Algorithms in Comparative Genomics

gi.cebitec.uni-bielefeld.de/teaching/2021winter/cg

Lecture: Marília D. V. Braga Thursdays, 10:15-11:45

Tutorial:

.

Leonard Bohnenkämper Thursdays, 8:30-10:00

Topics:

- 1. Genomes as gene orders or list of adjacencies
- 2. Family-annotated genomes, types of genomes
- 3. Large-scale rearrangements
- 4. Genome comparison problems: distance, double distance, median, halving
- 5. Breakpoint model / Single-cut-or-join (SCJ) model
- 6. Relational diagram of two genomes
- 7. Double-cut-and-join (DCJ) model
- 8. Inversion model
- 9. DCJ-indel model
- 10. NP-hard problems and ILP
 - 10.1 DCJ distance of balanced genomes
 - 10.2 DCJ-indel distance of natural genomes
 - 10.3 DCJ-indel distance of family-free genomes
- 11. Inferring gene families via family-free rearrangements
- 12. SCJ Small parsimony

Topics of today - Introduction:

- $1. \ \mbox{Genomes}$ as gene orders or list of adjacencies
- 2. Family-annotated genomes, types of genomes
- 3. Large-scale rearrangements
- 4. Breakpoint distance, breakpoint double distance

Each chromosome is a DNA molecule

The DNA molecule is a chain of oriented **base pairs** (bp)

 $\begin{array}{l} \text{Reverse complement:} \\ \text{AGCTG} \leftrightarrow \text{CAGCT} \end{array}$

(two complementary anti-parallel strands, linear or circular)

Linear chromosomes as marker orders

Marker: oriented DNA fragment (lies on one of the two complementary anti-parallel DNA strands)

DNA breakpoints: between markers

ſ

 $\mathbb{A}[1] \quad \overline{\mathbb{A}[2]} \quad \mathbb{A}[3] \quad \overline{\mathbb{A}[4]} \quad]$

Set of markers: $\mathcal{G}(\mathbb{A})=\{ ext{ }\mathbb{A}[1] ext{ , }\mathbb{A}[2] ext{ , }\mathbb{A}[3] ext{ , }\mathbb{A}[4] ext{ }\}$

Set of adjacencies: $\Gamma(\mathbb{A}) = \{ \mathbb{A}[1]^h \mathbb{A}[2]^h, \mathbb{A}[2]^t \mathbb{A}[3]^t, \mathbb{A}[3]^h \mathbb{A}[4]^h \}$

Set of telomeres: $\Theta(\mathbb{A}) = \{ \mathbb{A}[1]^t, \mathbb{A}[4]^t \}$

Linear chromosomes as marker orders

Marker: oriented DNA fragment (lies on one of the two complementary anti-parallel DNA strands)

DNA breakpoints: between markers

Circular chromosomes as marker orders

($\mathbb{B}[1]$	₿[2]	₿[3]	₿[4])	($\overline{\mathbb{B}[4]}$	B [3]	$\mathbb{B}[2]$	$\mathbb{B}[1]$)
(₿[4]	$\overline{\mathbb{B}[1]}$	B[2]	₿[3])	($\overline{\mathbb{B}[3]}$	$\overline{\mathbb{B}[2]}$	$\mathbb{B}[1]$	$\overline{\mathbb{B}[4]}$)
(₿[3]	₿[4]	$\overline{\mathbb{B}[1]}$	$\mathbb{B}[2]$)	($\overline{\mathbb{B}[2]}$	$\mathbb{B}[1]$	$\mathbb{B}[4]$	$\overline{\mathbb{B}[3]}$)
(₿[2]	₿[3]	₿[4]	$\overline{\mathbb{B}[1]}$)	($\mathbb{B}[1]$	$\overline{\mathbb{B}[4]}$	$\overline{\mathbb{B}[3]}$	$\overline{\mathbb{B}[2]}$)

Set of markers: $\mathcal{G}(\mathbb{B}) = \{ \ \mathbb{B}[1] \ , \ \mathbb{B}[2] \ , \ \mathbb{B}[3] \ , \ \mathbb{B}[4] \ \}$

Set of adjacencies: $\Gamma(\mathbb{B}) = \{ \mathbb{B}[1]^t \mathbb{B}[2]^t, \mathbb{B}[2]^h \mathbb{B}[3]^t, \mathbb{B}[3]^h \mathbb{B}[4]^t, \mathbb{B}[4]^h \mathbb{B}[1]^h \}$

Family annotated genome

Set of families:
$$\mathcal{F}(\mathbb{A}^{f}) = \{ 1, 2, 3, 4, 5 \}$$

Multiset of genes: $\mathcal{G}(\mathbb{A}^{f}) = \{ 1, 1, 2, 3, 4, 4, 5 \}$
Multiset of adjacencies: $\Gamma(\mathbb{A}^{f}) = \{ 1^{h}2^{h}, 2^{t}3^{t}, 4^{h}1^{h}, 1^{t}4^{t}, 4^{h}5^{h} \}$
Multiset of telomeres: $\Theta(\mathbb{A}^{f}) = \{ 1^{t}, 3^{h}, 4^{t}, 5^{t} \}$

Types of genomes

- ► Unichromosomal × multichromosomal
- ► Linear, circular, mixed
- ► Concerning the gene content:
 - 1. Singular genome $\mathbb{G}_{\triangleright}^{f}$: each family occurs exactly once

2. Duplicated genome $\mathbb{G}_{\diamond}^{f}$: each family occurs exactly twice

3. Perfectly duplicated or doubled genome \mathbb{G}_{\bowtie}^{f} : each adjacency or telomere occurs exactly twice

4. Natural genome: no restriction on the number of occurrences of families

Comparison of genomes

Types of genome pairs

Pair of singular genomes:

each family occurs at most once in each genome

Pair of balanced genomes:

each family occurs the same number of times in each genome

Types of genome pairs

Pair of singular genomes:

each family occurs at most once in each genome

Pair of canonical genomes: singular and balanced

Pair of balanced genomes:

each family occurs the same number of times in each genome

Types of genome pairs

Pair of singular genomes:

each family occurs at most once in each genome

Pair of canonical genomes: singular and balanced

Pair of balanced genomes:

each family occurs the same number of times in each genome

Pair of natural genomes: no restriction on the number of occurrences of families

Resolving ambiguous families with a maximal matching

Canonical genomes: common adjacency \times breakpoint

Canonical genomes: common adjacency \times breakpoint

Canonical genomes: common adjacency \times breakpoint

Breakpoint distance of canonical genomes

Obtaining doubled genomes from a singular genome

Given a singular genome $\mathbb{G}^f_{\triangleright}$, let $2 \cdot \mathbb{G}^f_{\triangleright}$ be the set of doubled genomes obtained by duplicating each adjacency and each telomere of $\mathbb{G}^f_{\triangleright}$.

Examples:

Breakpoint double distance

Given a singular genome $\mathbb{A}^f_{\triangleright}$ and a duplicated genome \mathbb{B}^f_{\diamond} , the **breakpoint double distance** is defined as:

$$\mathsf{d}^2_{\scriptscriptstyle{\mathrm{BP}}}(\mathbb{A}^f_{\scriptscriptstyle{\triangleright}},\mathbb{B}^f_{\scriptscriptstyle{\diamond}}) = \min_{\mathbb{A}^f_{\scriptscriptstyle{\bowtie}} \in 2 \cdot \mathbb{A}^f_{\scriptscriptstyle{\triangleright}}} \mathsf{d}_{\scriptscriptstyle{\mathrm{BP}}}(\mathbb{A}^f_{\scriptscriptstyle{\bowtie}},\mathbb{B}^f_{\scriptscriptstyle{\diamond}})$$

Ex:
$$\mathbb{A}^f_{\triangleright} = [\overline{2} \, 1 \, \overline{3}]$$
 and $\mathbb{B}^f_{\diamond} = [3\overline{1} \, \overline{2} \, 3 \, \overline{1} \, 2]$

Quiz

Given genomes $\mathbb{A}^f = (1234) \ [15\overline{4}5\overline{3}\overline{2}]$, $\mathbb{B}^f_{\triangleright} = [12345]$ and $\mathbb{C}^f_{\triangleright} = [\overline{2}\overline{1}] \ [\overline{4}\overline{3}5]$.

- 1 Which of the following statements are true?
 3 What is the breakpoint distance of B^f_b and C^f_b?
 A Genome A is linear.
 B Genome A is multichromosomal.
 B 2
 C Genome A^f is duplicated.
 C 2.5
 D Genome A^f is doubled.
 D 3
 2 How many families occur in genome A^f?
 4 What is the breakpoint double distance of A^f and B^f_b?
 - A 4 A 4 B 5 B 4.2 C 5.5 C 4.5
 - D 6 D 5

Reference

Multichromosomal median and halving problems under different genomic distances

(Eric Tannier, Chunfang Zheng and David Sankoff)

BMC Bioinformatics volume 10, Article number: 120 (2009)