
Topics of today:

1. Recall concepts from lecture 01

2. Single-cut-or-join model, distance and double-distance

3. Formalizing the number of occurrences (�) of families/adjacencies/telomeres

4. Other problems: median and halving



Types of genome pairs/sets

Pair/set of singular genomes:
each family occurs at most once in each genome

Pair/set of balanced genomes:
each family occurs the same number of times in each genome

Pair/set of canonical genomes:
singular and balanced

Singular/duplicated canonical pair:
one genome is singular, the other is duplicated and the gene families of both genomes are the same

(whole genome duplication)



Definitions / notation (family-based setting)

Given genomes Gf
1,G

f
2, ... ,G

f
k :

I Set of common families (occurring in each G
f
i ):

F? = F(Gf
1) \ F(Gf

2) \ ... \ F(Gf
k)

I (Multi)set of annotated common markers:

G? = G(Gf
1) \ G(Gf

2) \ ... \ G(Gf
k)

|G?| = n

Type

singular: F? = G? (a)

balanced: F? = F(Gf
1) = F(Gf

2) = ... = F(Gf
k) and G? = G(Gf

1) = G(Gf
2) = ... = G(Gf

k) (b)

canonical: both (a) and (b)



Breakpoint distance

Given genomes Af and B
f , let:

I �? = �(Af ) \ �(Bf ) be the set of common adjacencies

|�?| = a

I ⇥? = ⇥(Af ) \⇥(Bf ) be the set of common telomeres

|⇥?| = t

The breakpoint distance of canonical genomes A
f
. and B

f
. is defined to be:

dbp(A
f
.,B

f
.) = n � a� t

2



Breakpoint distance of balanced genomes

l

or l

The breakpoint distance of balanced genomes A
f
and B

f
is:

dbp(A
f
,B

f
) = min

fm
dbp(A

fm
. ,B

fm
. )

where fm is any function that produces a maximal matching of f -families

Greedy approach: take all common adjacencies/telomeres:

|G?|� a� t
2 = 6� 2� 1

2 = 3.5

& may lead to inconsistencies

Correct distance: dbp(A
f
,B

f
) = 6� 1� 1

2 = 4.5

The breakpoint distance of balanced genomes is NP-hard

[Blin, Chauve and Fertin, 2004: The breakpoint distance for signed sequences]



Breakpoint distance of balanced genomes

l

The breakpoint distance of balanced genomes A
f
and B

f
is:

dbp(A
f
,B

f
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fm
dbp(A

fm
. ,B
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where fm is any function that produces a maximal matching of f -families

Greedy approach: take all common adjacencies/telomeres: |G?|� a� t
2 = 6� 2� 1

2 = 3.5

& may lead to inconsistencies

•



Breakpoint distance of balanced genomes

l
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f
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Breakpoint distance of balanced genomes

l or l

The breakpoint distance of balanced genomes A
f
and B

f
is:

dbp(A
f
,B

f
) = min

fm
dbp(A

fm
. ,B

fm
. )

where fm is any function that produces a maximal matching of f -families

Greedy approach: take all common adjacencies/telomeres: |G?|� a� t
2 = 6� 2� 1

2 = 3.5

& may lead to inconsistencies

Correct distance: dbp(A
f
,B

f
) = 6� 1� 1

2 = 4.5

The breakpoint distance of balanced genomes is NP-hard

[Blin, Chauve and Fertin, 2004: The breakpoint distance for signed sequences]

↳ Ba



Breakpoint double distance

For a given singular genome S
f
., let 2·Sf

. be the set of doubled genomes derived from S
f
..

We define:

I G(2·Sf
.) = G(Sf

.)� G(Sf
.) : the multiset of markers in any doubled genome from the set 2·Sf

.

I �(2·Sf
.) = �(Sf

.)� �(Sf
.) : the multiset of adjacencies in any doubled genome from the set 2·Sf

.

I ⇥(2·Sf
.) = ⇥(Sf

.)�⇥(Sf
.) : the multiset of telomeres in any doubled genome from the set 2·Sf

.

Breakpoint double distance:

d2bp(S
f
.,D

f
⇧) = min

Pf./22·Sf.
dbp(P

f
./,D

f
⇧) ) greedy approach

is consistent

= n0 � |�(Pf
./) \ �(Df

⇧)|�
|⇥(Pf

./) \⇥(Df
⇧)|

2

= 2n � |�(2·Sf
.) \ �(Df

⇧)|�
|⇥(2·Sf

.) \⇥(Df
⇧)|

2

n = |G(Sf
.)|

n0 = |G(Pf
./) \ G(2·Df

⇧)|

= |G(2·Sf
.) \ G(2·Df

⇧)|

= |G(2·Sf
.)|

= 2|G(Sf
.)|

= 2n



Single-Cut-or-Join (SCJ) model

I A cut is an operation that breaks an adjacency of genome G in two telomeres.

I A join is the reverse operation: joins two telomeres of G into one adjacency.

I Any single cut or single join is a SCJ operation.

A canonical genome G
f
. can be represented by its set of adjacencies �(Gf

.)

(the set of telomeres ⇥(Gf
.) can be derived from �(Gf

.))

Then, SCJ operations can be seen as set operations:

I A cut of an adjacency xy : �(Gf
.) \ {xy}.

I A join of an adjacency xy : �(Gf
.) [ {xy}.



SCJ distance and sorting of canonical genomes

The SCJ distance dscj(Af
.,B

f
.) is the minimum number of SCJs that transform �(Af

.) into �(Bf
.)

The only allowed operations are to remove an element from and to include an element in a set
& A lower bound is derived from the simple di↵erence between the two given sets:

dscj(A
f
.,B

f
.) � |�(Af

.) \ �(Bf
.)| + |�(Bf

.) \ �(Af
.)|

We can achieve this lower bound by ensuring that all adjacencies that must be included are available
(the corresponding involved extremities are “free”):

1. First, remove all elements of �(Af
.) that are not present in �(Bf

.):

# of single cut operations = |�(Af
.) \ �(Bf

.)|

2. Then, include in �(Af
.) all elements of �(Bf

.) that are not already present in �(Af
.):

# of single join operations = |�(Bf
.) \ �(Af

.)|

SCJ distance

dscj(A
f
.,B

f
.) = |�(Af

.) \ �(Bf
.)| + |�(Bf

.) \ �(Af
.)|



SCJ sorting of A
f
. into B

f
.

�(Af
.) = {1h3h, 3t2h, 2t4t}

�(I0f.) = �(Af
.) \ {1h3h} = {3t2h, 2t4t}

�(I00f.) = �(I0f.) \ {2t4t} = {3t2h}

�(I000f.) = �(I00f.) [ {1h2t} = {1h2t , 2h3t}

�(Bf
.) =

�(I000f.) [ {3h4t} =

{1h2t , 2h3t , 3h4t}



SCJ sorting of A
f
. into B

f
.

�(Af
.) = {1h3h, 3t2h, 2t4t}

�(I0f.) = �(Af
.) \ {1h3h} = {3t2h, 2t4t}

�(I00f.) = �(I0f.) \ {2t4t} = {3t2h}

�(I000f.) = �(I00f.) [ {1h2t} = {1h2t , 2h3t}

�(Bf
.) = �(I000f.) [ {3h4t} = {1h2t , 2h3t , 3h4t}



Alternative formula for the SCJ distance of canonical genomes

dscj(A
f
.,B

f
.) = |�(Af

.) \ �(Bf
.)|+ |�(Bf

.) \ �(Af
.)|

= |�(Af
.)|� |�(Af

.) \ �(Bf
.)|+ |�(Bf

.)|� |�(Af
.) \ �(Bf

.)|

= |�(Af
.)|+ |�(Bf

.)|� 2|�(Af
.) \ �(Bf

.)|

= |�(Af
.)|+ |�(Bf

.)|� 2|�?|

Note that: |⇥(Af
.)| = 2(n � |�(Af

.)|) ) |�(Af
.)| = n � |⇥(Af

.)|
2 , where n = |G(Af

.)|

dscj(A
f
.,B

f
.) = n �

|⇥(Af
.)|

2
+ n �

|⇥(Bf
.)|

2
� 2|�?|

= 2n � 2a�
|⇥(Af

.)|+ |⇥(Bf
.|)

2
= 2n � 2a� (A)� (B)

where n = |G?| = |G(Af
.)| = |G(Bf

.)|, a = |�?| and
(.) is the number of linear chromosomes in the respective genome

i 1
+ '

, ,\
'

,



Breakpoint distance ⇥ SCJ distance

dbp(A
f
.,B

f
.) = n � a�

t

2

dscj(A
f
.,B

f
.) = 2n � 2a� (A)� (B)

= 2n � 2a� (A)� (B)� t + t

= 2n � 2a� t � (A)� (B) + t

= 2(n � a�
t

2
)� (A)� (B) + t

= 2dbp(A
f
.,B

f
.)� (A)� (B) + t

Note that: t  (A) + (B)

For circular genomes:

dscj(Af
.,B

f
.) = 2dbp(Af

.,B
f
.)

In general:

dbp(Af
.,B

f
.)  dscj(Af

.,B
f
.)  2dbp(Af

.,B
f
.)



SCJ double distance

The SCJ distance of balanced genomes A
f and B

f is:

dscj(A
f ,Bf ) = min

fm
dscj(A

fm
. ,Bfm

. )

where fm is any function that produces a maximal matching of the families defined by f

SCJ double distance:

d2scj(S
f
.,D

f
⇧) = min

Pf./22·Sf.
dscj(P

f
./,D

f
⇧) = greedy approach

= |�(Pf
./) \ �(Df

⇧)|+ |�(Df
⇧) \ �(Pf

./)|

= |�(2·Sf.) \ �(Df
⇧)|+ |�(Df

⇧) \ �(2·Sf.)|

Ex: S = [2̄ 1 3̄] and D = [31̄ 2̄ 3 1̄ 2]



Quiz 1

Given genomes G
f
1 = [2̄ 1̄] [4̄ 3̄ 5] , G

f
2 = [1 2 3 4 5] and G

f
3 = (1 2 3 4) [1 5̄ 4̄ 5 3̄ 2̄] :

1 What is the SCJ distance of Gf
1 and G

f
2?

A 2

B 2.5

C 3

D 4

2 What is the SCJ double distance of Gf
2 and G

f
3?

A 6

B 7

C 7.5

D 8



Occurrences of families

Given a family X and a genome G
f , let �(X,Gf ) be the number of occurrences of X in G(Gf ).

If genome S
f
. is singular, then �(X, Sf.) = 1 for each X 2 F(Sf.).

If genome D
f
⇧ is duplicated, then �(X,Df

⇧) = 2 for each X 2 F(Df
⇧).

If genomes S
f
. and S

0f
. are canonical, then

F? = F(Sf.) = F(S0f.) and �(X, Sf.) = �(X, S0f.) = 1 for each X 2 F?.

If genomes B
f
1 and B

f
2 are balanced, then

F? = F(Bf
1) = F(Bf

2) and �(X,Bf
1) = �(f ,Bf

2) for each X 2 F?.

A maximal matching of the genes of two genomes A
f
1 and A

f
2 has size:

X

X2=F(Af
1)[F(Af

2)

min{�(X,Af
1),�(X,A

f
2)}



Occurrences of adjacencies

Given an adjacency xy and a genome G
f , let �(xy ,Gf ) be the number of occurrences of xy in �(Gf ).

If genome S
f
. is singular, then �(xy , Sf.) =

(
1, xy 2 �(Sf.),

0, xy /2 �(Sf.).

If genome D
f
⇧ is duplicated, then �(xy ,D) 2 {0, 1, 2}.

Given an adjacency xy and a set of k genomes Af = {Af
1,A

f
2, ... ,A

f
k}, we define:

�(xy ,Af ) = �(xy ,Af
1..k ) =

kX

i=1

�(xy ,Af
i )



Occurrences of telomeres

Given a telomere x and a genome G
f , let �(x ,Gf ) be the number of occurrences of x in ⇥(Gf ).

If genome S
f
. is singular, then �(x , Sf.) =

(
1, x 2 ⇥(Sf.),

0, x /2 ⇥(Sf.).

If genome D
f
⇧ is duplicated, then �(x ,D) 2 {0, 1, 2}.

Given a telomere x and a set of k genomes Af = {Af
1,A

f
2, ... ,A

f
k}, we define:

�(x ,Af ) = �(x ,Af
1..k ) =

kX

i=1

�(x ,Af
i )



Quiz 2

1 Let D
f
⇧ = (1 2 3 4) [1 5̄ 4̄ 5 3̄ 2̄]. Give, respectively, the values of

�(3h5t,Df
⇧), �(2

h3t,Df
⇧), �(4

h1t,Df
⇧), �(1

t,Df
⇧):

A 1, 1, 2, 0

B 0, 2, 0, 2

C 0, 2, 1, 1

D 1, 2, 0, 2

2 Let Cf
1 = [1 2 3 4 5] and C

f
2 = [2̄ 1̄] [4̄ 3̄ 5]. Give, respectively, the values of

�(3h5t, {Cf
1,C

f
2}), �(2h3t, {Cf

1,C
f
2}), �(1h2t, {Cf

1,C
f
2}), �(1t, {Cf

1,C
f
2}):

A 0, 1, 1, 2

B 0, 1, 2, 2

C 1, 1, 2, 0

D 1, 2, 0, 2



SCJ model - expressing the double distance via adjacency occurrences

d2scj(S
f
.,D

f
⇧) = |�(2·Sf.) \ �(Df

⇧)| + |�(Df
⇧) \ �(2·Sf.)|

=
X

xy2�(Hf
.)

(2� �(xy ,Df
⇧)) +

X

xy /2�(Hf
.)

�(xy ,Df
⇧)

=
X

xy

[ �(xy ,Hf
.) · (2� �(xy ,Df

⇧)) + (1� �(xy ,Hf
.)) · �(xy ,Df

⇧) ]

=
X

xy

[ 2 · �(xy ,Hf
.)� �(xy ,Hf

.) · �(xy ,Df
⇧) + �(xy ,Df

⇧)� �(xy ,Hf
.) · �(xy ,Df

⇧) ]

= |�(Df
⇧)| +

X

xy

[ �(xy ,Hf
⇧)(2� 2 · �(xy ,Df

⇧)) ]

= |�(Df
⇧)| +

X

xy2�(Hf
.)

(2� 2 · �(xy ,Df
⇧))



SCJ halving of a duplicated genome

Given a duplicated genome D
f
⇧, find a singular genome H

f
. that minimizes the SCJ double distance:

d2scj(H
f
.,D

f
⇧) = dscj(2·Hf

.,D
f
⇧) = |�(Df

⇧)| +
X

xy2�(Hf
.)

(2� 2 · �(xy ,Df
⇧))

= |�(Df
⇧)| + !(Hf

.)

Since |�(Df
⇧)| is given (does not depend on H

f
.), for minimizing d2scj(H

f
.,D

f
⇧) we need to minimize:

!(Hf
.) =

X

xy2�(Hf
.)

!(xy) =
X

xy2�(Hf
.)

(2� 2 · �(xy ,Df
⇧)), where !(xy) = 2� 2 · �(xy ,Df

⇧) 2 {�2, 0,+2}

.

For minimizing !(Hf
.):

I Do not add to H
f
. any adjacency xz that have !(xz) > 0:

this happens when �(xz,Df
⇧) = 0 (xz does not occur in D

f
⇧).

I Add to H
f
. any adjacency xy that have !(xy) < 0:

this happens when �(xy ,Df
⇧) = 2 (xy occurs twice in D

f
⇧).

I For z 6= y : !(xz) > 0 , !(xy) < 0.

I Any adjacency xy with !(xy) = 0 (occurs once in D
f
⇧) is optional (can be added to H

f
. or not).

Solution with the minimum number of adjacencies: �(Hf
.) = {xy : �(xy ,Df

⇧) = 2}

Solution with the maximum number of adjacencies: �(Hf
.) = {xy : �(xy ,Df

⇧) � 1}



SCJ median of three canonical genomes

Given three canonical genomes C
f
1, C

f
2 and C

f
3, find another genome M

f
. such that:

1. M
f
. is canonical with C

f
1, C

f
2 and C

f
3,

2. M
f
. minimizes the sum sscj(Mf

.) = dscj(Mf
.,C

f
1) + dscj(Mf

.,C
f
2) + dscj(Mf

.,C
f
3).

Note that: dscj(Mf
.,C

f
i ) = |�(Mf

.) \ �(Cf
i )| + |�(Cf

i ) \ �(Mf
.)|

=
P

xy2�(Mf
.)
(1� �(xy ,Cf

i )) +
P

xy /2�(Mf
.)

�(xy ,Cf
i )

Therefore:

sscj(Mf
.) =

P
xy2�(Mf

.)
[ 1� �(xy ,Cf

1)) + (1� �(xy ,Cf
2)) + (1� �(xy ,Cf

3) ]

+
P

xy /2�(Mf
.)
[ �(xy ,Cf

1) + �(xy ,Cf
2) + �(xy ,Cf

3) ]

=
P

xy2�(Mf
.)
(3� �(xy ,Cf

1..3)) +
P

xy /2�(Mf
.)

�(xy ,Cf
1..3)

=
P

xy [ �(xy ,M
f
.) · (3� �(xy ,Cf

1..3)) + (1� �(xy ,Mf
.)) · �(xy ,Cf

1..3) ]

=
P

xy [ 3 · �(xy ,Mf
.)� �(xy ,Mf

.) · �(xy ,Cf
1..3) + �(xy ,Cf

1..3)� �(xy ,Mf
.) · �(xy ,Cf

1..3) ]

= |�(Cf
1)|+ |�(Cf

2)|+ |�(Cf
3)| +

P
xy [ �(xy ,M

f
.)(3� 2 · �(xy ,Cf

1..3)) ]

= |�(Cf
1)|+ |�(Cf

2)|+ |�(Cf
3)| +

P
xy2�(Mf

.)
(3� 2 · �(xy ,Cf

1..3))



SCJ median of three canonical genomes

sscj(Mf
.) = |�(Cf

1)|+ |�(Cf
2)|+ |�(Cf

3)| +
P

xy2�(Mf
.)
(3� 2 · �(xy ,Cf

1..3))

= |�(Cf
1)|+ |�(Cf

2)|+ |�(Cf
3)| + !(Mf

.)

Since |�(Cf
1)|+ |�(Cf

2)|+ |�(Cf
3)| is given (does not depend on M

f
.), for minimizing sscj(Mf

.) we need to
minimize:

!(Mf
.) =

X

xy2�(Mf
.)

!(xy) =
X

xy2�(Mf
.)

(3� 2 · �(xy ,Cf
1..3))

where !(xy) = 3� 2 · �(xy ,Cf
1..3) 2 {�3,�1,+1,+3}.

For minimizing !(Mf
.):

I Do not add to M
f
. any adjacency xz that have !(xz) > 0:

this happens when �(xz,Cf
1..3)  1 (xz occurs in at most one genome among C

f
1, C

f
2 and C

f
3).

I Add to M
f
. any adjacency xy that have !(xy) < 0:

this happens when �(xy ,Cf
1..3) � 2 (xy occurs in at least two genomes among C

f
1, C

f
2 and C

f
3).

I For z 6= y : !(xz) > 0 , !(xy) < 0.

There is no adjacency xy with !(xy) = 0. Therefore, the SCJ median problem has a unique solution:

�(Mf
.) = {xy : �(xy ,Cf

1..3) � 2}



SCJ median of three canonical genomes - intuition

Let F? = G? = {1, 2, 3, ..., n}
and start with M

f
. = [1] [2] ... [n]

�(Mf
.) = ; and sscj(Mf

.) = |�(Cf
1)| + |�(Cf

2)| + |�(Cf
3)|

E↵ect of adding an adjacency xy to M
f
.:

1. If xy is not present in any genome among {Cf
1,C

f
2,C

f
3}, then �sscj = +3.

2. If xy is present in exactly one genome among {Cf
1,C

f
2,C

f
3}, then �sscj = +1.

(�dscj(Mf
.,C

f
i ) = �1, but 2⇥�dscj(Mf

.,C
f
i ) = +1)

3. If xy is present in exactly two genomes among {Cf
1,C

f
2,C

f
3}, then �sscj = �1.

(2⇥�dscj(Mf
.,C

f
i ) = �1, but �dscj(Mf

.,C
f
i ) = +1)

4. If xy is present in all three genomes {Cf
1,C

f
2,C

f
3}, then �sscj = �3.



SCJ median of k canonical genomes

Given k canonical genomes C
f
1, C

f
2, . . .C

f
k , find another canonical genome M

f
. that minimizes the sum:

sscj(Mf
.) = dscj(Mf

.,C
f
1) + dscj(Mf

.,C
f
2) + ... + dscj(Mf

.,C
f
k )

= |�(Cf
1)|+ |�(Cf

2)|+ ... + |�(Cf
k )| + !(Mf

.)

Analogously to the median of three genomes, we need to minimize:

!(Mf
.) =

X

xy2�(Mf
.)

!(xy)

where !(xy) = k � 2 · �(xy ,Cf
1..k ) 2 {�k,�k + 2, ... , +k � 2,+k}.

For minimizing !(Mf
.):

I Do not add to M
f
. any adjacency xz that have !(xz) > 0:

this happens when �(xz,Cf
1..k ) <

k
2 (xz occurs in less than half of the genomes among C

f
1, C

f
2, . . . , C

f
k ).

I Add to M
f
. any adjacency xy that have !(xy) < 0:

this happens when �(xy ,Cf
1..3) >

k
2 (xy occurs in more than half of the genomes among C

f
1, C

f
2, . . . , C

f
k ).

I For z 6= y : !(xz) > 0 , !(xy) < 0.
I Any adjacency xy with !(xy) = 0 is optional (can be added to the median or not). If there is no such an

adjacency (e.g., if k is odd), the SCJ median problem has a unique solution.

In general, the following set of adjacencies define a SCJ median of k genomes:

�(Mf
.) =

⇢
xy : �(xy ,Cf

1..k ) >
k

2

�



SCJ linear median of k canonical linear genomes

1. Compute the general SCJ median M
f
. as described above.

2. For each circular chromosome in M
f
., remove one adjacency xy with smallest weight !(xy).



Quiz 3

1 Which of the following statements are true?

A The SCJ halving is always satisfied by a unique singular genome.

B The SCJ halving cannot be satisfied by a unique singular genome.

C The SCJ median of four canonical genomes is always unique.

D The SCJ median of four canonical genomes cannot be unique.

E The SCJ median of three canonical genomes is always unique.

F The SCJ linear median of three canonical linear genomes is always unique.
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