Topics of today:

1. Recall concepts from lecture 01
2. Single-cut-or-join model, distance and double-distance
3. Formalizing the number of occurrences (ϕ) of families/adjacencies/telomeres
4. Other problems: median and halving

Types of genome pairs/sets

Pair/set of singular genomes:

each family occurs at most once in each genome

Pair/set of balanced genomes:

each family occurs the same number of times in each genome

Pair/set of canonical genomes: singular and balanced

Singular/duplicated canonical pair: one genome is singular, the other is duplicated and the gene families of both genomes are the same

Definitions / notation (family-based setting)

Given genomes $\mathbb{G}_{1}^{f}, \mathbb{G}_{2}^{f}, \ldots, \mathbb{G}_{k}^{f}$:

- Set of common families (occurring in each \mathbb{G}_{i}^{f}):

$$
\mathcal{F}_{\star}=\mathcal{F}\left(\mathbb{G}_{1}^{f}\right) \cap \mathcal{F}\left(\mathbb{G}_{2}^{f}\right) \cap \ldots \cap \mathcal{F}\left(\mathbb{G}_{k}^{f}\right)
$$

- (Multi)set of annotated common markers:

$$
\begin{aligned}
& \mathcal{G}_{\star}=\mathcal{G}\left(\mathbb{G}_{1}^{f}\right) \cap \mathcal{G}\left(\mathbb{G}_{2}^{f}\right) \cap \ldots \cap \mathcal{G}\left(\mathbb{G}_{k}^{f}\right) \\
& \left|\mathcal{G}_{\star}\right|=n
\end{aligned}
$$

Type
singular:

$$
\begin{equation*}
\mathcal{F}_{\star}=\mathcal{G}_{\star} \tag{a}
\end{equation*}
$$

balanced: $\mathcal{F}_{\star}=\mathcal{F}\left(\mathbb{G}_{1}^{f}\right)=\mathcal{F}\left(\mathbb{G}_{2}^{f}\right)=\ldots=\mathcal{F}\left(\mathbb{G}_{k}^{f}\right)$ and $\mathcal{G}_{\star}=\mathcal{G}\left(\mathbb{G}_{1}^{f}\right)=\mathcal{G}\left(\mathbb{G}_{2}^{f}\right)=\ldots=\mathcal{G}\left(\mathbb{G}_{k}^{f}\right)$
canonical:
both (a) and (b)

Breakpoint distance

Given genomes \mathbb{A}^{f} and \mathbb{B}^{f}, let:

- $\Gamma_{\star}=\Gamma\left(\mathbb{A}^{f}\right) \cap \Gamma\left(\mathbb{B}^{f}\right)$ be the set of common adjacencies

$$
\left|\Gamma_{\star}\right|=a
$$

- $\Theta_{\star}=\Theta\left(\mathbb{A}^{f}\right) \cap \Theta\left(\mathbb{B}^{f}\right)$ be the set of common telomeres

$$
\left|\Theta_{\star}\right|=t
$$

The breakpoint distance of canonical genomes $\mathbb{A}_{\triangleright}^{f}$ and $\mathbb{B}_{\triangleright}^{f}$ is defined to be:

$$
\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)=n-a-\frac{t}{2}
$$

Breakpoint distance of balanced genomes

The breakpoint distance of balanced genomes \mathbb{A}^{f} and \mathbb{B}^{f} is:

$$
\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)=\min _{f_{m}} \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f_{m}}, \mathbb{B}_{\triangleright}^{f_{m}}\right)
$$

where f_{m} is any function that produces a maximal matching of f-families

Breakpoint distance of balanced genomes

The breakpoint distance of balanced genomes \mathbb{A}^{f} and \mathbb{B}^{f} is:

$$
\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)=\min _{f_{m}} \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f_{m}}, \mathbb{B}_{\triangleright}^{f_{m}}\right)
$$

where f_{m} is any function that produces a maximal matching of f-families
Greedy approach: take all common adjacencies/telomeres: $\left|\mathcal{G}_{\star}\right|-a-\frac{t}{2}=6-2-\frac{1}{2}=3.5$ may lead to inconsistencies

Breakpoint distance of balanced genomes

The breakpoint distance of balanced genomes \mathbb{A}^{f} and \mathbb{B}^{f} is:

$$
\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)=\min _{f_{m}} \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f_{m}}, \mathbb{B}_{\triangleright}^{f_{m}}\right)
$$

where f_{m} is any function that produces a maximal matching of f-families
Greedy approach: take all common adjacencies/telomeres: $\left|\mathcal{G}_{\star}\right|-a-\frac{t}{2}=6-2-\frac{1}{2}=3.5$ may lead to inconsistencies

Breakpoint distance of balanced genomes

The breakpoint distance of balanced genomes \mathbb{A}^{f} and \mathbb{B}^{f} is:

$$
\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)=\min _{f_{m}} \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f_{m}}, \mathbb{B}_{\triangleright}^{f_{m}}\right)
$$

where f_{m} is any function that produces a maximal matching of f-families
Greedy approach: take all common adjacencies/telomeres: $\left|\mathcal{G}_{\star}\right|-a-\frac{t}{2}=6-2-\frac{1}{2}=3.5$ may lead to inconsistencies

Breakpoint distance of balanced genomes

The breakpoint distance of balanced genomes \mathbb{A}^{f} and \mathbb{B}^{f} is:

$$
\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)=\min _{f_{m}} \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f_{m}}, \mathbb{B}_{\triangleright}^{f_{m}}\right)
$$

where f_{m} is any function that produces a maximal matching of f-families
Greedy approach: take all common adjacencies/telomeres: $\left|\mathcal{G}_{\star}\right|-a-\frac{t}{2}=6-2-\frac{1}{2}=3.5$ may lead to inconsistencies

Correct distance: $\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)=6-1-\frac{1}{2}=4.5$
The breakpoint distance of balanced genomes is NP-hard
[Blin, Chauve and Fertin, 2004: The breakpoint distance for signed sequences]

Breakpoint double distance

For a given singular genome $\mathbb{S}_{\triangleright}^{f}$, let $2 \cdot \mathbb{S}_{\triangleright}^{f}$ be the set of doubled genomes derived from $\mathbb{S}_{\triangleright}^{f}$.

We define:

- $\mathcal{G}\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right)=\mathcal{G}\left(\mathbb{S}_{\triangleright}^{f}\right) \oplus \mathcal{G}\left(\mathbb{S}_{\triangleright}^{f}\right)$: the multiset of markers in any doubled genome from the set $2 \cdot \mathbb{S}_{\triangleright}^{f}$
- $\Gamma\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right)=\Gamma\left(\mathbb{S}_{\triangleright}^{f}\right) \oplus \Gamma\left(\mathbb{S}_{\triangleright}^{f}\right)$: the multiset of adjacencies in any doubled genome from the set $2 \cdot \mathbb{S}_{\triangleright}^{f}$
- $\Theta\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right)=\Theta\left(\mathbb{S}_{\triangleright}^{f}\right) \oplus \Theta\left(\mathbb{S}_{\triangleright}^{f}\right)$: the multiset of telomeres in any doubled genome from the set $2 \cdot \mathbb{S}_{\triangleright}^{f}$

Breakpoint double distance:

$$
\begin{aligned}
\mathrm{d}_{\mathrm{BP}}^{2}\left(\mathbb{S}_{\triangleright}^{f}, \mathbb{D}_{\diamond}^{f}\right) & =\min _{\mathbb{P}_{\bowtie}^{f} \in 2 \cdot S_{\triangleright}^{f}} \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{P}_{\bowtie,}^{f}, \mathbb{D}_{\diamond}^{f}\right) \Rightarrow \begin{array}{c}
\text { greedy approach } \\
\text { is consistent }
\end{array} \\
& =n^{\prime}-\left|\Gamma\left(\mathbb{P}_{\bowtie}^{f}\right) \cap \Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|-\frac{\left|\Theta\left(\mathbb{P}_{\bowtie}^{f}\right) \cap \Theta\left(\mathbb{D}_{\diamond}^{f}\right)\right|}{2} \\
& =2 n-\left|\Gamma\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right) \cap \Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|-\frac{\left|\Theta\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right) \cap \Theta\left(\mathbb{D}_{\diamond}^{f}\right)\right|}{2}
\end{aligned}
$$

$$
\begin{aligned}
n & =\left|\mathcal{G}\left(\mathbb{S}_{\triangleright}^{f}\right)\right| \\
n^{\prime} & =\left|\mathcal{G}\left(\mathbb{P}_{\bowtie}^{f}\right) \cap \mathcal{G}\left(2 \cdot \mathbb{D}_{\diamond}^{f}\right)\right| \\
& =\left|\mathcal{G}\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right) \cap \mathcal{G}\left(2 \cdot \mathbb{D}_{\diamond}^{f}\right)\right| \\
& =\left|\mathcal{G}\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right)\right| \\
& =2\left|\mathcal{G}\left(\mathbb{S}_{\triangleright}^{f}\right)\right| \\
& =2 n
\end{aligned}
$$

Single-Cut-or-Join (SCJ) model

- A cut is an operation that breaks an adjacency of genome \mathbb{G} in two telomeres.
- A join is the reverse operation: joins two telomeres of \mathbb{G} into one adjacency.
- Any single cut or single join is a SCJ operation.

A canonical genome $\mathbb{G}_{\triangleright}^{f}$ can be represented by its set of adjacencies $\Gamma\left(\mathbb{G}_{\triangleright}^{f}\right)$
(the set of telomeres $\Theta\left(\mathbb{G}_{\triangleright}^{f}\right)$ can be derived from $\Gamma\left(\mathbb{G}_{\triangleright}^{f}\right)$)
Then, SCJ operations can be seen as set operations:

- A cut of an adjacency $x y: \Gamma\left(\mathbb{G}_{\triangleright}^{f}\right) \backslash\{x y\}$.
- A join of an adjacency $x y: \Gamma\left(\mathbb{G}_{\triangleright}^{f}\right) \cup\{x y\}$.

SCJ distance and sorting of canonical genomes

The SCJ distance $d_{S C J}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)$ is the minimum number of SCJs that transform $\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)$ into $\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)$
The only allowed operations are to remove an element from and to include an element in a set
A lower bound is derived from the simple difference between the two given sets:

$$
\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) \geq\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right|+\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|
$$

We can achieve this lower bound by ensuring that all adjacencies that must be included are available
(the corresponding involved extremities are "free"):

1. First, remove all elements of $\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)$ that are not present in $\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)$:

$$
\# \text { of single cut operations }=\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right|
$$

2. Then, include in $\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)$ all elements of $\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)$ that are not already present in $\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)$:

$$
\# \text { of single join operations }=\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|
$$

SCJ distance

$$
\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)=\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right|+\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|
$$

SCJ sorting of $\mathbb{A}_{\triangleright}^{f}$ into $\mathbb{B}_{\triangleright}^{f}$

$$
\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)=
$$

$$
\left\{1^{h} 3^{h}, 3^{t} 2^{h}, 2^{t} 4^{t}\right\}
$$

$$
\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)=
$$

$$
\left\{1^{h} 2^{t}, 2^{h} 3^{t}, 3^{h} 4^{t}\right\}
$$

SCJ sorting of $\mathbb{A}_{\triangleright}^{f}$ into $\mathbb{B}_{\triangleright}^{f}$

$$
\begin{array}{lcc}
\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)= & \left\{1^{h} 3^{h}, 3^{t} 2^{h}, 2^{t} 4^{t}\right\} \\
\Gamma\left(\mathbb{I}_{\triangleright}^{\prime f}\right)= & \Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \backslash\left\{1^{h} 3^{h}\right\}= & \left\{3^{t} 2^{h}, 2^{t} 4^{t}\right\} \\
\Gamma\left(\mathbb{I}_{\triangleright}^{\prime \prime f}\right)= & \Gamma\left(\mathbb{I}_{\triangleright}^{\prime f}\right) \backslash\left\{2^{t} 4^{t}\right\}= & \left\{3^{t} 2^{h}\right\} \\
\Gamma\left(\mathbb{I}_{\square}^{\prime \prime \prime f}\right)= & \Gamma\left(\mathbb{I}_{\triangleright}^{\prime \prime f}\right) \cup\left\{1^{h} 2^{t}\right\}= & \left\{1^{h} 2^{t}, 2^{h} 3^{t}\right\} \\
\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)= & \Gamma\left(\mathbb{I}_{\square}^{\prime \prime \prime f}\right) \cup\left\{3^{h} 4^{t}\right\}= & \left\{1^{h} 2^{t}, 2^{h} 3^{t}, 3^{h} 4^{t}\right\}
\end{array}
$$

Alternative formula for the SCJ distance of canonical genomes

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)=\underbrace{\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right|}+\underbrace{\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|} \\
&=\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|-\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \cap \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right| \\
&+\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right|-\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \cap \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right| \\
&=\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|+\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right|-2\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \cap \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right| \\
&=\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|+\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right|-2\left|\Gamma_{\star}\right|
\end{aligned}
$$

Note that: $\left|\Theta\left(\mathbb{A}_{\triangleright}^{f}\right)\right|=2\left(n-\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|\right) \Rightarrow\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|=n-\frac{\left|\Theta\left(\mathbb{A}_{\triangleright}^{f}\right)\right|}{2}$, where $n=\left|\mathcal{G}\left(\mathbb{A}_{\triangleright}^{f}\right)\right|$

$$
\begin{aligned}
\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) & =n-\frac{\left|\Theta\left(\mathbb{A}_{\triangleright}^{f}\right)\right|}{2}+n-\frac{\left|\Theta\left(\mathbb{B}_{\triangleright}^{f}\right)\right|}{2}-2\left|\Gamma_{\star}\right| \\
& =2 n-2 a-\frac{\left|\Theta\left(\mathbb{A}_{\triangleright}^{f}\right)\right|+\mid \Theta\left(\mathbb{B}_{\triangleright}^{f} \mid\right)}{2} \\
& =2 n-2 a-\kappa(\mathbb{A})-\kappa(\mathbb{B})
\end{aligned}
$$

$$
\text { where } n=\left|\mathcal{G}_{\star}\right|=\left|\mathcal{G}\left(\mathbb{A}_{\triangleright}^{f}\right)\right|=\left|\mathcal{G}\left(\mathbb{B}_{\triangleright}^{f}\right)\right|, a=\left|\Gamma_{\star}\right| \text { and }
$$

$\kappa($.$) is the number of linear chromosomes in the respective genome$

Breakpoint distance \times SCJ distance

$$
\begin{aligned}
\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) & =n-a-\frac{t}{2} \\
\mathrm{~d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) & =2 n-2 a-\kappa(\mathbb{A})-\kappa(\mathbb{B}) \\
& =2 n-2 a-\kappa(\mathbb{A})-\kappa(\mathbb{B})-t+t \\
& =2 n-2 a-t-\kappa(\mathbb{A})-\kappa(\mathbb{B})+t \\
& =2\left(n-a-\frac{t}{2}\right)-\kappa(\mathbb{A})-\kappa(\mathbb{B})+t \\
& =2 \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)-\kappa(\mathbb{A})-\kappa(\mathbb{B})+t
\end{aligned}
$$

For circular genomes:

$$
\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)=2 \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)
$$

In general:
$\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) \leq \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) \leq 2 \mathrm{~d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)$

Note that: $t \leq \kappa(\mathbb{A})+\kappa(\mathbb{B})$

SCJ double distance

The SCJ distance of balanced genomes \mathbb{A}^{f} and \mathbb{B}^{f} is:

$$
\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)=\min _{f_{m}} \mathrm{~d}_{\mathrm{SCJ}}\left(\mathbb{A}_{\triangleright}^{f_{m}}, \mathbb{B}_{\triangleright}^{f_{m}}\right)
$$

where f_{m} is any function that produces a maximal matching of the families defined by f

SCJ double distance:

$$
\begin{aligned}
\mathrm{d}_{\mathrm{SCJ}}^{2}\left(\mathbb{S}_{\triangleright}^{f}, \mathbb{D}_{\diamond}^{f}\right) & =\min _{\mathbb{P}_{\bowtie}^{f} \in 2 \cdot \mathrm{~S}_{\triangleright}^{f}} \mathrm{~d}_{\mathrm{SCJ}}\left(\mathbb{P}_{\bowtie}^{f}, \mathbb{D}_{\diamond}^{f}\right)=\text { greedy approach } \\
& =\left|\Gamma\left(\mathbb{P}_{\bowtie}^{f}\right) \backslash \Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|+\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right) \backslash \Gamma\left(\mathbb{P}_{\bowtie}^{f}\right)\right| \\
& =\left|\Gamma\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|+\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right) \backslash \Gamma\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right)\right|
\end{aligned}
$$

$E x: \mathbb{S}=[\overline{2} 1 \overline{3}]$ and $\mathbb{D}=\left[\begin{array}{lll}3 & \overline{1} & 3 \\ 1 & 2\end{array}\right]$

Quiz 1

Given genomes $\mathbb{G}_{1}^{f}=[\overline{2} \overline{1}][\overline{4} \overline{3} 5], \mathbb{G}_{2}^{f}=[12345]$ and $\mathbb{G}_{3}^{f}=(1234)$ [$\left.1 \overline{5} \overline{4} 5 \overline{3} \overline{2}\right]$:

1 What is the SCJ distance of \mathbb{G}_{1}^{f} and \mathbb{G}_{2}^{f} ?
A 2
A 6
B 2.5
B 7
C 3
C 7.5
D 4
D 8

Occurrences of families

Given a family X and a genome \mathbb{G}^{f}, let $\phi\left(\mathrm{X}, \mathbb{G}^{f}\right)$ be the number of occurrences of X in $\mathcal{G}\left(\mathbb{G}^{f}\right)$.

If genome $\mathbb{S}_{\triangleright}^{f}$ is singular, then $\phi\left(\mathrm{X}, \mathbb{S}_{\triangleright}^{f}\right)=1$ for each $\mathrm{X} \in \mathcal{F}\left(\mathbb{S}_{\triangleright}^{f}\right)$.

If genome $\mathbb{D}_{\diamond}^{f}$ is duplicated, then $\phi\left(\mathrm{X}, \mathbb{D}_{\diamond}^{f}\right)=2$ for each $\mathrm{X} \in \mathcal{F}\left(\mathbb{D}_{\diamond}^{f}\right)$.

If genomes $\mathbb{S}_{\triangleright}^{f}$ and $\mathbb{S}_{\triangleright}^{\prime f}$ are canonical, then

$$
\mathcal{F}_{\star}=\mathcal{F}\left(\mathbb{S}_{\triangleright}^{f}\right)=\mathcal{F}\left(\mathbb{S}_{\triangleright}^{\prime f}\right) \text { and } \phi\left(\mathrm{X}, \mathbb{S}_{\triangleright}^{f}\right)=\phi\left(\mathrm{X}, \mathbb{S}_{\triangleright}^{\prime f}\right)=1 \text { for each } \mathrm{X} \in \mathcal{F}_{\star} .
$$

If genomes \mathbb{B}_{1}^{f} and \mathbb{B}_{2}^{f} are balanced, then

$$
\mathcal{F}_{\star}=\mathcal{F}\left(\mathbb{B}_{1}^{f}\right)=\mathcal{F}\left(\mathbb{B}_{2}^{f}\right) \text { and } \phi\left(\mathrm{X}, \mathbb{B}_{1}^{f}\right)=\phi\left(f, \mathbb{B}_{2}^{f}\right) \text { for each } \mathrm{X} \in \mathcal{F}_{\star}
$$

A maximal matching of the genes of two genomes \mathbb{A}_{1}^{f} and \mathbb{A}_{2}^{f} has size:

$$
\sum_{\mathrm{x} \in=\mathcal{F}\left(\mathbb{A}_{1}^{f}\right) \cup \mathcal{F}\left(\mathbb{A}_{2}^{f}\right)} \min \left\{\phi\left(\mathrm{X}, \mathbb{A}_{1}^{f}\right), \phi\left(\mathrm{X}, \mathbb{A}_{2}^{f}\right)\right\}
$$

Occurrences of adjacencies

Given an adjacency $x y$ and a genome \mathbb{G}^{f}, let $\phi\left(x y, \mathbb{G}^{f}\right)$ be the number of occurrences of $x y$ in $\Gamma\left(\mathbb{G}^{f}\right)$.

If genome $\mathbb{S}_{\triangleright}^{f}$ is singular, then $\phi\left(x y, \mathbb{S}_{\triangleright}^{f}\right)= \begin{cases}1, & x y \in \Gamma\left(\mathbb{S}_{\triangleright}^{f}\right), \\ 0, & x y \notin \Gamma\left(\mathbb{S}_{\triangleright}^{f}\right) .\end{cases}$

If genome $\mathbb{D}_{\diamond}^{f}$ is duplicated, then $\phi(x y, \mathbb{D}) \in\{0,1,2\}$.

Given an adjacency $x y$ and a set of k genomes $\mathcal{A}^{f}=\left\{\mathbb{A}_{1}^{f}, \mathbb{A}_{2}^{f}, \ldots, \mathbb{A}_{k}^{f}\right\}$, we define:

$$
\phi\left(x y, \mathcal{A}^{f}\right)=\phi\left(x y, \mathbb{A}_{1 . . k}^{f}\right)=\sum_{i=1}^{k} \phi\left(x y, \mathbb{A}_{i}^{f}\right)
$$

Occurrences of telomeres

Given a telomere x and a genome \mathbb{G}^{f}, let $\phi\left(x, \mathbb{G}^{f}\right)$ be the number of occurrences of x in $\Theta\left(\mathbb{G}^{f}\right)$.

If genome $\mathbb{S}_{\triangleright}^{f}$ is singular, then $\phi\left(x, \mathbb{S}_{\triangleright}^{f}\right)= \begin{cases}1, & x \in \Theta\left(\mathbb{S}_{\triangleright}^{f}\right), \\ 0, & x \notin \Theta\left(\mathbb{S}_{\triangleright}^{f}\right) .\end{cases}$

If genome $\mathbb{D}_{\diamond}^{f}$ is duplicated, then $\phi(x, \mathbb{D}) \in\{0,1,2\}$.

Given a telomere x and a set of k genomes $\mathcal{A}^{f}=\left\{\mathbb{A}_{1}^{f}, \mathbb{A}_{2}^{f}, \ldots, \mathbb{A}_{k}^{f}\right\}$, we define:

$$
\phi\left(x, \mathcal{A}^{f}\right)=\phi\left(x, \mathbb{A}_{1 . . k}^{f}\right)=\sum_{i=1}^{k} \phi\left(x, \mathbb{A}_{i}^{f}\right)
$$

Quiz 2

1 Let $\mathbb{D}_{\diamond}^{f}=(1234)$ [$\left.1 \overline{5} \overline{4} 5 \overline{3} \overline{2}\right]$. Give, respectively, the values of $\phi\left(3^{h} 5^{t}, \mathbb{D}_{\diamond}^{f}\right), \phi\left(2^{h} 3^{t}, \mathbb{D}_{\diamond}^{f}\right), \phi\left(4^{h} 1^{t}, \mathbb{D}_{\diamond}^{f}\right), \phi\left(1^{t}, \mathbb{D}_{\diamond}^{f}\right):$
A 1, 1, 2, 0
C $0,2,1,1$
B 0, 2, 0, 2
D $1,2,0,2$

2 Let $\mathbb{C}_{1}^{f}=[12345]$ and $\mathbb{C}_{2}^{f}=[\overline{2} \overline{1}][\overline{4} \overline{3} 5]$. Give, respectively, the values of $\phi\left(3^{h} 5^{t},\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\right\}\right), \phi\left(2^{h} 3^{t},\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\right\}\right), \phi\left(1^{h} 2^{t},\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\right\}\right), \phi\left(1^{t},\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\right\}\right)$:
A $0,1,1,2$
C $1,1,2,0$
B 0, 1, 2, 2
D $1,2,0,2$

SCJ model - expressing the double distance via adjacency occurrences

$$
\begin{aligned}
\mathrm{d}_{\mathrm{SCJ}}^{2}\left(\mathbb{S}_{\triangleright}^{f}, \mathbb{D}_{\diamond}^{f}\right) & =\left|\Gamma\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|+\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right) \backslash \Gamma\left(2 \cdot \mathbb{S}_{\triangleright}^{f}\right)\right| \\
& =\sum_{x y \in \Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)}\left(2-\phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right)+\sum_{x y \notin \Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right) \\
& =\sum_{x y}\left[\phi\left(x y, \mathbb{H}_{\triangleright}^{f}\right) \cdot\left(2-\phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right)+\left(1-\phi\left(x y, \mathbb{H}_{\triangleright}^{f}\right)\right) \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right] \\
& =\sum_{x y}\left[2 \cdot \phi\left(x y, \mathbb{H}_{\triangleright}^{f}\right)-\phi\left(x y, \mathbb{H}_{\triangleright}^{f}\right) \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)+\phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)-\phi\left(x y, \mathbb{H}_{\triangleright}^{f}\right) \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right] \\
& =\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|+\sum_{x y}\left[\phi\left(x y, \mathbb{H}_{\diamond}^{f}\right)\left(2-2 \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right)\right] \\
& =\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|+\sum_{x y \in \Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)}\left(2-2 \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right)
\end{aligned}
$$

SCJ halving of a duplicated genome

Given a duplicated genome $\mathbb{D}_{\diamond}^{f}$, find a singular genome $\mathbb{H}_{\triangleright}^{f}$ that minimizes the SCJ double distance:

$$
\begin{aligned}
\mathrm{d}_{\mathrm{SCJ}}^{2}\left(\mathbb{H}_{\triangleright}^{f}, \mathbb{D}_{\diamond}^{f}\right)=\mathrm{d}_{\mathrm{SCJ}}\left(2 \cdot \mathbb{H}_{\triangleright}^{f}, \mathbb{D}_{\diamond}^{f}\right) & =\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|+\sum_{x y \in \Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)}\left(2-2 \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right) \\
& =\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|+\omega\left(\mathbb{H}_{\triangleright}^{f}\right)
\end{aligned}
$$

Since $\left|\Gamma\left(\mathbb{D}_{\diamond}^{f}\right)\right|$ is given (does not depend on $\left.\mathbb{H}_{\triangleright}^{f}\right)$, for minimizing $d_{\text {SCJ }}^{2}\left(\mathbb{H}_{\triangleright}^{f}, \mathbb{D}_{\diamond}^{f}\right)$ we need to minimize:

$$
\omega\left(\mathbb{H}_{\triangleright}^{f}\right)=\sum_{x y \in \Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)} \omega(x y)=\sum_{x y \in \Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)}\left(2-2 \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)\right), \text { where } \omega(x y)=2-2 \cdot \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right) \in\{-2,0,+2\}
$$

For minimizing $\omega\left(\mathbb{H}_{\triangleright}^{f}\right)$:

- Do not add to $\mathbb{H}_{\triangleright}^{f}$ any adjacency $x z$ that have $\omega(x z)>0$: this happens when $\phi\left(x z, \mathbb{D}_{\diamond}^{f}\right)=0\left(x z\right.$ does not occur in $\left.\mathbb{D}_{\diamond}^{f}\right)$.
- Add to $\mathbb{H}_{\triangleright}^{f}$ any adjacency $x y$ that have $\omega(x y)<0$: this happens when $\phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)=2\left(x y\right.$ occurs twice in $\left.\mathbb{D}_{\diamond}^{f}\right)$.
- For $z \neq y: \omega(x z)>0 \Leftrightarrow \omega(x y)<0$.
- Any adjacency $x y$ with $\omega(x y)=0$ (occurs once in $\mathbb{D}_{\diamond}^{f}$) is optional (can be added to $\mathbb{H}_{\triangleright}^{f}$ or not).

Solution with the minimum number of adjacencies: $\Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)=\left\{x y: \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right)=2\right\}$
Solution with the maximum number of adjacencies: $\Gamma\left(\mathbb{H}_{\triangleright}^{f}\right)=\left\{x y: \phi\left(x y, \mathbb{D}_{\diamond}^{f}\right) \geq 1\right\}$

SCJ median of three canonical genomes

Given three canonical genomes $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$ and \mathbb{C}_{3}^{f}, find another genome $\mathbb{M}_{\triangleright}^{f}$ such that:

1. $\mathbb{M}_{\triangleright}^{f}$ is canonical with $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$ and \mathbb{C}_{3}^{f},
2. $\mathbb{M}_{\triangleright}^{f}$ minimizes the sum $\mathbf{s}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}\right)=d_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{1}^{f}\right)+\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{2}^{f}\right)+\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{3}^{f}\right)$.

$$
\begin{array}{rlrl}
\text { Note that: } \quad \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{i}^{f}\right) & = & \left|\Gamma\left(\mathbb{M}_{\triangleright}^{f}\right) \backslash \Gamma\left(\mathbb{C}_{i}^{f}\right)\right| & \\
& =\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)}\left(1-\phi\left(x y, \mathbb{C}_{i}^{f}\right)\right) & +\sum_{x y \notin\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{i}^{f}\right)
\end{array}
$$

Therefore:

$$
\begin{aligned}
\mathbf{s}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}\right)= & \sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)}\left[1-\phi\left(x y, \mathbb{C}_{1}^{f}\right)\right)+\left(1-\phi\left(x y, \mathbb{C}_{2}^{f}\right)\right)+\left(1-\phi\left(x y, \mathbb{C}_{3}^{f}\right)\right] \\
& +\sum_{x y \notin \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)}\left[\phi\left(x y, \mathbb{C}_{1}^{f}\right)+\phi\left(x y, \mathbb{C}_{2}^{f}\right)+\phi\left(x y, \mathbb{C}_{3}^{f}\right)\right] \\
= & \sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)}\left(3-\phi\left(x y, \mathbb{C}_{1.3}^{f}\right)\right)+\sum_{x y \notin \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right) \\
= & \sum_{x y}\left[\phi\left(x y, \mathbb{M}_{\triangleright}^{f}\right) \cdot\left(3-\phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right)\right)+\left(1-\phi\left(x y, \mathbb{M}_{\triangleright}^{f}\right)\right) \cdot \phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right)\right] \\
= & \sum_{x y}\left[3 \cdot \phi\left(x y, \mathbb{M}_{\triangleright}^{f}\right)-\phi\left(x y, \mathbb{M}_{\triangleright}^{f}\right) \cdot \phi\left(x y, \mathbb{C}_{1.3}^{f}\right)+\phi\left(x y, \mathbb{C}_{1.3}^{f}\right)-\phi\left(x y, \mathbb{M}_{\triangleright}^{f}\right) \cdot \phi\left(x y, \mathbb{C}_{1.3}^{f}\right)\right] \\
= & \left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{3}^{f}\right)\right|+\sum_{x y}\left[\phi\left(x y, \mathbb{M}_{\triangleright}^{f}\right)\left(3-2 \cdot \phi\left(x y, \mathbb{C}_{1.3}^{f}\right)\right)\right] \\
= & \left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{3}^{f}\right)\right|+\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)}\left(3-2 \cdot \phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right)\right)
\end{aligned}
$$

SCJ median of three canonical genomes

$$
\begin{aligned}
\mathbf{s}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}\right) & =\left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{3}^{f}\right)\right|+\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)}\left(3-2 \cdot \phi\left(x y, \mathbb{C}_{1.3}^{f}\right)\right) \\
& =\left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{3}^{f}\right)\right|+\omega\left(\mathbb{M}_{\triangleright}^{f}\right)
\end{aligned}
$$

Since $\left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{3}^{f}\right)\right|$ is given (does not depend on $\left.\mathbb{M}_{\triangleright}^{f}\right)$, for minimizing $\mathbf{s}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}\right)$ we need to minimize:

$$
\omega\left(\mathbb{M}_{\triangleright}^{f}\right)=\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \omega(x y)=\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)}\left(3-2 \cdot \phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right)\right)
$$

where $\omega(x y)=3-2 \cdot \phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right) \in\{-3,-1,+1,+3\}$.
For minimizing $\omega\left(\mathbb{M}_{\triangleright}^{f}\right)$:

- Do not add to $\mathbb{M}_{\triangleright}^{f}$ any adjacency $x z$ that have $\omega(x z)>0$: this happens when $\phi\left(x z, \mathbb{C}_{1 . .3}^{f}\right) \leq 1\left(x z\right.$ occurs in at most one genome among $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$ and $\left.\mathbb{C}_{3}^{f}\right)$.
- Add to $\mathbb{M}_{\triangleright}^{f}$ any adjacency $x y$ that have $\omega(x y)<0$:
this happens when $\phi\left(x y, \mathbb{C}_{1.3}^{f}\right) \geq 2\left(x y\right.$ occurs in at least two genomes among $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$ and $\left.\mathbb{C}_{3}^{f}\right)$.
- For $z \neq y: \omega(x z)>0 \Leftrightarrow \omega(x y)<0$.

There is no adjacency $x y$ with $\omega(x y)=0$. Therefore, the SCJ median problem has a unique solution:

$$
\Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)=\left\{x y: \phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right) \geq 2\right\}
$$

SCJ median of three canonical genomes - intuition

Let $\quad \mathcal{F}_{\star}=\mathcal{G}_{\star}=\{1,2,3, \ldots, n\}$
and start with $\mathbb{M}_{\triangleright}^{f}=[1][2] \ldots[n]$

$$
\Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)=\emptyset \quad \text { and } \quad \mathrm{s}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}\right)=\left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{3}^{f}\right)\right|
$$

Effect of adding an adjacency $x y$ to $\mathbb{M}_{\triangleright}^{f}$:

1. If $x y$ is not present in any genome among $\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \mathbb{C}_{3}^{f}\right\}$, then $\Delta \mathbf{s}_{\mathrm{SCJ}}=+3$.
2. If $x y$ is present in exactly one genome among $\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \mathbb{C}_{3}^{f}\right\}$, then $\Delta \mathbf{s}_{\mathrm{SCJ}}=+1$. $\left(\Delta \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{i}^{f}\right)=-1\right.$, but $\left.2 \times \Delta \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{i}^{f}\right)=+1\right)$
3. If $x y$ is present in exactly two genomes among $\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \mathbb{C}_{3}^{f}\right\}$, then $\Delta \mathrm{s}_{\mathrm{SCJ}}=-1$. $\left(2 \times \Delta \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{i}^{f}\right)=-1\right.$, but $\left.\Delta \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{i}^{f}\right)=+1\right)$
4. If $x y$ is present in all three genomes $\left\{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \mathbb{C}_{3}^{f}\right\}$, then $\Delta \mathrm{s}_{\mathrm{SCJ}}=-3$.

SCJ median of k canonical genomes

Given k canonical genomes $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \ldots \mathbb{C}_{k}^{f}$, find another canonical genome $\mathbb{M}_{\triangleright}^{f}$ that minimizes the sum:

$$
\begin{aligned}
\mathbf{s}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}\right) & =\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{1}^{f}\right)+\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{2}^{f}\right)+\ldots+\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{k}^{f}\right) \\
& =\left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\ldots+\left|\Gamma\left(\mathbb{C}_{k}^{f}\right)\right|+\omega\left(\mathbb{M}_{\triangleright}^{f}\right)
\end{aligned}
$$

Analogously to the median of three genomes, we need to minimize:

$$
\omega\left(\mathbb{M}_{\triangleright}^{f}\right)=\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \omega(x y)
$$

where $\omega(x y)=k-2 \cdot \phi\left(x y, \mathbb{C}_{1 . . k}^{f}\right) \in\{-k,-k+2, \ldots,+k-2,+k\}$.
For minimizing $\omega\left(\mathbb{M}_{\triangleright}^{f}\right)$:

- Do not add to $\mathbb{M}_{\triangleright}^{f}$ any adjacency $x z$ that have $\omega(x z)>0$: this happens when $\phi\left(x z, \mathbb{C}_{1 . . k}^{f}\right)<\frac{k}{2}\left(x z\right.$ occurs in less than half of the genomes among $\left.\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \ldots, \mathbb{C}_{k}^{f}\right)$.
- Add to $\mathbb{M}_{\triangleright}^{f}$ any adjacency xy that have $\omega(x y)<0$:
this happens when $\phi\left(x y, \mathbb{C}_{1.3}^{f}\right)>\frac{k}{2}\left(x y\right.$ occurs in more than half of the genomes among $\left.\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \ldots, \mathbb{C}_{k}^{f}\right)$.
- For $z \neq y: \omega(x z)>0 \Leftrightarrow \omega(x y)<0$.
- Any adjacency $x y$ with $\omega(x y)=0$ is optional (can be added to the median or not). If there is no such an adjacency (e.g., if k is odd), the SCJ median problem has a unique solution.

In general, the following set of adjacencies define a SCJ median of k genomes:

$$
\Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)=\left\{x y: \phi\left(x y, \mathbb{C}_{1 . . k}^{f}\right)>\frac{k}{2}\right\}
$$

SCJ linear median of k canonical linear genomes

1. Compute the general SCJ median $\mathbb{M}_{\triangleright}^{f}$ as described above.
2. For each circular chromosome in $\mathbb{M}_{\triangleright}^{f}$, remove one adjacency $x y$ with smallest weight $\omega(x y)$.

Quiz 3

1 Which of the following statements are true?

A The SCJ halving is always satisfied by a unique singular genome.
B The SCJ halving cannot be satisfied by a unique singular genome.
C The SCJ median of four canonical genomes is always unique.
D The SCJ median of four canonical genomes cannot be unique.
E The SCJ median of three canonical genomes is always unique.
F The SCJ linear median of three canonical linear genomes is always unique.

References

Multichromosomal median and halving problems under different genomic distances (Eric Tannier, Chunfang Zheng and David Sankoff)

BMC Bioinformatics volume 10, Article number: 120 (2009)

SCJ: A Breakpoint-Like Distance that Simplifies Several Rearrangement Problems
(Pedro Feijão and João Meidanis)
TCBB volume 8 Number: 5 (2011)

