Topics of today:

1. Breakpoint graph of two genomes

2. SCJ circular median

3. Breakpoint median and halving

4. NP-hardness of unichromosomal breakpoint median

5. Large-scale rearrangements and the DCJ operation



Breakpoint graph of canonical genomes
Genomes Aé and ]Bé are canonical, with 7, = G, = {1,2,...,n}
Breakpoint graph of Af and B — G = BG(Af,Bf):

1. Set of vertices V(G) = U {x"x} = |V(G)|=2n
Xe0«

2. Set of edges E(G) =T(AL)UT(BL) = |E(G)| = |F(AL)| + |F(BL)| < 2n
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Each vertex has degre?g'll or 2: collection of,p paths and c (even) cycles (p=r(AD) +K(BL))

>
length of a component: number of edges
. {02 = number of 2-cycles’in BG(Af, Bf) (common adjacencies)

dpp(Af B Y =n—c — &
wr (A5 B; ) T2 po = number of O-paths in BG(Af,Bf) (common telomeres)
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Complete graph of a set of genes

Complete graph & of A ={1,2,...,n}:

Set of vertices V(&) = U {x"x'} = |V(8) =2n
XEA
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CTx:n=3
Co:(123)

/73d’ o,[' non-incident ¢£’0$ uvwinj afl vertices

A(perfect matching M in & corresponds to |M| = n adjacencies and, consequently,
defines a circular singular genome C, with [(C) = M.



SCJ median of k canonical genomes

Given k canonical genomes (C{, (Cg, (CZ find another canonical genome M that minimizes the sum:

SSUJ(Mf) = dscs (Mf, (C{) + dSCJ(va C’;) + ...+ dSCJ(Mfy Ci)

IFECDI+ITECHI+ - +T(CHI + w(M)

For computing the median, we need to minimize:

wM) = D wliv)

xy€M(MF)

where w(xy) = k — 2 - ¢(xy, (C{__k) e {—k,—k+2,...,+k—2, +k}.

Solution: take only the adjacencies with negative weight



SCJ median of k canonical circular genomes

Canonical genomes (C{, (Cg, (Ci are circular:

ssa(M) = [T(CDI+INCHI+ .. +N(CPI + w(M)

= 3 + oM
Kn

Again, we need to minimize w(Mf) = nyel’(Mg) w(xy), where w(xy) = k —2- ¢(xy,C! ,), but since the
median is required to be circular, it may not be possible to take only the adjacencies that have a negative weight

Solution:
1. Build the complete graph & of G,
2. Assign weights to each edge xy of ®&: w(xy) = k —2- ¢(xy,Cl ,). -1
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m:=(113)
Perfect matching M in & < Circular genome Mf ;  with w(M) = w(MF)

A perfect matching My;x with minimum weight gives a circular SCJ median Mfm with minimum weight



Breakpoint median of three canonical circular genomes
Given canonical circular genomes Cf, C§ and Cf, find a canonical circular genome MY that minimizes the sum:
see(Mf) = dep(M£,Cf) + dpe(ML,CH) + dup(Mf,CE)
= 1= Toyerau) 200 C) + 0= S, eruy) 900, C5) + n— T erqug) 409 C)
= 3n — nyer(Mg)d’(X)’vas)
= 30— w/(M)

Here we need to maximize w/(Mf) = nyél’(Mg) w'(xy), where w’(xy) = ¢(xy, C} ;).
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1. Build the complete graph & of G,

2. Assign weights to each edge xy of &: w’'(xy) = ¢(xy, C{“k)' 2
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Perfect matching M in & < Circular genome Mf ;  with w’(M) = w’(M")

m:(123)

A perfect matching Myuy with maximum weight gives a circular BP median anin with maximum weight



Breakpoint median of three canonical genomes

Given canonical genomes (C{, (C’zr and (Cg, find a canonical genome Mé that minimizes the sum:

SBP(Mé) = dBP(Mér (C{) + dnp(Mé, (Cg) + dgp (Mé, (Ci)
_ _ (Cf _ ¢’(ch{) _ (Cf
= =2 erau) 900 C) = Xcomut) 2 -+ 1= geraar) 200, C3)
#(x,.Ch (x,.Ch
—2xeo(f) % + n=2yerqur) 2O, ct) - 2 xeor) %
@ X,CF
= 30— Yerou)¢00.Cls) — Yecomy) )

cf
Here /(M) = Yerqug) e () + Creopug) @/ (x) , where w'(xy) = ¢(xy, Cf ;) and ' (x) = 25l
1. Build the complete graph &
2. Assign weights to each edge xy of &: w’'(xy) = ¢(xy, C{.,k)'
3. Build the complete graph &; with vertices V(&;) = U {tyn, txe }

XEG
4. Assign weight 0 to each edge of &;
5. Add one edge connecting each vertex x in & to the corresponding vertex tyx in &;, with weight
£

w/(th) — ‘b(xvgl..k)

Perfect matching M in & + &; < Genome M ; with w/(M) = o' (M)

. . . . . . f - . .
A matching Myux with maximum weight gives a BP median Mmin with maximum weight
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Quiz 1

1 Which of the following statements are true?

A The breakpoint median can only be computed for circular genomes.

B The circular SCJ median is equivalent to the circular breakpoint median of three canonical
circular genomes.

C The problem of computing a circular breakpoint halving of a circular duplicated genome is
polynomial.



NP-hardness of unichromosomal breakpoint median

A unichromosomal circular genome C can be represented as a simple directed cycle graph:
Ex: C=(123)

ROD W IR0

Assume that the genes in three canonical circular genomes (C{, (Cg and Cg have the same relative orientation
and represent these three genomes in the same directed cycle graph:

Ex: Cf=(1234), C)=(2413), C{=(2314)
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NP-hardness of unichromosomal breakpoint median

The Problem of determining whether a directed graph G has a hamiltonian cycle is NP-complete, even if G has
maximum indegree and maximum outdegree equal to 3.

Reduction of this problem to the problem of computing a breakpoint median of three canonical circular genomes
A, B and C that have the same relative orientation:

We need to transform G into another directed graph G, such that G’ is the union of three hamiltonian
cycles (each one representing one input genome of the median problem)
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NP-hardness of unichromosomal breakpoint median

Build a modified directed graph G/, such that G’ is the union of three hamiltonian cycles (each one
representing one genome among A, B and C)

2
A ,.2' B A9~ B
Y 3 Lo oivg * |
1 -> Al 1,0 A *3
*~ :, A e \G A
[ ]

G”" has only adjacencies that occur in one or in two genomes

Let M be a solution to the circular
breakpoint median of A, B and C:

M contains all adjacencies common to two input genomes
and no "new"” adjacency

Initial graph G has an hamiltonian cycle



NP-hardness of unichromosomal breakpoint median 2
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Quiz 2

1 Which of the following statements are true?

A There is a polynomial time algorithm for solving the unichromosomal breakpoint median.

B There cannot be a polynomial time algorithm for solving the unichromosomal breakpoint
median.

C The unichromosomal breakpoint median is NP-hard because it can be reduced to the
hamiltonian cycle problem.

D The unichromosomal breakpoint median is NP-hard because the hamiltonian cycle
problem can be reduced to it.



Double-cut-and-join (DCJ) model

Double-cut-and-join (DCJ) operation: two cuts + two joins
» Cuts the genome twice and rejoins loose ends in a different way.

> Represents most large-scale genome rearrangements (inversions, translocations, fusions, fissions... )

> C— — —>:
translocation (inter-chromosomal)

D > < G ;(_ >

fusion (change # of chromosomes)

D > < GEE— (__)

(intra-chromosomal) inversion

D > G < G < GEE——



The double-cut-and-join (DCJ) operation

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

—> — —> o —> — —>
1 translocation 1 translocation
i « . 5 tran_slo— PR — o —> tran_slo—
cation cation
1 translocation 1 translocation



The double-cut-and-join (DCJ) operation

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way
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The double-cut-and-join (DCJ) operation

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

—>
—>
1 translocation
—
inver-
—> .
sion
—>
fusion | 1 fission
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excision 1T | incorporation
E I

circularization | 71 linearization
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DCJ model

DCJ operation xv + wz two possibilities
involving A of rejoining
two adjacencies in a different way
‘ Xz + v ‘ ‘ xw 4+ vz ‘

Cases:

A. Each adjacency is in a distinct linear chromosome:

[1y723] [4:756]

reciprocal A reciprocal
translocation translocation

[15556] [4:523] jecbocl [1504] [324556]

translocation

B. Both adjacencies are in the same chromosome, or one is in a circular chromosome:

(13723437 56))
) . excision/
inversion A integration

([1%5332456]) o ([15:56]) (34%%2)

integration



DCJ model

DCJ operation X + wz two possibilities
involving one adjacency A of rejoining
and one telomere in a different way
‘ Xz + ‘ ‘ xw 4+ z ‘
Cases:

A. The adjacency and the telomere are in distinct linear chromosomes:

[123%.] [47%456]

translocation A translocation

[123);2'56] [4 ] translocation [123); 21] [ €56]

B. The adjacency is in the same linear chromosome, or in a circular chromosome:

[12345:565%.]
. X excision/
inversion A integration

[12342%65..] &9 (12342 ] (6%.5)

integration



DCJ model

one possibility
of rejoining
in a different way

DCJ operation
involving one adjacency
or two telomeres

X + z
Cases:
A. The adjacency is in a linear chromosome / the telomeres are in two distinct chromosomes:

[1237.] [.545]

fusion \L’]\ fission

[123%%45]

B. The adjacency is in a circular chromosome / the telomeres are in the same chromosome:

X12345% ]

circularization J//]\ linearization

(2345%%1)



Quiz 3

1 Which transformations can be done with a single DCJ operation?

A [123] [45]  [12453]
B [123] [45] + [1235%]
C [123] [45] « [125] [43]
D [12345] «+ [14325]

E [12345] + [12543]

F [123] (45) « [12453]
G [123] (45) < [12543]

H (12345) < [34512]
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