Topics of today:

1. Recall concepts from lecture 01
2. Single-cut-or-join model, distance and double-distance

3. Formalizing the number of occurrences (¢) of families/adjacencies/telomeres

~

. Other problems: median and halving



Types of genome pairs/sets

Pair/set of singular genomes:
each family occurs at most once in each genome

‘ M Pair/set of canonical genomes:

singular and balanced

Pair/set of balanced genomes: ‘ %

each family occurs the same number of times in each genome

Singular/duplicated canonical pair:
one genome is singular, the other is duplicated and the gene families of both genomes are the same

> < EE—

(whole genome duplication)




Definitions / notation (family-based setting)

Given genomes G{, Gg, e Gi:

> Set of common families (occurring in each Gf):
F.=F(GH)NF(GH)N..nF(G)
» (Multi)set of annotated common markers:

G, = G(GHNG(GH N ...NG(GE)

G« =n
Type
singular: Fe = G (a)
balanced: F, = F(G}) = F(G}) = ... = F(G}) and G. = G(G!) = G(GE) = ... = G(G}) (b)
canonical: both (a) and (b)




Breakpoint distance

Given genomes Af and B, let:

> I, =T(A)NT(B") be the set of common adjacencies

M| =a

> O, = O(A") N O(B’) be the set of common telomeres

0. =t

The breakpoint distance of canonical genomes A/ and B is defined to be:

t
dep(AL Bl ) =n—a— 5




Breakpoint distance of balanced genomes

>

— S < —

The breakpoint distance of balanced genomes A’ and Bf is:
dpr(Af BF) = min dyp (Al Bfm)

where f,, is any function that produces a maximal matching of f-families




Breakpoint distance of balanced genomes

>
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The breakpoint distance of balanced genomes A and B is:

dpo (A" BF) = min dyp (Al Bfm)

where f,, is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres: |G| —a— £ =6 —2—

=35
Ay ‘ may lead to inconsistencies‘

N|—=




Breakpoint distance of balanced genomes
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The breakpoint distance of balanced genomes A and B is:

dpo (A" BF) = min dyp (Al Bfm)

where f,, is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres: |G| —a— £ =6 —2—

=35
Ay ‘ may lead to inconsistencies‘

N|—=




Breakpoint distance of balanced genomes
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The breakpoint distance of balanced genomes A and B is:

dpo (A" BF) = min dyp (Al Bfm)

where f,, is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres: |G| —a— £ =6 —2—

=35
Ay ‘ may lead to inconsistencies‘

N|—=




Breakpoint distance of balanced genomes

>

or

— S < C—

— S < T— >

The breakpoint distance of balanced genomes A and B is:

dpo (A" BF) = min dyp (Al Bfm)

where f,, is any function that produces a maximal matching of f-families

Greedy approach: take all common adjacencies/telomeres: |G| —a— £ =6 —2—

=35
Ay ‘ may lead to inconsistencies‘

N|—=

Correct distance: dyp(Af, Bf) =6 -1 — % =45

The breakpoint distance of balanced genomes is NP-hard

[Blin, Chauve and Fertin, 2004: The breakpoint distance for signed sequences]




Breakpoint double distance

For a given singular genome Sf, let 2-S{ be the set of doubled genomes derived from Sf.

We define:

> G(2-Sf) = G(SE) @ G(SE) : the multiset of markers in any doubled genome from the set 2-S{
> (2-SH) =r(SE) @ I(SY) : the multiset of adjacencies in any doubled genome from the set 2-S?,
> 0(2-Sf) = 0(S)) @ O(SY) : the multiset of telomeres in any doubled genome from the set 2-S

Breakpoint double distance: .
n=1G(S:)|
d2.(ST, D)) = min  due(PL, D) = greedy approach
Fhac28f is consistent n' = |G(PL) Nng2-Dh)
— . f . f
:n'7|F(Pf)ﬂF(Df)\7W =16(28:) NG(2-Ds)|
R . ~ 9(2-50)|
.sf f _ f
— 20— |r(2:8) nr(Df) — 19C S»; o(D2)] = 2/g(s%)|
=2n




Single-Cut-or-Join (SCJ) model

> A cut is an operation that breaks an adjacency of genome G in two telomeres.
> A join is the reverse operation: joins two telomeres of G into one adjacency.

» Any single cut or single join is a SCJ operation.

I > —) >

/\

— E—: —>

A canonical genome Gé can be represented by its set of adjacencies F(Gé)

(the set of telomeres ©(G) can be derived from I'(Gf))

Then, SCJ operations can be seen as set operations:
> A cut of an adjacency xy: T(G{)\ {xy}.
> A join of an adjacency xy: T(Gf) U {xy}.



SCJ distance and sorting of canonical genomes

The SCJ distance dsc; (AL, BY) is the minimum number of SCJs that transform (Af) into I(Bf)

The only allowed operations are to remove an element from and to include an element in a set

A lower bound is derived from the simple difference between the two given sets:
dseo(AL,BL) > (AL \T(BL) + [F(B)\T(AL)

We can achieve this lower bound by ensuring that all adjacencies that must be included are available
(the corresponding involved extremities are “free”):

1. First, remove all elements of ['(Af) that are not present in ['(BY):

# of single cut operations = |[(AL)\ I'(B)|

2. Then, include in T(Af) all elements of [(Bf) that are not already present in I'(A]):
# of single join operations = |[(Bf) \ F(A])]

SCJ distance

dsea(AL BL) = [F(ADN\T(B])| + [F(B])\ (AL




SCJ sorting of A into Bf

rAl) =

r(Bf) =

{1h3h’3t2h’2t4t}

{1h2t'2h3t’3h4t}

D > B>

C O >



SCJ sorting of A into Bf

rAl) =

rag) =

rarf) =

rarf) =

r(Bf) =

{1h3h’ 3t2h’ 2[4!}

r(AL)\ {173"} = {3t2h, 2t41}
rr)\ {214} = {312}
rfyu{1haty = {1h2t, 203t}

riyu{3haty =  {1h2t,2h3t, 304t}

>

D > B>

D > B>

C O >

C O >

< cEm—— >



Alternative formula for the SCJ distance of canonical genomes

dsca(AL, BL) = IF(Af) \ r(JBf)I +Ir(B)) \ r(A’C)I

= r(AD) — \F(Af) (B +|r(B D)\ —[F(a)) NT(BL)|
= [F(AD)| + [F(B))| — 2T (AL) N T(BY)]

= [F(AD)| + [T(B))| — 2|7

f
Note that: [O(AL)| = 2(n— [T(AL))) = [F(AL)| = n— 8%l \where n = |G(Af))|
Af B
o5y = OUDL L OCDI o

[O(AD)| + [O(BL|)
2
=2n—2a—k(A) — k(B)

=2n—2a—

where n = |G| = |G(AL)| = |G(BL)|, a = || and

#(.) is the number of linear chromosomes in the respective genome



Breakpoint distance x SCJ distance

t
dpp (AL, Bf)y=n—a— >

dsey (AL, BY) = 2n — 2a — k(A) — k(B) .
For circular genomes:
=2n—2a—k(A)—rk(B)—t+t dsa(Aé,Bé) — 2dBp(A£,B,‘;)
=2n—2a—t—k(A)—r(B)+t

In general:

t
=2(n—a— <) —kr(A)—r(B)+t
( 2) (1) =n(®) dip (AL, BL) < dsey (AL, BL) < 2dup (AL, BE)

= 2dpp (AL, BY) — k(A) — 5(B) + ¢

Note that: t < k(A) + ~(B)



SCJ double distance

The SCJ distance of balanced genomes A" and Bf is:
dscy (Afv ]Bf) = "}i" dSCJ(Aémr Bé’")

where fr, is any function that produces a maximal matching of the families defined by f

SCJ double distance:
d2.,(sf,pf) = fmin dscs (P, DY) = greedy approach
Pf €2-5{

= ML) \ T(DO)| + [T(DF) \ F(PL)]

= |F(2:8]) \ F(D)| + [F(DE) \ T (2-SL)|

Ex: S=[213] and D =[312312]



Quiz 1

Given genomes Gf = [21] [435], G} =[12345] and Gf=(1234) [15453]]:

1 What is the SCJ distance of G{ and Gg? 2 What is the SCJ double distance of Gg and Gg?
A 2 A6
B 25 B 7
Cc3 CcC75



Occurrences of families

Given a family X and a genome G, let ¢(X, G) be the number of occurrences of X in G(GF).
If genome S, is singular, then ¢(X,Sf) = 1 for each X € F(SL).
If genome DY is duplicated, then ¢(X, DY) = 2 for each X € F(Df).

If genomes Sf and S’,’; are canonical, then

Fio = F(SE) = F(S'D) and ¢(%, %) = (X, §'f) = 1 for each X € F.

If genomes B{ and Bg are balanced, then
Fi = F(Bf) = F(Bf) and ¢(X, Bf) = ¢(f, BS) for each X € F,.

A maximal matching of the genes of two genomes A{ and Ag has size:

S min{a(x, AD), 6(x £9)}

xe=F(AhHUF(A])



Occurrences of adjacencies

Given an adjacency xy and a genome G, let #(xy, G') be the number of occurrences of xy in I'(G).
If genome S, is singular, then ¢(xy, S{) = {

If genome ]D)f> is duplicated, then ¢(xy,D) € {0, 1, 2}.

Given an adjacency xy and a set of k genomes Af = {Af, Ag, ey AZ}, we define:

k
d(xy, A7) = d(xy, AL ) =D d(xy, Al)
i=1



Occurrences of telomeres

Given a telomere x and a genome G, let ¢(x, G') be the number of occurrences of x in ©(G').

1, x€ @(Sé),

If genome Sf, is singular, then ¢(x,Sf{) = {0’ x ¢ O(Sf).

If genome ]D)f> is duplicated, then ¢(x,D) € {0, 1, 2}.

Given a telomere x and a set of k genomes Af = {Af,Ag, ,Ai}, we define:

k
B, A') = 9l AL ) = 3 6 A1)



Quiz 2

1 Let Df =(1234) [154532]. Give, respectively, the values of
$(3"5,Df), $(2"3% D), (41", DY), ¢(1%, DY):

Al1l120 co0,211
B 0202 D120 2

2 Let Cf =[12345] and C,=[21] [435]. Give, respectively, the values of
¢(3"5%, {C].CL}), ¢(2"3% {C{.C}). #(172" {CL.CE}), (1% {CT.CL}):
AO0112 C1120
BO0122 D120 2



SCJ model - expressing the double distance via adjacency occurrences

dZe (8L, DY) = [M(2-S)\F(DE)  +  [F(DE)\T(2:8])]

= 3 @-é(xDE) + 3 é(x.Df)

xy €l (HE) xy €T (HE)

= Z[ ¢(xv HL) - (2= o0, D)) + (1—¢(xy,HL)) ¢(xy, D) ]

—2[2 d(xy, HL) — o(xy, HE) - d(xy, DS) +  o(xy, Df) — p(xy, HE) - ¢(xy, DE) |

=r@5) + D [0 H))(2 -2 ¢(xy, D)) ]

xy

=rm) + > (2—2-¢(xy,DL))

xy€l(Hf)




SCJ halving of a duplicated genome

Given a duplicated genome DY, find a singular genome Hé that minimizes the SCJ double distance:

o, (HE, DY) = dsey(2-HL, DY) = [F(DL)] + > (2—2-¢(xy,DE))
xy €T (HE)

IF@) + w(H)

Since |[(Df)] is given (does not depend on HY), for minimizing d2.,(Hf, D) we need to minimize:

wHL) = > why) = Y (2—2-¢(xy,DL)), where w(xy) =2—2-¢(xy,Df) € {—2,0,+2}
xy €T (HE) xy€l(HE)

For minimizing w(HL):
> Do not add to Hf any adjacency xz that have w(xz) > 0:
this happens when ¢(xz, Df) = 0 (xz does not occur in D).

> Add to Hf any adjacency xy that have w(xy) < 0:
this happens when ¢(xy, Df) = 2 (xy occurs twice in Df).

> For z # y: w(xz) >0 < w(xy) < 0.
> Any adjacency xy with w(xy) = 0 (occurs once in DY) is optional (can be added to HY or not).

Solution with the minimum number of adjacencies: M(Hf) = {xy : ¢(xy, DY) = 2}

Solution with the maximum number of adjacencies: F(Hl’;) ={xy : p(xy,Df) > 1}



SCJ median of three canonical genomes

Given three canonical genomes (C{, (Cg and (Cg, find another genome M,’; such that:
1. Mé is canonical with (C{, ((:’2r and (Cg,
2. Mé minimizes the sum sSCJ(Mg) = dSCJ(Mé, (C{) + dgcJ(Mé, (Cg) + dSCJ(Mé, (Cg)
Note that: dses(Mf, Cf) = Irf) \ r(ch + IF(CH\ rev)|
2yerf)(1 = olxy, c))  + 2grut) 20, cf)

Therefore:

1 (M) Syermpl1- 600, CD) + (1-d(.CH) + (1600 C))]
+ Y 600, CH) + ¢, Ch) + d(xy, Ch)]

= 2yerqf)(3 = olxy, Ci3) + ny&F(Mé)(b(XYrC{.G)

Sl o0y ME) - (3= ¢(xv. Cf 3)) + (L —o(xy, ML) d(xy,Cf 3)]

Sl 3- 00y ML) — (v, ME) - p(xy, Cf 3) + b(xy.CL 5) — d(xy. ME) - p(xy, Cf 3) ]

IFCDI+ITCHI+ITCHI + Ty [ b0y, ME)B — 2 $(xy, Cf 3)) ]

IFECHI+ T+ IFCH)] + Saeroar)3—2-609.Cf 4)



SCJ median of three canonical genomes

sa(M{) = [FECDI+INCHI+INCHI + Zyerqur)(3 -2 ¢(xy,CL3))

= FECHI+IFECHI+INCHI + w(M)

Since |I(CY)| + [T (CL)| + [F(CE)| is given (does not depend on MY), for minimizing ssc;(Mf) we need to

minimize:
wME) = >0 wlky) = D> (3—-2-9(xv,Cf3))
xyer(Mf) xyel(Mf)

where w(xy) =3 — 2 ¢(xy,Cf ;) € {-3,—1,+1,+3}.

For minimizing w(M{):
» Do not add to Mé any adjacency xz that have w(xz) > 0:
this happens when ¢(xz, C{ ;) <1 (xz occurs in at most one genome among Cf, C and C¥).

> Add to M any adjacency xy that have w(xy) < O:
this happens when qb(xy,(C{_j) > 2 (xy occurs in at least two genomes among (C{, (Cg and (Cg)

> Forz #y: w(xz) >0 w(xy) <0.
There is no adjacency xy with w(xy) = 0. Therefore, the SCJ median problem has a unique solution:

r(ML) = {xy : ¢(xy, Cf 3) > 2}



SCJ median of three canonical genomes - intuition

Let Fi =Gy = {1,2,3, . n}
and start with Mf = [1] [2] ... [n]

F(ME) =0 and  sses(Mf) = [F(C])| + [T(CH) + |F(CH)

Effect of adding an adjacency xy to Mé:

1. If xy is not present in any genome among {(C{(Cg(cg} then Asgc; = +43.

2. If xy is present in exactly one genome among {(Cf,(Cg, Cg}, then Asgc; = +1.
(Adses (ME, Cf) = —1, but 2 x Adses(Mf, Cf) = +1)

3. If xy is present in exactly two genomes among {c{cgcg} then Asgq; = —1.
(2 x Adges (ML, CF) = —1, but Adse;(Mf, Cf) = +1)

4. If xy is present in all three genomes {C{, C5, C{}, then Asse; = —3.



SCJ median of k canonical genomes

Given k canonical genomes (C{, (Cg, .. .(CZ, find another canonical genome M@ that minimizes the sum:

Sscs (Mé) = dSCJ(Méy (C{) + dscy (Mé, <C§) + ...+ dst(M[’;, (CZ)

IFCHI+IFCHI+ . +IT(CPI + w(ME)
Analogously to the median of three genomes, we need to minimize:
wMf) = D w(x)
xy€M(ML)
where w(xy) =k —2- qS(xy,(C{_'k) e{—k,—k+2,...,+k—2, +k}.
For minimizing w(M{):

> Do not add to Mf any adjacency xz that have w(xz) > 0:
this happens when ¢(xz, (C{__k) < g (xz occurs in less than half of the genomes among (C{, (Cg, ..

> Add to Mf any adjacency xy that have w(xy) < 0:

this happens when ¢(xy, Cf 5) > g (xy occurs in more than half of the genomes among Cf, CJ, .

> For z # y: w(xz) >0 < w(xy) <O0.

., CH).

.., ChH.

» Any adjacency xy with w(xy) = 0 is optional (can be added to the median or not). If there is no such an

adjacency (e.g., if k is odd), the SCJ median problem has a unique solution.

In general, the following set of adjacencies define a SCJ median of k genomes:

ry) = {Xy L o(xy, Cf ) > g}



SCJ linear median of k canonical linear genomes

1. Compute the general SCJ median M as described above.

2. For each circular chromosome in Mé, remove one adjacency xy with smallest weight w(xy).



Quiz 3

1 Which of the following statements are true?

A The SCJ halving is always satisfied by a unique singular genome.
B The SCJ halving cannot be satisfied by a unique singular genome.
C The SCJ median of four canonical genomes is always unique.

D The SCJ median of four canonical genomes cannot be unique.

E The SCJ median of three canonical genomes is always unique.

F The SCJ linear median of three canonical linear genomes is always unique.
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