
CHAPTER 2

The Breakpoint and SCJ-Models

Contents of this chapter: The simple models Breakpoint and Single-Cut-or-
Join, as well as their application to problems introduced in Section 1.3.

2.1 The Breakpoint Distance

We have seen in Chapter 1 how the order of genes in a genome A can be expressed by its
(family) adjacencies �(Af ) and telomeres⇥(Af ). Thus it is clear that two annotated genomes
Af and Bf are more similar in terms of gene order the more adjacencies and telomeres they
have in common. The Breakpoint Distance translates this into a distance measure. We will
first examine it for a canonical genome pair.

Definition 18 The Breakpoint Distance dbp(Af
. ,Bf

.) of a canonical genome pair Af
. ,Bf

. is
defined as

dbp(Af
. ,Bf

.) = n� a� t

2

with

n = |G(A)| = |G(B)| the number of markers contained in each genome,

a = |�(Af ) \ �(Bf )| the number of common adjacencies, and

t = |⇥(Af ) \⇥(Bf )| the number of common telomeres.

Note here, that in order for a distance to make sense, it has to fulfill the identity criterion,
that is, it has to be zero if the two genomes are identical. In order to check this, we regard
the folllowing:
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2 The Breakpoint and SCJ-Models

Observation 1 For any genome A holds

|G(A)| = |�(A)|+ |⇥(A)|
2

. (2.1)

Therefore it is clear that if Af
. and Bf

. are identical in terms of gene order, all adjacencies
and all telomeres of Af

. have a homologue in Bf
. , thus

a+
t

2
= |�(Af )|+ |⇥(Af )|

2
= |�(A)|+ |⇥(A)|

2
= |G(A)| = n

and therefore dbp(Af
. ,Bf

.) = n� a� t
2 = n� n = 0.

2.1.1 The Breakpoint Double Distance

So far we have only regarded the Breakpoint distance for canonical genomes. When regarding
the general formula for the double distance d2(Af

. ,Bf
⇧) = minA0f

./22·Af
.
d(A0f

./,B
f
⇧), we realize

that after finding a suitable duplication A0f
./ of Af

. , it is necessary to calculate the distance
between the balanced pair A0f

./ and Bf
⇧ . However notice, that so far we have only defined the

breakpoint distance for canonical pairs, that is balanced pairs without duplicate markers.
There is an important general framework that allows us to reduce a distance problem of non-
singular genomes to a distance problem of singular ones, albeit not necessarily in polynomial
time. Observe (for example by re-reading Definitions 8 and 9 in Chapter 1) that whether
a genome is considered singular or not is mainly dependent on the function f that assigns
the families to the markers. The basic idea is now to choose a di↵erent function fm for
the assignment such that the genomes are singular. The function fm is referred to as the
matching. Of course there are restrictions on which functions are reasonable. Our matching
should not group two markers in the same family which according f would not be in the
same family and it should actually result in singular genomes. We summarize these minimum
requirements in the following definition.

Definition 19 A function fm is a matching on an annotated genome pair Af ,Bf if the
following conditions apply:

1. 8 (a, b) 2 G(A)⇥ G(B) : fm(a) = fm(b) =) f(a) = f(b)

2. 8l 2 F(Afm) [ F(Bfm) : �(l,Afm)  1,�(l,Bfm)  1

Additionally we would like the genome pair’s property of being balanced to be preserved
under fm, such that in the end we obtain a canonical pair. For instance, choosing fm = id,
the identity function, correctly creates two singular genomes, but these genomes do not share
any families and thus we could not compare them using our previous formula. We therefore
require that the maximal number of possible markers should be matched.

Definition 20 A matching fm on an annotated genome pair Af ,Bf is referred to as a
maximal matching if the following holds:
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2.1 The Breakpoint Distance

8l 2 F(Af ) [ F(Bf ) : |{g 2 G(A) : l = f(g), 9h 2 G(B) with fm(h) = fm(g)}|
= |{g 2 G(B) : l = f(g), 9h 2 G(A) with fm(h) = fm(g)}|

= min(�(l,Af ),�(l,Bf ))

We can now define the breakpoint distance between two balanced genomes as follows

Definition 21 Given a balanced genome pair Af ,Bf , the breakpoint distance between them
is defined as

dbp(Af ,Bf ) = min
fm2Mmax

dbp(Afm ,Bfm) (2.2)

where Mmax is the set of maximal matchings on Af ,Bf .

We will now discover a way to simultaneously find the best duplication A0f
./ 2 2 ·Af

. and the
optimal maximal matching fm on A0f

./ and Bf
⇧ . In order accomplish this and similar goals in

comparative genomics, it is oftentimes helpful to investigate lower bounds on the distance,
or in more casual terms to “find out, what’s the best we can hope for”. Following from
the definition of a doubled genome, we know that each A0f

./ 2 2 · Af
. has the same family

adjacencies and telomeres, namely

�(A0
./
f ) = �(A.

f )� �(A.
f )

and
⇥(A0

./
f ) = ⇥(A.

f )�⇥(A.
f ).

In the best case, all of the family adjacencies and telomeres that are shared with �(B⇧
f ) and

⇥(B⇧
f ) under f are preserved under fm. This gives us the lower bound

d2bp(Af
. ,Bf

⇧) = min
A0f

./22·A
fm2Mmax

dbp(A0fm ,Bfm) (2.3)

= min
A0f

./22·A
fm2Mmax

|G(B)|� |�(A0fm) \ �(Bfm)|� |⇥(A0fm) \⇥(Bfm)|
2

� min
A0f

./22·A
|G(B)|� |�(A0f ) \ �(Bf )|� |⇥(A0f ) \⇥(Bf )|

2

= |G(B)|� |(�(Af )� �(Af )) \ �(Bf )|� |(⇥(Af )�⇥(Af )) \⇥(Bf )|
2

(2.4)

If we can now find a matching and a doubled genome, such that this lower bound is reached,
we know this must be one of the optimal choices for fm and A0f

./. Conveniently, there is a
general strategy that allows us to construct the family adjacencies of A0 under fm in a way,
such that whenever possible, two adjacencies are homologous under fm.

Let a, b 2 G(B), a 6= b be the two markers of a family l in Bf
⇧ (f(a) = f(b) = l). Then let fm

arbitrarily assign di↵erent families to these markers by adding a subscript:

• fm(a) = f(a)1
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2 The Breakpoint and SCJ-Models

• fm(b) = f(b)2

Now we regard the family adjacencies and telomeres of Bfm and construct A0fm , such that a
potential common adjacency is always realized as such. For each family adjacency mxny in
Af proceed as follows.

(i) If mx
1n

y
1 2 �(Bfm) or mx

2n
y
2 2 �(Bfm), choose mx

1n
y
1 and mx

2n
y
2 to be in �(A0fm).

(ii) If mx
1n

y
2 2 �(Bfm) or mx

2n
y
1 2 �(Bfm), choose mx

1n
y
2 and mx

2n
y
1 to be in �(A0fm).

(iii) Otherwise label the adjacency arbitrarily.

Let us regard an example for this procedure: Af
. = {(12), (34)} and Bf

⇧ = {(343124), (12)}
is the pair for which we want to find a matching. The family adjacencies are F(Af ) =
{1h2t, 2h1t, 3h4t, 4h3t} and F(Bf ) = {3h4t, 4h3t, 3h1t, 1h2t, 2h4t, 4h3t, 1h2h, 2t1t}. Then

|(F(Af )� F(Af )) \ F(Bf )| = |{1h2t, 3h4t, 4h3t, 4h3t}| = 4

meaning the best distance we can hope for under fm is n� a� t
2 = 8� 4� 0 = 4.

We proceed by arbitrarily assigning matchings to markers of Bf
⇧ , that is

Bfm = {(314132112142), (1222)}

The family adjacencies under fm now read

�(Bfm) = {3h14t1, 4h13t2, 3h11t1, 1h12t1, 2h14t2, 4h23t1, 1h22h2, 2t21t2}.

We now distinguish Cases i-iii for each of the possible adjacencies for the doubled genome:

Adjacency Case Resulting doubling
1h2t i 1h12

t
1, 1

h
22

t
2

2h1t iii arbitrary
3h4t i 3h14

t
1, 3

h
24

t
2

4h3t ii 4h13
t
2, 4

h
23

t
1

For adjacency 2h1t we will arbitrarily choose to include 2h11
t
1 and 2h21

t
2 although we could have

also included 2h11
t
2 and 2h11

t
2. Reconstructing yields the genome {(11 21), (12 22), (31 41 32 42)}

under fm which is {(1 2), (1 2), (3 4 3 4)} - a perfectly duplicated genome - under f . We can
also check that all common adjacencies are still matched under fm. What happens, if we
choose 2h11

t
2 and 2h11

t
2 instead as a matching is left as an exercise to the reader.

It is easily checked, that by this procedure all common adjacencies mxny under f always
remain common adjacencies under fm. Note that common telomeres are always preserved,
due to A0fm having both versions t1, t2 of each telomere t in Af . Because A0fm is singular, we
have fully described it by only giving its family adjacencies and telomeres (see Remark 3).
It is also clear (see Definition 12) that A0f is a doubled genome of Af under f .

As we have now shown that the lower bound detailed in Equation 2.4 can always be attained,
we can conclude
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2.2 The SCJ Distance

Theorem 1 The Breakpoint double distance between a singular genome Af
. and a duplicated

genome Bf
⇧ with the same families (F(Af ) = F(Bf )) is

d2bp(Af
. ,Bf

⇧) = 2n� a� t

2
(2.5)

with

2n = 2|G(A)| = |G(B)|
a = |(�(Af )� �(Af )) \ �(Bf )|
t = |(⇥(Af )�⇥(Af )) \⇥(Bf )|.

2.2 The SCJ Distance

We have so far only seen a purely quantitative distance measure that does not involve
operations in any way. The SCJ model will be the first that involves a concrete rearrangement
operation. We will also see its similarity to the Breakpoint distance.

2.2.1 The SCJ Operations

SCJ stands for single cut or join, meaning the allowed operations are either to cut between
two markers, creating two new telomeres or to join two telomeres, thereby creating a new
adjacency. It is clear that by using these operations one can sort one genome into the other,
given that the two form a balanced pair.

As an example, take the genome {[1 2 3], (4 5)} and the genome {[3 1 2 5̄ 4̄]}. Denoting joins
by ⇤ and cuts by |, one sorting sequence is the following:

[⇤1 2 3⇤], (4 5)

! (1 2 3), (4 5|)

! (1 2 | 3), [4 5]

! [3 1 2⇤], [4 5⇤]

! [3 1 2 5̄ 4̄]

Formally we will define the SCJ operation via adjacencies and telomeres.

Definition 22 Given a genome G an SCJ operation transforms it into a genome G0 by
either

(i) cutting an adjacency mxny 2 �(G):

• �(G0) = �(G) \ {mxny},

• ⇥(G0) = ⇥(G) [ {mx, ny}

or

(ii) joining two telomeres mx, ny 2 ⇥(G):
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2 The Breakpoint and SCJ-Models

• ⇥(G0) = ⇥(G) \ {mx, ny},

• �(G0) = �(G) [ {mxny}

Based on this definition, we can also regard the example from earlier in adjacency-notation:

Adjacencies Telomeres
{1h2t, 2h3t, 4h5t, 5h4t} {1t⇤, 3h⇤}

{1h2t, 2h3t, 4h5t, 5h|4t, 1t3h} {}
{1h2t, 2h|3t, 4h5t, 1t3h} {5h, 4t}

{1h2t, 4h5t, 1t3h} {5h⇤, 4t, 2h⇤, 3t}
{1h2t, 4h5t, 1t3h, 2h5h} {4t, 3t}

Note that because the genomes in question are singular, we can notate family adjacencies
and telomeres for easier readability, although the definition specifies marker adjacencies and
telomeres.

2.2.2 The SCJ Distance

With the possible operations defined, the question is now, how many operations are necessary
to sort one genome into the other, that is, we want to know the transformation distance
between two genomes under the SCJ model. Perhaps surprisingly, the derivation of the
genomic distance oftentimes follows the same abstract pattern, even for more complicated
distances. This general pattern is described in Algorithm 2.1 for future reference.

Algorithm 2.1 A cooking recipe for determining genomic rearrangement distances

1. Find a suitable data structure that represents the genome pair and shows (somewhat)
consistent behavior when an operation of the model is applied.

2. Find a quantity q in the data structure, that the operations of the model can change
by at most 1.

=) |�q|  1 with �q = q � q0, where q is the quantity before and q0 is the quantity
after the operation was applied.

3. Identify the state q? of this quantity that occurs if and only if the sorting is complete.

=) d � |q � q?|

4. Find a way of sorting that decreases |q� q?| by 1 in every step, thus reaching the lower
bound.

=) d = |q � q?|

Of course, when investigating an unfamiliar model, the process is rarely this streamline. For
example, it is oftentimes not possible to find an algorithm that is capable of reducing |q�q?|
by 1 in every step. Sometimes there is no distinct quantity q? in the sorted case. Therefore
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2.2 The SCJ Distance

one would typically make several passes through this procedure, each time modifying an
aspect of it, be it the data structure or the quantity q.

However, in the case of the here examined SCJ distance, the data structures and quantities
needed are relatively straightforward, such that the reader might even be capable to perform
some steps on their own. Therefore, they are invited to pause reading the following section
after each step and with the help of Algorithm 2.1 try and solve the next step themselves.

We want to solve the distance problem for a canonical pair of genomes Af
. ,Bf

. . Therefore
we regard the sequence of intermediate genomes Af

. = Af
0 ,Af

2, ...,Af
n�1,A

f
n = Bf

. with Af
i+1

being the result of an SCJ operation being applied to Af
i for all 0  i < n. Notice that

because there is no SCJ operation to create or remove markers, every intermediate genome
Af
i is also singular and forms a canonical pair with every other genome Af

j of the sequence.
For Step 1 of Algorithm 2.1 our currently known data structures, that is family adjacencies
and telomeres, su�ce.

For Step 2 it is instructive to experiment with some examples or at least re-read the example
from earlier this chapter. The first idea one might come up with is that the number of
adjacencies in the genome to be sorted always changes by 1 when sorting. Thus one could
derive the quantity qi = |�(Ai)|. However, while there is a defined state q? with q? = |�(B)|
that q reaches once Af

. is sorted into Bf
. , this number of adjacencies and telomeres could

also be attained earlier. In fact, if Af
. and Bf

. had the same number of linear chromosomes,
it would even be reached in the beginning of the sorting. Nonetheless, family adjacencies
are a good metric as their number can only be changed by at most one by every operation.
We regard the number of adjacencies that Af

. and Bf
. do not have in common, that is the

quantity qi = |�(Af
i ) \ �(Bf )|+ |�(Bf ) \ �(Af

i )|. Both summands can only be changed by 1
as each operation can at best create or remove one adjacency. Similarly, only one term can
change at once as there is never more than one adjacency a↵ected by any operation in the
SCJ model.

Step 3 is easy to solve: When we are done sorting, all adjacencies are shared between the
genomes, thus q? = 0. We still need to determine, if this is the only case, in which qi can
be 0. We presume a genome Af

i with the same markers as Af
. that is potentially di↵erent

from Bf
. , but fulfills that qi = |�(Af

i ) \ �(Bf )| + |�(Bf ) \ �(Af
i )| = 0. We therefore know

that �(Af
i ) = �(Bf ). Because we can derive the family telomeres of Af

i by just finding the

extremities that are not yet present in family adjacencies, we know that also ⇥(Af
i ) = ⇥(Bf ).

As both genomes Af
i and Bf

. are singular they are fully described just by giving their family

adjacencies and telomeres (see Remark 3). Therefore Af
i = Bf

. must hold.

Step 4 is to find a way to sort Af
. into Bf

. , such that

|qi � q?| = |qi � 0| = qi = |�(Af
i ) \ �(B

f )|+ |�(Bf ) \ �(Af
i )|

is reduced by one in each step. The simplest way to do so, is to first remove all adjacencies
exclusive to Af

. by cutting each adjacency belonging to |�(Af ) \ �(Bf )| and then creating
each adjacency in |�(Bf ) \ �(Af )| by joining telomeres. Thus we have shown that

Theorem 2 The SCJ distance between a canonical genome pair Af
. ,Bf

. is

dscj(Af
. ,Bf

.) = |�(Af ) \ �(Bf )|+ |�(Bf ) \ �(Af )|.
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2 The Breakpoint and SCJ-Models

2.2.3 Relationship to the Breakpoint distance

One might already suspect that the SCJ and Breakpoint distances are somewhat similar
to each other as the respective distance formulas mainly depend on shared or non-shared
adjacencies. To explore this, we first apply some transformations from standard set theory
to the SCJ distance formula.

dscj(Af
. ,Bf

.) = |�(Af ) \ �(Bf )|+ |�(Bf ) \ �(Af )|
= |�(Af )|� |�(Af ) \ �(Bf )|+ |�(Bf )|� |�(Bf ) \ �(Af )|
= |�(Af )|+ |�(Bf )|� 2 · |�(Af ) \ �(Bf )|

Here we already notice that the formula looks fairly similar to that of the breakpoint distance
as it already has some positive term followed by a negative term entailing the number of
common adjacencies, although the latter is weighted by two instead of one. The first term
still looks quite di↵erent to the equivalent in the Breakpoint distance as it depends on the
number of adjacencies instead of the number of genes. In order to obtain a term with the
number of genes, we use the identity |G(A)| = |�(A)| + |⇥(A)|

2 (see Observation 1) which in
case of singular genomes also holds for family adjacencies. Solved for the number of family
adjacencies the equation reads

|�(Af )| = |G(A)|� |⇥(Af )|
2

,

which we substitute into the distance formula, yielding

�(Af )|+ |�(Bf )|�2 · |�(Af ) \ �(Bf )|

= |G(A)|+ |G(B)|�2 · |�(Af ) \ �(Bf )|� |⇥(Af )|
2

� |⇥(Bf )|
2

.

If we substitute in n = G(A) = G(B), a = |�(Af )\�(Bf )| and t = |⇥(Af )\⇥(Bf )| from the
definition of the breakpoint distance (see Def. 18), we obtain

2 · n� 2 · a� |⇥(Af )|
2

� |⇥(Bf )|
2

= 2 · n� 2 · a� |⇥(Af )|
2

� |⇥(Bf )|
2

� t+ t

= 2 · (n� a� t

2
)� |⇥(Af )|

2
� |⇥(Bf )|

2
+ t

= 2 · dbp(Af
. ,Bf

.)�
|⇥(Af )|

2
� |⇥(Bf )|

2
+ t.

If we assume that the number of linear chromosomes and therewith telomeres is low relative
to the number of markers overall, an assumption typically satisfied by real genomes, the SCJ
distance is roughly double the Breakpoint distance. More generally holds

dbp(Af
. ,Bf

.)  dscj(Af
. ,Bf

.)  2 · dbp(Af
. ,Bf

.) (2.6)

though we will not prove it here. Using this close relationship, we will be able to solve
problems in one model using the knowledge we obtained from studying the other.
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2.3 SCJ Double Distance and Genome Halving

2.3 SCJ Double Distance and Genome Halving

As a first result, we realize that in Section 2.1.1 when we gave the algorithm for finding a
matching as well as the doubling for the Breakpoint double distance calculation, we never
needed to account for telomeres as the maximal number of them would be automatically
matched. Therefore, we can apply the same technique to finding a matching under the SCJ
distance and conclude the following:

Theorem 3 The SCJ double distance between a singular genome Af
. and a duplicated ge-

nome Bf
⇧ with the same families (F(Af ) = F(Bf )) is

d2bp(Af
. ,Bf

⇧) = |(�(Af )� �(Af )) \ �(Bf )|+ |�(Bf ) \ (�(Af )� �(Af ))|. (2.7)

We will now regard the Genome Halving Problem we know from Section 1.3.2 under the SCJ
model. Conceptually, the Genome Halving Problem is not that di↵erent from the double
distance, only that now the singular ancestor Af

. is unknown and part of the optimization.
As we have already seen that an optimal doubling and matching can be easily found, once
the family adjacencies are set, we can formulate the problem as finding a singular genome
that minimizes the double distance

min
Af
.

d2scj(Af
. ,Bf

⇧) = min
Af
.

|(F(Af
.)� F(Af

.)) \ F(Bf
⇧)|+ |F(Bf

⇧) \ (F(Af
.)� F(Af

.))|.

Conceptually, we can think of creating Af
. by starting with a genome without any adjacencies,

meaning each gene is insular on its own linear chromosome and then joining the telomeres to
create the adjacencies that form the optimal ancestor. In order to find beneficial adjacencies,
we have to examine the double distance with respect to individual adjacencies. We therefore
regard the number of times �(mxny,Gf ) an adjacencymxny appears in the family adjacencies
of a genome Gf . Expressed in this notation, our double distance formula reads

min
Af
.

d2scj(Af
. ,Bf

⇧) = min
Af
.

X

mxny

2�(Af )

(2� �(mxny,Bf )) +
X

mxny

/2�(Af )

�(mxny,Bf ).

In order to unify the two sums, we can apply a more generally useful trick. Note that since
Af
. is a singular genome, �(mxny,Af ) is a binary variable with values {0, 1}, therefore we can

use it similar to a boolean. Multiplying with �(mxny,Af ) filters out all terms of a sum, for
which mxny is not an adjacency of Af . Similarly, (1� �(mxny,Af )) acts just like a negated
boolean and multiplying with it eliminates those terms for which mxny is an adjacency of
Af . We obtain

d2scj(Af
. ,Bf

⇧) =
X

mxny

�(mxny,Af ) · (2� �(mxny,Bf ))

+
X

mxny

(1� �(mxny,Af )) · �(mxny,Bf )

=
X

mxny

(�(mxny,Bf ) + �(mxny,Af ) · (2� �(mxny,Bf ))).
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2 The Breakpoint and SCJ-Models

It is clear that the sum
P

mxny �(mxny,Bf ) simply counts the number of adjacencies in Bf .
Applying this fact and resetting the sum to only contain adjacencies of Af we get

d2scj(Af
. ,Bf

⇧) = |�(B)|+
X

mxny

2Af

(2� �(mxny,Bf )).

Examining this formula more closely, we find that the first term |�(B)| does not depend
on the ancestor we want to optimize and therefore does not influence this optimization.
We therefore need not regard it any further. The summation over the adjacencies however
portrays an interesting behavior. Each adjacency mxny independently contributes a value
s(mxny) = (2��(mxny,Bf )) to the sum. We can view this value as a kind of score expressing

how bad it would be if we included the adjacency in Af
. . We see that adjacencies that do

not occur in Bf
⇧ at all have score 2, adjacencies that occur once have score 0 and adjacencies

that occur twice have score �2. An easy way of minimizing the sum is thus to only include
adjacencies into Af

. if they occur twice in Bf
⇧ , thus only getting negative contributions to

the sum. However, we need to make sure that these adjacencies actually form a singular
genome, that is there cannot be any conflict between family adjacencies. A conflict occurs
when two di↵erent family adjacencies share the same extremity, i.e. mxny and nylz with
mx 6= lz. In this case the set of adjacencies does not yield a defined singular genome. We
can easily see though that if we had a conflict, say mxny and nylz would be both included
in Af

. , then Bf
⇧ would need to have these conflicting adjacencies twice, making it impossible

for Bf
⇧ to be a duplicated genome - a contradiction! Therefore there cannot be any conflict

if we choose only adjacencies occurring twice in Bf
⇧ .

As an example, let us regard the genome Bf
⇧ = {(1 2 3), (3 4 2̄ 1̄), [4]}. We list the number of

occurrences of each family adjacency as well as its score:

mxny �(mxny,Bf
⇧) s(mxny)

1h2t 2 -2
2h3h 1 0
3t1t 2 -2
3h4t 1 0
4h2h 1 0

Thus we choose to include 1h2t and 3t1t, obtaining Af
. = {[3̄ 1 2], [4]} as the singular ancestor.

Note that we could also include some of the adjacencies with score 0 without changing the
distance, however they are not guaranteed to be free of conflicts. For an example, try
including both 2h3h and 3h4t in Af

. . You will find that this is impossible if Af
. is supposed

to be singular. To find the correct perfectly duplicated ancestor, we would technically need
to solve a double distance problem. In this case, this is easy as there is only one way to
duplicate Af

. and we obtain A0f
./ = {[3̄ 1 2], [4], [3̄ 1 2], [4]} as the perfectly duplicated ancestor.

2.4 SCJ and Breakpoint Median

In this section we will examine the Median problem under the SCJ and Breakpoint distance.
Because distances for non-singular or even natural genomes are a relatively recent devel-
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2.4 SCJ and Breakpoint Median

opment in the field, higher-level problems like medians or parsimonies have been mainly
studied for collections of genomes, in which the genomes form canonical pairs. Therefore,
we regard the median problem only for collections of canonical genomes.

2.4.1 SCJ Median for canonical genomes

We want to find the Median Mf for a collection of genomes A = {Af
1 , ...,A

f
k}, in which each

two genomes Af
i ,A

f
j form a canonical pair. We know that the median must minimize the

total distance
sscj(Mf ,A) =

X

Af
i 2A

dscj(Mf ,Af
i ).

If we substitute in the distance formula for the SCJ model, we obtain

sscj(Mf ,A) =
X

Af
i 2A

(|�(Mf ) \ �(Af
i )|+ |�(Af

i ) \ �(M
f )|)

=
X

Af
i 2A

|�(Mf ) \ �(Af
i )|+

X

Af
i 2A

|�(Af
i ) \ �(M

f )|.

Again, in this case we can think of creating a median by starting with a genome without
adjacencies and finding the best set of adjacencies to form a median. Expressed in the
notation from earlier, our total distance formula reads

sscj(Mf ,A) =
X

Af
i 2A

X

mxny

2�(Mf )

(1� �(mxny,Af
i )) +

X

Af
i 2A

X

mxny

/2�(Mf )

�(mxny,Af
i ).

We can further simplify the formula by extending the definition of � to also work on sets of
genomes, that is for a collection of genomes S we have �(mxny,S) =

P
Gf2S �(mxny,Gf ).

Using this we obtain

sscj(Mf ,A) =
X

mxny

2�(Mf )

X

Af
i 2A

(1� �(mxny,Af
i )) +

X

mxny

/2�(Mf )

X

Af
i 2A

�(mxny,Af
i )

=
X

mxny

2�(Mf )

(k � �(mxny,A)) +
X

mxny

/2�(Mf )

�(mxny,A).

Again because Mf is a singular genome we can apply the trick from earlier to unify the sums.

sscj(Mf ,A) =
X

mxny

�(mxny,Mf ) · (k � �(mxny,A)) +
X

mxny

(1� �(mxny,Mf )) · �(mxny,A)

=
X

mxny

(k · �(mxny,Mf )� �(mxny,Mf )�(mxny,A)

+ �(mxny,A)� �(mxny,Mf )�(mxny,A))

=
X

Af
i 2A

�(Af
i ) +

X

mxny

(k · �(mxny,Mf )� 2 · �(mxny,A))
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Again, we see a kind of score s(mxny) = k � 2 · �(mxny,A) for how bad it would be to
include adjacency mxny into the median �(Mf ). We observe that including an adjacency in
our median that occurs in half or fewer of the genomes of A will yield a positive contribution,
while including an adjacency that occurs in more than half of the genomes of A will yield
a negative one. As we want to minimize the total distance, we can again follow a greedy
approach and choose to include an adjacency if it has a negative contribution, that is if it
occurs in more than half of the genomes in A. This approach, too, cannot lead to conflicting
adjacencies. Proving this fact is an exercise left to the reader that will be part of the tutorials.

To demonstrate the method, we regard a small example for a median of four. Let the
collection of genomes be A = {Af

1 ,A
f
2 ,A

f
3 ,A

f
4} with Af

1 = {[1 2 3]}, Af
2 = {(2 3), [1]}, Af

3 =

{[3 1 2]} and Af
4 = {(1 2 3)}. We observe the following counts for the adjacencies:

mxny �(mxny,A) s(mxny)
1h2t 3 �2
2h3t 3 �2
3h1t 2 0
3h2t 1 2

We therefore know to include 1h2t and 2h3t in our median, yielding Mf = {[1 2 3]}. Notice
that because the contribution of 3h1t is 0, we could again include this adjacency without
increasing the total distance and we would have an alternative median M0f = {(1 2 3)}. Such
adjacencies that are neutral in terms of contribution to the total distance can only occur
when we calculate the median for an even number of genomes. For odd numbers of genomes,
all adjacencies have either positive or negative score. Therefore, for odd numbers of genomes
the SCJ median is unique.

SCJ linear median of canonical genomes

As we have seen, the structure of the median we might obtain by this procedure is not
necessarily guaranteed. That is, we might for example obtain a circular median for a set of
linear genomes. Therefore, one sometimes wishes to restrict, which types of genomes qualify
as a valid median.

Definition 23 The linear genomic median of a set of linear genomes A = {Af
0 , ...,A

f
k} on

a distance measure d is a genome Mf
l consisting only of linear chromosomes that minimizes

s(Mf
l ,A) =

X

Af
i 2A

d(Mf
l ,A

f
i ).

Fortunately, there is an easy strategy that allows us to derive a linear median from a non-
linear one in the SCJ model. As each adjacency mxny has a score s(mxny), we can simply
remove the highest scoring adjacency from each circular chromosome in the median. This
way, each of the circular chromosomes will be linearized and we obtain a linear genome. To
see that this genome - let us refer to it as Gf - is in fact a linear median, we consider the
general median Mf

g we used to construct Gf and a true linear median Mf
l of A. Without loss

of generality, we can assume that �(Mf
l ) ✓ �(Mf

g ) as we can simply remove adjacencies with
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2.4 SCJ and Breakpoint Median

score 0 from �(Mf
l ) without changing the total distance. We then know that because Mf

l
minimizes the total distance for linear genomes, all adjacencies of linear chromosomes and
all but one adjacency of each circular chromosome must be shared with Mf

g . Otherwise one

could include the additional adjacencies from Mf
g and obtain a linear genome that further

decreases the total distance. We know that an adjacency missing in Mf
l that was part of a

circular chromosome inMf
g must have the highest score of all adjacencies of that chromosome.

Otherwise one could include that adjacency in Mf
l , remove a higher scoring adjacency from

the chromosome and obtain another linear genome with a shorter total distance. Therefore
the total distances of Mf

l and Mf
g must be the same.

2.4.2 SCJ and Breakpoint Median for canonical circular genomes

As we have seen the linear SCJ median for canonical genomes, it makes sense to also inves-
tigate its circular counterpart. In fact, one could argue that a circular median is even more
worthy of consideration for the SCJ model as medians tend to fragment into many linear
chromosomes under this model if the genomes in question have only few common adjacencies.
We define the circular median as follows.

Definition 24 The circular genomic median of a set of circular genomes A = {Af
0 , ...,A

f
k}

on a distance measure d is a genome Mf
c consisting only of circular genomes that minimizes

s(Mf
c ,A) =

X

Af
i 2A

d(Mf
c ,A

f
i ).

In order to find a median, we can use a structure that is more generally useful to observe
multiple possible genomes in one structure. We define a complete graph, in which every
extremity is a vertex, the edges represent all possible adjacencies and the edge weights are
the scores of the respective adjacencies, that is V = {gh : g 2 F(Mf

c )} [ {gt : g 2 F(Mf
c )}

and w((mx, ny)) = s(mxny). Notice that every perfect matching in this graph defines a
circular genome. The reverse is also true: Every singular circular genome with this set of
families defines a matching in the graph. Therefore, a perfect matching with minimal weight
will be a circular median. There exist algorithms to accomplish this in polynomial time,
though we will not discuss them here. In most small examples, one can easily find such a
matching manually.

Let us regard such a small example for the three genomes

A = {{(1 2 3)}, {(1 2), (3)}, {(1), (2 3)}}.

We show the corresponding graph in Figure 2.1. We can see that the maximal matching
has at least weight �1 and we find a matching meeting this lower bound in Figure 2.2. The
resulting circular median is Mf

c = {(1 2 3)}. Note that the general median Mf = {[1 2 3]}
has a better score, but is not a perfect matching in the graph.

As we have seen, the Breakpoint distance is very similar to the SCJ distance, especially for
circular genomes. We can therefore also use this graph structure to find a circular Breakpoint
median. First, we deduce the weight for each adjacency.
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1t 1h

2t 2h

3t 3h

�1
�1

1
1

1

1

1

Figure 2.1: Circular median graph for the genomes {(1 2 3)}, {(1 2), (3)} and {(1), (2 3)}. Edges
with minimum weight (here �1) are highlighted. Edges with the maximum weight (here
3) are not displayed, but they exist in the definition of the graph and connect each pair of
vertices that is not yet connected by an edge of lower weight.

1t 1h

2t 2h

3t 3h

�1

�1

1

Figure 2.2: Minimum weight maximal matching on the circular median graph of {(1 2 3)},
{(1 2), (3)} and {(1), (2 3)}.

sbp(Mf ,A) =
X

Af
i 2A

dbp(Mf ,Af
i )

=
X

Af
i 2A

(n�
X

mxny

2�(Mf )

�(mxny,Af
i ))

= k · n�
X

mxny

2�(Mf )

�(mxny,A))

We see, that we should choose weight w((mx, ny)) = ��(mxny,A) to compute a Breakpoint
median. If one were to apply this scoring scheme and calculate the circular Breakpoint
median for the above example, one would find the same circular median. Executing this and
answering the question why the same median arises is an exercise left to the reader.

2.4.3 Breakpoint Median for canonical genomes

We would like to use this new graph structure to calculate a general Breakpoint median.
Notice that the reason the graph only yields circular genomes is because we considered only
perfect matchings, whereas the matchings that do not necessarily cover every vertex are a
description of all possible singular genomes with this set of families, not just circular ones.
We might therefore be tempted to simply search for any matching with minimum weight.
However if we extend the definition of � to count the amount of occurrences �(mx,S) of
telomere mx in genome set S, we can regard the total distance of the Breakpoint median for
the general case, that is
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sbp(Mf ,A) =
X

Af
i 2A

dbp(Mf ,Af
i )

=
X

Af
i 2A

(n�
X

mxny

2�(Mf )

�(mxny,Af
i )�

X

mx

2⇥(Mf )

�(mx,Af
i )

2
)

= k · n�
X

mx

2�(Mf )

�(mxny,A))� 1

2
·
X

mx

2⇥(Mf )

�(mx,A)),

and we see that we need to also give a weight to the telomeres. We therefore add an additional
vertex ?mx for extremity mx that is connected to it via an edge. The edge being chosen
in a matching then signifies that the extremity is a telomere. We therefore score this edge
with the telomere score s(mx) = �1

2�(m
x,A). In order to still use the perfect matching

framework, we also introduce edges between these additional vertices with weight 0. In more
formal terms we define a weighted graph (V,E,w) with the following:

• V = Ve [ V? with

– Ve = {gh : g 2 F(Mf )} [ {gt : g 2 F(Mf )},

– V? = {?mx : mx 2 Ve}

• E = {(mx, ny) : mx, ny 2 Ve,mx 6= ny} [ {(mx,?mx) : mx 2 Ve}
[{(?k,?l) : ?k,?l 2 V?, k 6= l} with

– w(mx, ny) = ��(mxny,A),

– w(mx,?mx) = �1
2�(m

x,A) and

– w(?k,?l) = 0.

A perfect matching on this graph then defines a general Breakpoint median for the set of
genomes A.

As an example regard the following three genomes

A = {{[1 2 3]}, {(1 2 3)}, {[1], [2 3]}}.

You can see the graph for these genomes in Figure 2.3. One maximal matching can be found
in Figure 2.4. You can see that only with the inclusion of the telomere vertices, we can
accurately score the median. It is also clear that there are now several ways to match up
the remaining telomere vertices ?1h , ?2h , ?2t and ?3t (all with score 0) that do not change
the genome we chose as median.
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1t 1h

2t 2h

3t 3h

?1t ?1h

?2t ?2h

?3t ?3h

�2

�2

�1

�1 � 1
2

� 1
2

�1

Figure 2.3: Median graph for the genomes {[1 2 3]}, {(1 2 3)} and {[1], [2 3]}. Edges with
minimum weight (here �2) are highlighted. Edges with the maximum weight (here 0) are
not displayed.
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Figure 2.4: Minimum weight maximal matching on the median graph for the genomes {[1 2 3]},
{(1 2 3)} and {[1], [2 3]}.
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