## Topics of today:

- 1. Recall concepts from lecture 01
- 2. Single-cut-or-join model, distance and double-distance
- 3. Formalizing the number of occurrences ( $\phi$ ) of families/adjacencies/telomeres
- 4. Other problems: median and halving

# Types of genome pairs/sets

#### Pair/set of singular genomes:

each family occurs at most once in each genome



Pair/set of canonical genomes: singular and balanced



#### Pair/set of balanced genomes:

each family occurs the same number of times in each genome

#### Singular/duplicated canonical pair:

one genome is singular, the other is duplicated and the gene families of both genomes are the same

(whole genome duplication)

## Definitions / notation (family-based setting)

Given genomes  $\mathbb{G}_1^f, \mathbb{G}_2^f, \dots, \mathbb{G}_k^f$ :

▶ Set of **common families** (occurring in each 𝔅<sup>*f*</sup><sub>*i*</sub>):

 $\mathcal{F}_{\star} = \mathcal{F}(\mathbb{G}_1^f) \cap \mathcal{F}(\mathbb{G}_2^f) \cap ... \cap \mathcal{F}(\mathbb{G}_k^f)$ 

(Multi)set of annotated common markers:

$$\mathcal{G}_{\star} = \mathcal{G}(\mathbb{G}_{1}^{f}) \cap \mathcal{G}(\mathbb{G}_{2}^{f}) \cap ... \cap \mathcal{G}(\mathbb{G}_{k}^{f})$$
$$|\mathcal{G}_{\star}| = n$$

| Туре        |                                                                                                                                                                                                                                                            |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| singular:   | $\mathcal{F}_{\star} = \mathcal{G}_{\star}$ (a)                                                                                                                                                                                                            |
| balanced: J | $\mathcal{F}_{\star} = \mathcal{F}(\mathbb{G}_1^f) = \mathcal{F}(\mathbb{G}_2^f) = = \mathcal{F}(\mathbb{G}_k^f) \text{ and } \mathcal{G}_{\star} = \mathcal{G}(\mathbb{G}_1^f) = \mathcal{G}(\mathbb{G}_2^f) = = \mathcal{G}(\mathbb{G}_k^f) \text{ (b)}$ |
| canonical:  | both (a) and (b)                                                                                                                                                                                                                                           |

## Breakpoint distance

Given genomes  $\mathbb{A}^{f}$  and  $\mathbb{B}^{f},$  let:

Γ<sub>\*</sub> = Γ(A<sup>f</sup>) ∩ Γ(B<sup>f</sup>) be the set of common adjacencies
 |Γ<sub>\*</sub>| = a

• 
$$\Theta_{\star} = \Theta(\mathbb{A}^{f}) \cap \Theta(\mathbb{B}^{f})$$
 be the set of **common telomeres**  
 $|\Theta_{\star}| = t$ 

The breakpoint distance of canonical genomes  $\mathbb{A}^f_{\triangleright}$  and  $\mathbb{B}^f_{\triangleright}$  is defined to be:



The breakpoint distance of **balanced genomes**  $\mathbb{A}^f$  and  $\mathbb{B}^f$  is:

$$\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f},\mathbb{B}^{f})=\min_{f_{m}}\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f_{m}}_{\scriptscriptstyle\!\vartriangleright},\mathbb{B}^{f_{m}}_{\scriptscriptstyle\!\vartriangleright})$$

where  $f_m$  is any function that produces a maximal matching of f-families



The breakpoint distance of **balanced genomes**  $\mathbb{A}^f$  and  $\mathbb{B}^f$  is:

$$\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f},\mathbb{B}^{f})=\min_{f_{m}}\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f_{m}}_{\scriptscriptstyle\!\vartriangleright},\mathbb{B}^{f_{m}}_{\scriptscriptstyle\!\vartriangleright})$$

where  $f_m$  is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres:  $|\mathcal{G}_{\star}| - a - \frac{t}{2} = 6 - 2 - \frac{1}{2} = 3.5$ may lead to inconsistencies



The breakpoint distance of **balanced genomes**  $\mathbb{A}^f$  and  $\mathbb{B}^f$  is:

$$\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f},\mathbb{B}^{f})=\min_{f_{m}}\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f_{m}}_{\scriptscriptstyle\!\vartriangleright},\mathbb{B}^{f_{m}}_{\scriptscriptstyle\!\vartriangleright})$$

where  $f_m$  is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres:  $|\mathcal{G}_{\star}| - a - \frac{t}{2} = 6 - 2 - \frac{1}{2} = 3.5$ may lead to inconsistencies



The breakpoint distance of **balanced genomes**  $\mathbb{A}^f$  and  $\mathbb{B}^f$  is:

$$\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f},\mathbb{B}^{f})=\min_{f_{m}}\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f_{m}}_{\triangleright},\mathbb{B}^{f_{m}}_{\triangleright})$$

where  $f_m$  is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres:  $|\mathcal{G}_{\star}| - a - \frac{t}{2} = 6 - 2 - \frac{1}{2} = 3.5$ may lead to inconsistencies



The breakpoint distance of **balanced genomes**  $\mathbb{A}^f$  and  $\mathbb{B}^f$  is:

$$\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f},\mathbb{B}^{f})=\min_{f_{m}}\mathsf{d}_{\scriptscriptstyle\mathrm{BP}}(\mathbb{A}^{f_{m}}_{\scriptscriptstyle \vartriangleright},\mathbb{B}^{f_{m}}_{\scriptscriptstyle \vartriangleright})$$

where  $f_m$  is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres:  $|\mathcal{G}_{\star}| - a - \frac{t}{2} = 6 - 2 - \frac{1}{2} = 3.5$ may lead to inconsistencies

Correct distance:  $d_{BP}(\mathbb{A}^f, \mathbb{B}^f) = 6 - 1 - \frac{1}{2} = 4.5$ 

The breakpoint distance of balanced genomes is NP-hard [Blin, Chauve and Fertin, 2004: The breakpoint distance for signed sequences]

#### Breakpoint double distance

For a given singular genome  $\mathbb{S}^f_{\triangleright}$ , let  $2 \cdot \mathbb{S}^f_{\triangleright}$  be the set of doubled genomes derived from  $\mathbb{S}^f_{\triangleright}$ .

We define:

•  $\mathcal{G}(2 \cdot \mathbb{S}^{f}_{\triangleright}) = \mathcal{G}(\mathbb{S}^{f}_{\triangleright}) \oplus \mathcal{G}(\mathbb{S}^{f}_{\triangleright})$ : the multiset of **markers** in any doubled genome from the set  $2 \cdot \mathbb{S}^{f}_{\triangleright}$ 

•  $\Gamma(2 \cdot \mathbb{S}^{f}_{\triangleright}) = \Gamma(\mathbb{S}^{f}_{\triangleright}) \oplus \Gamma(\mathbb{S}^{f}_{\triangleright})$ : the multiset of **adjacencies** in any doubled genome from the set  $2 \cdot \mathbb{S}^{f}_{\triangleright}$ 

•  $\Theta(2 \cdot \mathbb{S}^f_{\triangleright}) = \Theta(\mathbb{S}^f_{\triangleright}) \oplus \Theta(\mathbb{S}^f_{\triangleright})$ : the multiset of **telomeres** in any doubled genome from the set  $2 \cdot \mathbb{S}^f_{\triangleright}$ 

Breakpoint double distance:  

$$d_{BP}^{2}(\mathbb{S}_{P}^{f}, \mathbb{D}_{Q}^{f}) = \min_{\mathbb{P}_{PQ}^{f} \in 2 \cdot \mathbb{S}_{P}^{f}} d_{BP}(\mathbb{P}_{PQ}^{f}, \mathbb{D}_{Q}^{f}) \Rightarrow \text{greedy approach} \text{ is consistent}$$

$$= n' - |\Gamma(\mathbb{P}_{PQ}^{f}) \cap \Gamma(\mathbb{D}_{Q}^{f})| - \frac{|\Theta(\mathbb{P}_{PQ}^{f}) \cap \Theta(\mathbb{D}_{Q}^{f})|}{2}$$

$$= 2n - |\Gamma(2 \cdot \mathbb{S}_{P}^{f}) \cap \Gamma(\mathbb{D}_{Q}^{f})| - \frac{|\Theta(2 \cdot \mathbb{S}_{P}^{f}) \cap \Theta(\mathbb{D}_{Q}^{f})|}{2}$$

$$n = |\mathcal{G}(\mathbb{S}^{f}_{\triangleright})|$$

$$n' = |\mathcal{G}(\mathbb{P}^{f}_{\bowtie}) \cap \mathcal{G}(2 \cdot \mathbb{D}^{f}_{\diamond})|$$

$$= |\mathcal{G}(2 \cdot \mathbb{S}^{f}_{\triangleright}) \cap \mathcal{G}(2 \cdot \mathbb{D}^{f}_{\diamond})|$$

$$= |\mathcal{G}(2 \cdot \mathbb{S}^{f}_{\triangleright})|$$

$$= 2|\mathcal{G}(\mathbb{S}^{f}_{\triangleright})|$$

$$= 2n$$

# Single-Cut-or-Join (SCJ) model

- $\blacktriangleright$  A cut is an operation that breaks an adjacency of genome  $\mathbb G$  in two telomeres.
- $\blacktriangleright$  A join is the reverse operation: joins two telomeres of  $\mathbb{G}$  into one adjacency.
- Any single cut or single join is a SCJ operation.



A canonical genome  $\mathbb{G}^{f}_{\triangleright}$  can be represented by its set of adjacencies  $\Gamma(\mathbb{G}^{f}_{\triangleright})$ (the set of telomeres  $\Theta(\mathbb{G}^{f}_{\triangleright})$  can be derived from  $\Gamma(\mathbb{G}^{f}_{\triangleright})$ )

Then, SCJ operations can be seen as set operations:

- A cut of an adjacency xy:  $\Gamma(\mathbb{G}_{\triangleright}^{f}) \setminus \{xy\}$ .
- A join of an adjacency xy: Γ(𝔅<sup>f</sup><sub>▷</sub>) ∪ {xy}.

## SCJ distance and sorting of canonical genomes

The SCJ distance  $d_{SCJ}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright})$  is the minimum number of SCJs that transform  $\Gamma(\mathbb{A}^f_{\triangleright})$  into  $\Gamma(\mathbb{B}^f_{\triangleright})$ 

The only allowed operations are to remove an element from and to include an element in a set  $\searrow$  A lower bound is derived from the simple difference between the two given sets:

 $\mathsf{d}_{\mathrm{SCJ}}(\mathbb{A}^f_{\triangleright},\mathbb{B}^f_{\triangleright}) \ \geq \ |\Gamma(\mathbb{A}^f_{\triangleright})\setminus\Gamma(\mathbb{B}^f_{\triangleright})| \ + \ |\Gamma(\mathbb{B}^f_{\triangleright})\setminus\Gamma(\mathbb{A}^f_{\triangleright})|$ 

We can achieve this lower bound by ensuring that all adjacencies that must be included are available (the corresponding involved extremities are "free"):

1. First, remove all elements of  $\Gamma(\mathbb{A}^f_{\triangleright})$  that are not present in  $\Gamma(\mathbb{B}^f_{\triangleright})$ :

# of single cut operations =  $|\Gamma(\mathbb{A}^f_{\triangleright})\setminus\Gamma(\mathbb{B}^f_{\triangleright})|$ 

2. Then, include in  $\Gamma(\mathbb{A}^f_{\triangleright})$  all elements of  $\Gamma(\mathbb{B}^f_{\triangleright})$  that are not already present in  $\Gamma(\mathbb{A}^f_{\triangleright})$ :

# of single join operations  $= |\Gamma(\mathbb{B}^f_{\triangleright}) \setminus \Gamma(\mathbb{A}^f_{\triangleright})|$ 

| SCJ distance                                                                                  |   |                                                                   |   |                                                                   |  |
|-----------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------|---|-------------------------------------------------------------------|--|
| $d_{\mathrm{SCJ}}\big(\mathbb{A}^f_{\vartriangleright},\mathbb{B}^f_{\vartriangleright}\big)$ | = | $ \Gamma(\mathbb{A}^f_{ ho})\setminus\Gamma(\mathbb{B}^f_{ ho}) $ | + | $ \Gamma(\mathbb{B}^f_arphi)\setminus\Gamma(\mathbb{A}^f_arphi) $ |  |

SCJ sorting of  $\mathbb{A}^f_{\triangleright}$  into  $\mathbb{B}^f_{\triangleright}$ 





$$\Gamma(\mathbb{A}^{f}_{\triangleright}) = \{1^{h}3^{h}, 3^{t}2^{h}, 2^{t}4^{t}\}$$

$$\Gamma(\mathbb{I}'^{f}_{\triangleright}) = \Gamma(\mathbb{A}^{f}_{\triangleright}) \setminus \{1^{h}3^{h}\} = \{3^{t}2^{h}, 2^{t}4^{t}\}$$

$$\Gamma(\mathbb{I}''^{f}_{\triangleright}) = \Gamma(\mathbb{I}'^{f}_{\triangleright}) \setminus \{2^{t}4^{t}\} = \{3^{t}2^{h}\}$$

$$\Gamma(\mathbb{I}''^{f}_{\triangleright}) = \Gamma(\mathbb{I}''^{f}_{\triangleright}) \cup \{1^{h}2^{t}\} = \{1^{h}2^{t}, 2^{h}3^{t}\}$$

$$\Gamma(\mathbb{B}^{f}_{\triangleright}) = \Gamma(\mathbb{I}''^{f}_{\triangleright}) \cup \{3^{h}4^{t}\} = \{1^{h}2^{t}, 2^{h}3^{t}, 3^{h}4^{t}\}$$

SCJ sorting of  $\mathbb{A}^f_{\triangleright}$  into  $\mathbb{B}^f_{\triangleright}$ 

### Alternative formula for the SCJ distance of canonical genomes

$$\begin{split} \mathsf{d}_{\mathrm{SCJ}}(\mathbb{A}^{f}_{\mathbb{D}}, \mathbb{B}^{f}_{\mathbb{D}}) &= |\Gamma(\mathbb{A}^{f}_{\mathbb{D}}) \setminus \Gamma(\mathbb{B}^{f}_{\mathbb{D}})| + |\Gamma(\mathbb{B}^{f}_{\mathbb{D}}) \setminus \Gamma(\mathbb{A}^{f}_{\mathbb{D}})| \\ &= |\Gamma(\mathbb{A}^{f}_{\mathbb{D}})| - |\Gamma(\mathbb{A}^{f}_{\mathbb{D}}) \cap \Gamma(\mathbb{B}^{f}_{\mathbb{D}})| + |\Gamma(\mathbb{B}^{f}_{\mathbb{D}})| - |\Gamma(\mathbb{A}^{f}_{\mathbb{D}}) \cap \Gamma(\mathbb{B}^{f}_{\mathbb{D}})| \\ &= |\Gamma(\mathbb{A}^{f}_{\mathbb{D}})| + |\Gamma(\mathbb{B}^{f}_{\mathbb{D}})| - 2|\Gamma(\mathbb{A}^{f}_{\mathbb{D}}) \cap \Gamma(\mathbb{B}^{f}_{\mathbb{D}})| \\ &= |\Gamma(\mathbb{A}^{f}_{\mathbb{D}})| + |\Gamma(\mathbb{B}^{f}_{\mathbb{D}})| - 2|\Gamma_{\star}| \end{split}$$

Note that:  $|\Theta(\mathbb{A}^f_{\rhd})| = 2(n - |\Gamma(\mathbb{A}^f_{\rhd})|) \implies |\Gamma(\mathbb{A}^f_{\rhd})| = n - \frac{|\Theta(\mathbb{A}^f_{\rhd})|}{2}$ , where  $n = |\mathcal{G}(\mathbb{A}^f_{\rhd})|$ 

$$d_{\text{SCJ}}(\mathbb{A}^{f}_{\triangleright}, \mathbb{B}^{f}_{\triangleright}) = n - \frac{|\Theta(\mathbb{A}^{f}_{\triangleright})|}{2} + n - \frac{|\Theta(\mathbb{B}^{f}_{\triangleright})|}{2} - 2|\Gamma_{\star}|$$
$$= 2n - 2a - \frac{|\Theta(\mathbb{A}^{f}_{\triangleright})| + |\Theta(\mathbb{B}^{f}_{\triangleright})|}{2}$$
$$= 2n - 2a - \kappa(\mathbb{A}) - \kappa(\mathbb{B})$$

where  $n = |\mathcal{G}_{\star}| = |\mathcal{G}(\mathbb{A}^{f}_{\triangleright})| = |\mathcal{G}(\mathbb{B}^{f}_{\triangleright})|$ ,  $a = |\Gamma_{\star}|$  and  $\kappa(.)$  is the number of linear chromosomes in the respective genome

#### Breakpoint distance $\times$ SCJ distance

$$\mathsf{d}_{\mathrm{BP}}(\mathbb{A}^f_{\triangleright},\mathbb{B}^f_{\triangleright})=n-a-\frac{t}{2}$$

$$\begin{split} \mathsf{d}_{\mathrm{SCJ}}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright}) &= 2n - 2a - \kappa(\mathbb{A}) - \kappa(\mathbb{B}) \\ &= 2n - 2a - \kappa(\mathbb{A}) - \kappa(\mathbb{B}) - t + t \\ &= 2n - 2a - t - \kappa(\mathbb{A}) - \kappa(\mathbb{B}) + t \\ &= 2(n - a - \frac{t}{2}) - \kappa(\mathbb{A}) - \kappa(\mathbb{B}) + t \\ &= 2\mathsf{d}_{\mathrm{BP}}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright}) - \kappa(\mathbb{A}) - \kappa(\mathbb{B}) + t \end{split}$$

For circular genomes: 
$$\begin{split} \mathsf{d}_{\mathrm{SCJ}}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright}) &= 2\mathsf{d}_{\mathrm{BP}}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright}) \\ & \quad \mathsf{In \ general:} \\ \mathsf{d}_{\mathrm{BP}}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright}) &\leq \mathsf{d}_{\mathrm{SCJ}}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright}) \leq 2\mathsf{d}_{\mathrm{BP}}(\mathbb{A}^f_{\triangleright}, \mathbb{B}^f_{\triangleright}) \end{split}$$

Note that:  $t \leq \kappa(\mathbb{A}) + \kappa(\mathbb{B})$ 

## SCJ double distance

The SCJ distance of balanced genomes  $\mathbb{A}^f$  and  $\mathbb{B}^f$  is:

$$\mathsf{d}_{\mathrm{SCJ}}(\mathbb{A}^{f},\mathbb{B}^{f})=\min_{f_{m}}\mathsf{d}_{\mathrm{SCJ}}(\mathbb{A}^{f_{m}}_{\rhd},\mathbb{B}^{f_{m}}_{\rhd})$$

where  $f_m$  is any function that produces a maximal matching of the families defined by f

| SCJ double distance:                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $d^2_{\mathrm{SCJ}}(\mathbb{S}^f_{\triangleright},\mathbb{D}^f_{\diamond}) = \min_{\mathbb{P}^f_{\bowtie} \in 2 \cdot \mathbb{S}^f_{\triangleright}} d_{\mathrm{SCJ}}(\mathbb{P}^f_{\bowtie},\mathbb{D}^f_{\diamond}) = \texttt{greedy approach}$ |
| $=  \Gamma(\mathbb{P}^f_{\bowtie}) \setminus \Gamma(\mathbb{D}^f_{\diamond})  +  \Gamma(\mathbb{D}^f_{\diamond}) \setminus \Gamma(\mathbb{P}^f_{\bowtie}) $                                                                                       |
| $=  \Gamma(2{\cdot}\mathbb{S}^f_{\triangleright}) \setminus \Gamma(\mathbb{D}^f_{\diamond})  +  \Gamma(\mathbb{D}^f_{\diamond}) \setminus \Gamma(2{\cdot}\mathbb{S}^f_{\triangleright}) $                                                         |

Ex:  $\mathbb{S}=[\bar{2}\,1\,\bar{3}]$  and  $\mathbb{D}=[3\bar{1}\,\bar{2}\,3\,\bar{1}\,2]$ 

## Quiz 1

Given genomes  $\mathbb{G}_1^f = [\bar{2}\,\bar{1}] \ [\bar{4}\,\bar{3}\,5]$ ,  $\mathbb{G}_2^f = [1\,2\,3\,4\,5]$  and  $\mathbb{G}_3^f = (1\,2\,3\,4) \ [1\,\bar{5}\,\bar{4}\,5\,\bar{3}\,\bar{2}]$ :

| 1 What is the SCJ distance of $\mathbb{G}'_1$ and $\mathbb{G}'_2$ ? | 2 What is the SCJ double distance of $\mathbb{G}_2'$ and $\mathbb{G}_3'$ ? |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| A 2                                                                 | Α 6                                                                        |  |  |  |
| B 2.5                                                               | B 7                                                                        |  |  |  |
| C 3                                                                 | C 7.5                                                                      |  |  |  |
| D 4                                                                 | D 8                                                                        |  |  |  |

1 Multiple Colline Coff Lofa 2 Multiple Colline Processing Coff Lofa

#### Occurrences of families

Given a family X and a genome  $\mathbb{G}^{f}$ , let  $\phi(X, \mathbb{G}^{f})$  be the number of occurrences of X in  $\mathcal{G}(\mathbb{G}^{f})$ .

If genome  $\mathbb{S}^f_{\triangleright}$  is singular, then  $\phi(X, \mathbb{S}^f_{\triangleright}) = 1$  for each  $X \in \mathcal{F}(\mathbb{S}^f_{\triangleright})$ .

If genome  $\mathbb{D}^f_\diamond$  is duplicated, then  $\phi(X, \mathbb{D}^f_\diamond) = 2$  for each  $X \in \mathcal{F}(\mathbb{D}^f_\diamond)$ .

If genomes  $\mathbb{S}^f_{\rhd}$  and  $\mathbb{S'}^f_{\rhd}$  are canonical, then

$$\mathcal{F}_{\star} = \mathcal{F}(\mathbb{S}^{f}_{\triangleright}) = \mathcal{F}(\mathbb{S}'^{f}_{\triangleright}) \text{ and } \phi(\mathtt{X}, \mathbb{S}^{f}_{\triangleright}) = \phi(\mathtt{X}, \mathbb{S}'^{f}_{\triangleright}) = 1 \text{ for each } \mathtt{X} \in \mathcal{F}_{\star}$$

If genomes  $\mathbb{B}_1^f$  and  $\mathbb{B}_2^f$  are balanced, then

$$\mathcal{F}_{\star} = \mathcal{F}(\mathbb{B}_1^f) = \mathcal{F}(\mathbb{B}_2^f) \text{ and } \phi(\mathtt{X}, \mathbb{B}_1^f) = \phi(f, \mathbb{B}_2^f) \text{ for each } \mathtt{X} \in \mathcal{F}_{\star}$$

A maximal matching of the genes of two genomes  $\mathbb{A}_1^f$  and  $\mathbb{A}_2^f$  has size:

$$\sum_{\mathtt{X} \in =\mathcal{F}(\mathbb{A}_1^f) \cup \mathcal{F}(\mathbb{A}_2^f)} \min\{\phi(\mathtt{X}, \mathbb{A}_1^f), \phi(\mathtt{X}, \mathbb{A}_2^f)\}$$

#### Occurrences of adjacencies

Given an adjacency xy and a genome  $\mathbb{G}^{f}$ , let  $\phi(xy, \mathbb{G}^{f})$  be the number of occurrences of xy in  $\Gamma(\mathbb{G}^{f})$ .

If genome 
$$\mathbb{S}^f_{\triangleright}$$
 is singular, then  $\phi(xy, \mathbb{S}^f_{\triangleright}) = \begin{cases} 1, & xy \in \Gamma(\mathbb{S}^f_{\triangleright}), \\ 0, & xy \notin \Gamma(\mathbb{S}^f_{\triangleright}). \end{cases}$ 

If genome  $\mathbb{D}^{f}_{\diamond}$  is duplicated, then  $\phi(xy, \mathbb{D}) \in \{0, 1, 2\}$ .

Given an adjacency xy and a set of k genomes  $\mathcal{A}^f = \{\mathbb{A}_1^f, \mathbb{A}_2^f, \dots, \mathbb{A}_k^f\}$ , we define:

$$\phi(xy, \mathcal{A}^{f}) = \phi(xy, \mathbb{A}^{f}_{1..k}) = \sum_{i=1}^{k} \phi(xy, \mathbb{A}^{f}_{i})$$

#### Occurrences of telomeres

Given a telomere x and a genome  $\mathbb{G}^{f}$ , let  $\phi(x, \mathbb{G}^{f})$  be the number of occurrences of x in  $\Theta(\mathbb{G}^{f})$ .

If genome 
$$\mathbb{S}^f_{\rhd}$$
 is singular, then  $\phi(x, \mathbb{S}^f_{\rhd}) = \begin{cases} 1, & x \in \Theta(\mathbb{S}^f_{\rhd}), \\ 0, & x \notin \Theta(\mathbb{S}^f_{\rhd}). \end{cases}$ 

If genome  $\mathbb{D}^{f}_{\diamond}$  is duplicated, then  $\phi(x, \mathbb{D}) \in \{0, 1, 2\}$ .

Given a telomere x and a set of k genomes  $A^f = \{\mathbb{A}_1^f, \mathbb{A}_2^f, \dots, \mathbb{A}_k^f\}$ , we define:

$$\phi(\mathsf{x},\mathcal{A}^f) = \phi(\mathsf{x},\mathbb{A}^f_{1..k}) = \sum_{i=1}^k \phi(\mathsf{x},\mathbb{A}^f_i)$$

### Quiz 2

1 Let  $\mathbb{D}^{f}_{\diamond} = (1234) [1\bar{5}\bar{4}5\bar{3}\bar{2}]$ . Give, respectively, the values of  $\phi(3^{h}5^{t}, \mathbb{D}^{f}_{\diamond}), \phi(2^{h}3^{t}, \mathbb{D}^{f}_{\diamond}), \phi(4^{h}1^{t}, \mathbb{D}^{f}_{\diamond}), \phi(1^{t}, \mathbb{D}^{f}_{\diamond})$ : A 1, 1, 2, 0 C 0, 2, 1, 1

B 0, 2, 0, 2 D 1, 2, 0, 2

2 Let  $\mathbb{C}_{1}^{f} = [12345]$  and  $\mathbb{C}_{2}^{f} = [\overline{2}\,\overline{1}]$  [ $\overline{4}\,\overline{3}\,5$ ]. Give, respectively, the values of  $\phi(3^{h}5^{t}, \{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\}), \phi(2^{h}3^{t}, \{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\}), \phi(1^{h}2^{t}, \{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\}), \phi(1^{t}, \{\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}\})$ : A 0, 1, 1, 2 C 1, 1, 2, 0 B 0, 1, 2, 2 D 1, 2, 0, 2

# SCJ model - expressing the double distance via adjacency occurrences

$$\begin{split} d^{2}_{\mathrm{SCJ}}(\mathbb{S}^{f}_{\rhd}, \mathbb{D}^{f}_{\diamond}) &= |\Gamma(2 \cdot \mathbb{S}^{f}_{\rhd}) \setminus \Gamma(\mathbb{D}^{f}_{\diamond})| \quad + \quad |\Gamma(\mathbb{D}^{f}_{\diamond}) \setminus \Gamma(2 \cdot \mathbb{S}^{f}_{\rhd})| \\ &= \sum_{xy \in \Gamma(\mathbb{H}^{f}_{\rhd})} (2 - \phi(xy, \mathbb{D}^{f}_{\diamond})) \quad + \quad \sum_{xy \notin \Gamma(\mathbb{H}^{f}_{\rhd})} \phi(xy, \mathbb{D}^{f}_{\diamond}) \\ &= \sum_{xy} [ \ \phi(xy, \mathbb{H}^{f}_{\rhd}) \cdot (2 - \phi(xy, \mathbb{D}^{f}_{\diamond})) \quad + \ (1 - \phi(xy, \mathbb{H}^{f}_{\rhd})) \cdot \phi(xy, \mathbb{D}^{f}_{\diamond}) \ ] \\ &= \sum_{xy} [ \ 2 \cdot \phi(xy, \mathbb{H}^{f}_{\rhd}) - \phi(xy, \mathbb{H}^{f}_{\rhd}) \cdot \phi(xy, \mathbb{D}^{f}_{\diamond}) \quad + \ \phi(xy, \mathbb{D}^{f}_{\diamond}) - \phi(xy, \mathbb{H}^{f}_{\rhd}) \cdot \phi(xy, \mathbb{D}^{f}_{\diamond}) \ ] \\ &= |\Gamma(\mathbb{D}^{f}_{\diamond})| \quad + \quad \sum_{xy} [ \ \phi(xy, \mathbb{H}^{f}_{\diamond})(2 - 2 \cdot \phi(xy, \mathbb{D}^{f}_{\diamond})) \ ] \\ &= |\Gamma(\mathbb{D}^{f}_{\diamond})| \quad + \quad \sum_{xy \in \Gamma(\mathbb{H}^{f}_{\diamond})} (2 - 2 \cdot \phi(xy, \mathbb{D}^{f}_{\diamond})) \end{split}$$

## SCJ halving of a duplicated genome

Given a duplicated genome  $\mathbb{D}_{\diamond}^{f}$ , find a singular genome  $\mathbb{H}_{\diamond}^{f}$  that minimizes the SCJ double distance:

$$\begin{aligned} \mathsf{d}^{2}_{\mathrm{SCJ}}(\mathbb{H}^{f}_{\rhd},\mathbb{D}^{f}_{\diamond}) &= \mathsf{d}_{\mathrm{SCJ}}(2 \cdot \mathbb{H}^{f}_{\rhd},\mathbb{D}^{f}_{\diamond}) &= |\mathsf{\Gamma}(\mathbb{D}^{f}_{\diamond})| + \sum_{xy \in \mathsf{\Gamma}(\mathbb{H}^{f}_{\rhd})} (2 - 2 \cdot \phi(xy,\mathbb{D}^{f}_{\diamond})) \\ &= |\mathsf{\Gamma}(\mathbb{D}^{f}_{\diamond})| + \omega(\mathbb{H}^{f}_{\rhd}) \end{aligned}$$

Since  $|\Gamma(\mathbb{D}^f_{\diamond})|$  is given (does not depend on  $\mathbb{H}^f_{\diamond}$ ), for minimizing  $d^2_{SCJ}(\mathbb{H}^f_{\diamond}, \mathbb{D}^f_{\diamond})$  we need to minimize:

$$\omega(\mathbb{H}^{f}_{\rhd}) = \sum_{xy \in \Gamma(\mathbb{H}^{f}_{\rhd})} \omega(xy) = \sum_{xy \in \Gamma(\mathbb{H}^{f}_{\rhd})} (2 - 2 \cdot \phi(xy, \mathbb{D}^{f}_{\diamond})), \text{ where } \omega(xy) = 2 - 2 \cdot \phi(xy, \mathbb{D}^{f}_{\diamond}) \in \{-2, 0, +2\}$$

For minimizing  $\omega(\mathbb{H}^f_{\triangleright})$ :

- Do not add to ℍ<sup>f</sup><sub>b</sub> any adjacency xz that have ω(xz) > 0: this happens when φ(xz, D<sup>f</sup><sub>b</sub>) = 0 (xz does not occur in D<sup>f</sup><sub>b</sub>).
- Add to ℍ<sup>f</sup><sub>b</sub> any adjacency xy that have ω(xy) < 0: this happens when φ(xy, D<sup>f</sup><sub>b</sub>) = 2 (xy occurs twice in D<sup>f</sup><sub>b</sub>).
- For  $z \neq y$ :  $\omega(xz) > 0 \Leftrightarrow \omega(xy) < 0$ .
- Any adjacency xy with  $\omega(xy) = 0$  (occurs once in  $\mathbb{D}^f_{\diamond}$ ) is optional (can be added to  $\mathbb{H}^f_{\diamond}$  or not).

Solution with the minimum number of adjacencies:  $\Gamma(\mathbb{H}^f_{\triangleright}) = \{xy : \phi(xy, \mathbb{D}^f_{\diamond}) = 2\}$ 

Solution with the maximum number of adjacencies:  $\Gamma(\mathbb{H}^f_{\triangleright}) = \{xy : \phi(xy, \mathbb{D}^f_{\diamond}) \ge 1\}$ 

### SCJ median of three canonical genomes

Given three canonical genomes  $\mathbb{C}_1^f$ ,  $\mathbb{C}_2^f$  and  $\mathbb{C}_3^f$ , find another genome  $\mathbb{M}_{\triangleright}^f$  such that:

- 1.  $\mathbb{M}^f_{\triangleright}$  is canonical with  $\mathbb{C}^f_1$ ,  $\mathbb{C}^f_2$  and  $\mathbb{C}^f_3$ ,
- 2.  $\mathbb{M}^{f}_{\triangleright}$  minimizes the sum  $s_{\text{SCJ}}(\mathbb{M}^{f}_{\triangleright}) = d_{\text{SCJ}}(\mathbb{M}^{f}_{\triangleright}, \mathbb{C}^{f}_{1}) + d_{\text{SCJ}}(\mathbb{M}^{f}_{\triangleright}, \mathbb{C}^{f}_{2}) + d_{\text{SCJ}}(\mathbb{M}^{f}_{\triangleright}, \mathbb{C}^{f}_{3})$ .

Note that: 
$$d_{SCJ}(\mathbb{M}^{f}_{\triangleright}, \mathbb{C}^{f}_{i}) = |\Gamma(\mathbb{M}^{f}_{\triangleright}) \setminus \Gamma(\mathbb{C}^{f}_{i})| + |\Gamma(\mathbb{C}^{f}_{i}) \setminus \Gamma(\mathbb{M}^{f}_{\triangleright})|$$
  
 $= \sum_{xy \in \Gamma(\mathbb{M}^{f}_{\triangleright})} (1 - \phi(xy, \mathbb{C}^{f}_{i})) + \sum_{xy \notin \Gamma(\mathbb{M}^{f}_{\triangleright})} \phi(xy, \mathbb{C}^{f}_{i})$ 

Therefore:

$$\begin{split} \mathsf{s}_{\mathrm{SCJ}}(\mathbb{M}^{f}_{\triangleright}) &= \sum_{xy \in \Gamma(\mathbb{M}^{f}_{\triangleright})} [1 - \phi(xy, \mathbb{C}^{f}_{1})] + (1 - \phi(xy, \mathbb{C}^{f}_{2})] + (1 - \phi(xy, \mathbb{C}^{f}_{3})] \\ &+ \sum_{xy \notin \Gamma(\mathbb{M}^{f}_{\triangleright})} [\phi(xy, \mathbb{C}^{f}_{1}) + \phi(xy, \mathbb{C}^{f}_{2}) + \phi(xy, \mathbb{C}^{f}_{3})] \\ &= \sum_{xy \in \Gamma(\mathbb{M}^{f}_{\triangleright})} (3 - \phi(xy, \mathbb{C}^{f}_{1.3})) + \sum_{xy \notin \Gamma(\mathbb{M}^{f}_{\triangleright})} \phi(xy, \mathbb{C}^{f}_{1.3}) \\ &= \sum_{xy} [\phi(xy, \mathbb{M}^{f}_{\triangleright}) \cdot (3 - \phi(xy, \mathbb{C}^{f}_{1.3})) + (1 - \phi(xy, \mathbb{M}^{f}_{\triangleright})) \cdot \phi(xy, \mathbb{C}^{f}_{1.3})] \\ &= \sum_{xy} [3 \cdot \phi(xy, \mathbb{M}^{f}_{\triangleright}) - \phi(xy, \mathbb{M}^{f}_{\triangleright}) \cdot \phi(xy, \mathbb{C}^{f}_{1.3}) + \phi(xy, \mathbb{C}^{f}_{1.3}) - \phi(xy, \mathbb{M}^{f}_{\triangleright}) \cdot \phi(xy, \mathbb{C}^{f}_{1.3})] \\ &= |\Gamma(\mathbb{C}^{f}_{1})| + |\Gamma(\mathbb{C}^{f}_{2})| + |\Gamma(\mathbb{C}^{f}_{3})| + \sum_{xy} [\phi(xy, \mathbb{M}^{f}_{\triangleright})(3 - 2 \cdot \phi(xy, \mathbb{C}^{f}_{1.3}))] \\ &= |\Gamma(\mathbb{C}^{f}_{1})| + |\Gamma(\mathbb{C}^{f}_{2})| + |\Gamma(\mathbb{C}^{f}_{3})| + \sum_{xy \in \Gamma(\mathbb{M}^{f}_{\epsilon})} (3 - 2 \cdot \phi(xy, \mathbb{C}^{f}_{1.3}))] \end{split}$$

### SCJ median of three canonical genomes

$$\begin{aligned} \mathsf{s}_{\mathrm{SCJ}}(\mathbb{M}^f_{\triangleright}) &= |\mathsf{\Gamma}(\mathbb{C}^f_1)| + |\mathsf{\Gamma}(\mathbb{C}^f_2)| + |\mathsf{\Gamma}(\mathbb{C}^f_3)| + \sum_{xy \in \mathsf{\Gamma}(\mathbb{M}^f_{\triangleright})} (3 - 2 \cdot \phi(xy, \mathbb{C}^f_{1..3})) \\ &= |\mathsf{\Gamma}(\mathbb{C}^f_1)| + |\mathsf{\Gamma}(\mathbb{C}^f_2)| + |\mathsf{\Gamma}(\mathbb{C}^f_3)| + \omega(\mathbb{M}^f_{\triangleright}) \end{aligned}$$

Since  $|\Gamma(\mathbb{C}_1^f)| + |\Gamma(\mathbb{C}_2^f)| + |\Gamma(\mathbb{C}_3^f)|$  is given (does not depend on  $\mathbb{M}_{\triangleright}^f$ ), for minimizing  $s_{SCJ}(\mathbb{M}_{\triangleright}^f)$  we need to minimize:

$$\omega(\mathbb{M}^{f}_{\triangleright}) = \sum_{xy \in \Gamma(\mathbb{M}^{f}_{\triangleright})} \omega(xy) = \sum_{xy \in \Gamma(\mathbb{M}^{f}_{\triangleright})} (3 - 2 \cdot \phi(xy, \mathbb{C}^{f}_{1..3}))$$

where  $\omega(xy) = 3 - 2 \cdot \phi(xy, \mathbb{C}_{1..3}^{f}) \in \{-3, -1, +1, +3\}.$ 

For minimizing  $\omega(\mathbb{M}^f_{\triangleright})$ :

- Do not add to M<sup>f</sup><sub>b</sub> any adjacency xz that have ω(xz) > 0: this happens when φ(xz, C<sup>f</sup><sub>1.3</sub>) ≤ 1 (xz occurs in at most one genome among C<sup>f</sup><sub>1</sub>, C<sup>f</sup><sub>2</sub> and C<sup>f</sup><sub>3</sub>).
- ▶ Add to  $\mathbb{M}_{\mathbb{P}}^{f}$  any adjacency xy that have  $\omega(xy) < 0$ : this happens when  $\phi(xy, \mathbb{C}_{1..3}^{f}) \geq 2$  (xy occurs in at least two genomes among  $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$  and  $\mathbb{C}_{3}^{f}$ ).
- For  $z \neq y$ :  $\omega(xz) > 0 \Leftrightarrow \omega(xy) < 0$ .

There is no adjacency xy with  $\omega(xy) = 0$ . Therefore, the SCJ median problem has a unique solution:

$$\mathsf{\Gamma}(\mathbb{M}^f_{\triangleright}) = \{xy : \phi(xy, \mathbb{C}^f_{1..3}) \geq 2\}$$

### SCJ median of three canonical genomes - intuition

Let  $\mathcal{F}_{\star} = \mathcal{G}_{\star} = \{1, 2, 3, ..., n\}$ and start with  $\mathbb{M}^{f}_{\triangleright} = [1] [2] ... [n]$ 

$$\Gamma(\mathbb{M}^f_{\triangleright}) = \emptyset \quad \text{and} \quad \ \ \mathsf{s}_{\scriptscriptstyle{\mathrm{SCJ}}}(\mathbb{M}^f_{\triangleright}) = |\Gamma(\mathbb{C}^f_1)| \ + \ |\Gamma(\mathbb{C}^f_2)| \ + \ |\Gamma(\mathbb{C}^f_3)|$$

Effect of adding an adjacency xy to  $\mathbb{M}_{\mathbb{P}}^{f}$ :

- 1. If xy is not present in any genome among  $\{\mathbb{C}_1^f, \mathbb{C}_2^f, \mathbb{C}_3^f\}$ , then  $\Delta s_{SCJ} = +3$ .
- 2. If xy is present in exactly one genome among  $\{\mathbb{C}_1^f, \mathbb{C}_2^f, \mathbb{C}_3^f\}$ , then  $\Delta s_{SCJ} = +1$ .  $(\Delta d_{SCJ}(\mathbb{M}_{\triangleright}^f, \mathbb{C}_i^f) = -1$ , but  $2 \times \Delta d_{SCJ}(\mathbb{M}_{\triangleright}^f, \mathbb{C}_i^f) = +1)$
- If xy is present in exactly two genomes among {C<sup>f</sup><sub>1</sub>, C<sup>f</sup><sub>2</sub>, C<sup>f</sup><sub>3</sub>}, then Δs<sub>SCJ</sub> = −1. (2 × Δd<sub>SCJ</sub>(M<sup>f</sup><sub>b</sub>, C<sup>f</sup><sub>i</sub>) = −1, but Δd<sub>SCJ</sub>(M<sup>f</sup><sub>b</sub>, C<sup>f</sup><sub>i</sub>) = +1)
- 4. If xy is present in all three genomes  $\{\mathbb{C}_1^f, \mathbb{C}_2^f, \mathbb{C}_3^f\}$ , then  $\Delta s_{SCJ} = -3$ .

### SCJ median of k canonical genomes

Given k canonical genomes  $\mathbb{C}_1^f$ ,  $\mathbb{C}_2^f$ ,  $\dots \mathbb{C}_k^f$ , find another canonical genome  $\mathbb{M}_{\triangleright}^f$  that minimizes the sum:

$$\begin{aligned} \mathbf{s}_{\mathrm{SCJ}}(\mathbb{M}^{f}_{\rhd}) &= \ \mathbf{d}_{\mathrm{SCJ}}(\mathbb{M}^{f}_{\rhd}, \mathbb{C}^{f}_{1}) + \mathbf{d}_{\mathrm{SCJ}}(\mathbb{M}^{f}_{\rhd}, \mathbb{C}^{f}_{2}) + \ldots + \mathbf{d}_{\mathrm{SCJ}}(\mathbb{M}^{f}_{\rhd}, \mathbb{C}^{f}_{k}) \\ &= \ |\Gamma(\mathbb{C}^{f}_{1})| + |\Gamma(\mathbb{C}^{f}_{2})| + \ldots + |\Gamma(\mathbb{C}^{f}_{k})| + \ \omega(\mathbb{M}^{f}_{\rhd}) \end{aligned}$$

Analogously to the median of three genomes, we need to minimize:

$$\omega(\mathbb{M}^f_{arphi}) \;=\; \sum_{xy\in \Gamma(\mathbb{M}^f_{arphi})} \omega(xy)$$

where  $\omega(xy) = k - 2 \cdot \phi(xy, \mathbb{C}^{f}_{1..k}) \in \{-k, -k + 2, \dots, +k - 2, +k\}.$ 

For minimizing  $\omega(\mathbb{M}^f_{\triangleright})$ :

- Do not add to M<sup>f</sup><sub>▷</sub> any adjacency xz that have ω(xz) > 0: this happens when φ(xz, C<sup>f</sup><sub>1..k</sub>) < k/2 (xz occurs in less than half of the genomes among C<sup>f</sup><sub>1</sub>, C<sup>f</sup><sub>2</sub>, ..., C<sup>f</sup><sub>k</sub>).
- Add to M<sup>f</sup><sub>▷</sub> any adjacency xy that have ω(xy) < 0: this happens when φ(xy, C<sup>f</sup><sub>1..3</sub>) > k/2 (xy occurs in more than half of the genomes among C<sup>f</sup><sub>1</sub>, C<sup>f</sup><sub>2</sub>, ..., C<sup>f</sup><sub>k</sub>).
- For  $z \neq y$ :  $\omega(xz) > 0 \Leftrightarrow \omega(xy) < 0$ .
- Any adjacency xy with  $\omega(xy) = 0$  is optional (can be added to the median or not). If there is no such an adjacency (e.g., if k is odd), the SCJ median problem has a unique solution.

In general, the following set of adjacencies define a SCJ median of k genomes:

$$\Gamma(\mathbb{M}^{f}_{\triangleright}) = \left\{ xy : \phi(xy, \mathbb{C}^{f}_{1..k}) > \frac{k}{2} \right\}$$

## SCJ linear median of k canonical linear genomes

1. Compute the general SCJ median  $\mathbb{M}^f_{\triangleright}$  as described above.

2. For each circular chromosome in  $\mathbb{M}^f_{\mathbb{D}}$ , remove one adjacency xy with smallest weight  $\omega(xy)$ .

- 1 Which of the following statements are true?
  - A The SCJ halving is always satisfied by a unique singular genome.
  - B The SCJ halving cannot be satisfied by a unique singular genome.
  - C The SCJ median of four canonical genomes is always unique.
  - D The SCJ median of four canonical genomes cannot be unique.
  - E The SCJ median of three canonical genomes is always unique.
  - F The SCJ linear median of three canonical linear genomes is always unique.

#### References

Multichromosomal median and halving problems under different genomic distances

(Eric Tannier, Chunfang Zheng and David Sankoff)

BMC Bioinformatics volume 10, Article number: 120 (2009)

SCJ: A Breakpoint-Like Distance that Simplifies Several Rearrangement Problems

(Pedro Feijão and João Meidanis)

TCBB volume 8 Number: 5 (2011)