partially ordered sets”,
Proc. Amer. Math. Soc. 7, 701-702, 1956.

[29] Goffeau A. et al., “Life with 6000 genes”, Science 274. doi:10.1126/science.274.5287.546,
1996.

[30] Gomez-Valero, L., Rocha, E. P. C., Latorre, A. and Silva, F. J., “Reconstructing the ancestor
of Mycobacyerium leprae: the dynamics of gene loss and genome reduction”, Genome Research,
vol. 17, 1178-1185, 2007.

[31] Han Y., “Improving the Efficiency of Sorting by Reversals”, Proceedings of The 2006 Inter-
national Conference on Bioinformatics and Computational Biology, CSREA Press, Las Vegas,
Nevada, USA, 2006.

[32] Hannenhalli S. and Pevzner P., “Transforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals)”, Journal of the ACM, 46:1-27, 1999.

[33] Hannenhalli, S. and Pevzner, P., “Transforming men into mice (polynomial algorithm for
genomic distance problem)”, In Proceedings of the IEEE 36th Annual Symposium on Foun-

146

REFERENCES

dations of Computer Science, pages 581-592, 1995.

[34] Heber, S. and Stoye, J., “Finding all common intervals of & permutations”, in Combinatorial
Pattern Matching, 12th Annual Symposium, Lecture Notes in Computer Science, vol. 2089,
207-218, 2001.

[35] IJdo J. W., Baldini A., Ward D. C., Reeders S. T., Wells R. A., “Origin of human chro-
mosome 2: an ancestral telomere-telomere fusion”, Proc Natl Acad Sci U S A, 88(20):9051-5,
1991.

[36] Iwase, M., Satta, Y., Hirai, Y., Hirai, H., Imai, H., and Takahata, N., “The amelogenin loci
span an ancient pseudoautosomal boundary in diverse mammalian species”, PNAS, vol. 100,
no. 9, 5258-5263, 2003.

[37] Kaplan, H., Shamir, R., and Tarjan, R. E., “Faster and simpler algorithm for sorting signed
permutations by reversals”, STAM J. Comput, vol. 29, 880-892, 1999.

[38] Kececioglu, J. and Sankoff, D., “Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangement”, Algorithmica, 13:1/2, 180-210, 1995.

[39] Knuth, D., “The Art of Computer Programming, Volume 3: Sorting and Searching”, Second
Edition, Addison-Wesley, 1998.

[40] Lahn B. T. and Page D. C., “Four evolutionary strata on the human X chromosome”, Science,
vol. 286, 964-967, 1999.

[41] Lemaitre C., Braga M. D. V., Gautier C., Sagot M.-F., Tannier E. and Marais G. A.
B., “Footprints of inversions at present and past pseudoautosomal boundaries in human sex
chromosomes”, submitted to Genome Biology and Evolution, 200917,

[42] Mackiewicz, P., Mackiewicz, D., Kowalczuk, M. and Cebrat S.,“Flip-flop around the origin
and terminus of replication in prokaryotic genomes”, Genome Biology, vol. 2, No. 12, 2001.

[43] Mazowita, M., Haque, L. and Sankoff, D., “Stability of rearrangement measures in the
comparison of genome sequences”’, Journal of Computational Biology, vol. 13, 554-566, 2006.

[44] McLysaght, A., Seoighe, C. and Wolfe K. H., “High frequency of inversions during eukaryote
gene order evolution”, in Comparative Genomics: Empirical and Analytical Approaches to Gene
Order Dynamics, Map Alignment and the Evolution of Gene Families, D. Sankoff and J. H.
Nadeau (Eds.), 47-55, 2000.

[45] Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., and Yan, M., “A new implementation
and detailed study of breakpoint analysis”, Proc. 6th Pacific Symp. on Biocomputing (PSB
2001), Hawaii, World Scientific Pub., 583-594, 2001.

[46] Nakabachi A., Yamashita A., Toh H., Ishikawa H., Dunbar H., Moran N., Hattori M., “The
160-kilobase genome of the bacterial endosymbiont Carsonella”, Science, 314 (5797): 267, 2006.

[47] Ogata H., Renesto P., Audic S., Robert C., Blanc G., Fournier P.-E., Parinello H., Claverie
J.-M. and Raoult D., “Genome sequence of Rickettsia felis identifies the first putative conjuga-
tive plasmid in an obligate intracellular parasite”, PLoS Biology, volume 3, p. 1-12, 2005.

[48] Ogata H., La Scola B., Audic S., Renesto P., Blanc G., Robert C., Fournier P.-E., Claverie
J.-M. and Raoult D., “Genome sequence of Rickettsia bellii illuminates the role of amoebae in

19The work of Lemaitre et al. is attached at the end of this manuscript

147

REFERENCES

gene exchange between intracellular pathogens”, PLoS Genetics, volume 2, p. 733-744, 2006.
[49] Ohno, S., Evolution by gene duplication, Springer-Verlag, New York, 1970.
[50] Ohno, S., Sex chromosomes and sez-linked genes, Springer, Berlin, 1967.

[51] Papadimitriou, C. H. and Yannakakis, M., “Optimization, approximation and complexity
classes”, Journal of Computer and System Sciences, 43:425-440, 1991.

[52] Parfrey, L. W., Lahr, D. J. G., Katz, L. A., “The Dynamic Nature of Eukaryotic Genomes”,
Molecular Biology and Evolution, 25 (4): 787, 2008.

[53] Pevzner P., Computational Molecular Biology - An Algorithmic Approach, The MIT Press,
2000.

[54] Pradella S., Hans A., Sproer C., Reichenbach H., Gerth K., Beyer S., “Characterisation,
genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56”.
Arch Microbiol, 178 (6): 484-92, 2002.

[55] Ross M. T. et al., “The DNA sequence of the human X chromosome”, Nature, vol. 434, p.
325-337, 2005.

[56] Sankoff, D., “Gene and genome duplication”, Current Opinion in Genetics and Development,
vol. 11, p. 681-684, 2001.

[57] Sankoff, D., “Genome Rearrangement with gene families”, Bioinformatics, vol. 15, no. 11,
pages 909-917, 1999.

[58] Schneiker S. et al., “Complete genome sequence of the myxobacterium Sorangium cellulo-
sum”, Nature Biotechnology, 25, 1281-1289, 2007.

[59] Siepel A., “An algorithm to enumerate sorting reversals for signed permutations”, J Comput
Biol, 10:575-597, 2003.

[60] Skaletsky H. et al., “The male-specific region of the human Y chromosome is a mosaic of
discrete sequence classes”, Nature, vol. 423, 825-837, 2003.

[61] Steiner G., “An algorithm to generate the ideals of a partial order”, Operations Research
Letters, 5(6):317-320, 1986.

[62] Steiner G., “Polynomial algorithms to count linear extensions in certain posets”, Congressus
Numerantium, 75, 71-90, 1990

[63] Tannier E., Bergeron A. and Sagot M.-F., “Advances on Sorting by Reversals”, Discrete
Applied Mathematics, vol. 155, no. 6-7, 881-888, 2007 (a preliminary version appeared in
CPM 2004, Lecture Notes in Computer Science, vol. 3595, 42-51).

[64] Tesler, G., “GRIMM: genome rearrangements web server”, Bioinformatics, vol. 18, no. 3,
492-493, 2002.

[65] Weaver R. F., Molecular Biology, Mc Graw Hill, second edition, 2002.

[66] Zheng, C., Lenert, A. and Sankoff, D., “Reversal distance for partially ordered genomes”,
Bioinformatics 21, 1502-i508, 2005.

148

