
Topics of today:

1. Breakpoint graph of two genomes

2. SCJ circular median

3. Breakpoint median and halving

4. NP-hardness of unichromosomal breakpoint median

5. Large-scale rearrangements and the DCJ operation



Breakpoint graph of canonical genomes
Genomes Af

. and Bf
. are canonical, with F? = G? = {1, 2, ... ,n}

Breakpoint graph of Af
. and Bf

. ! G = BG(Af
.,Bf

.):

1. Set of vertices V (G) =

[

X2G?

{Xh, Xt} ) |V (G)| = 2n

2. Set of edges E(G) = �(Af
.) [ �(Bf

.) ) |E(G)| = |�(Af
.)|+ |�(Bf

.)|  2n

Each vertex has degree 1 or 2: collection of p paths and c (even) cycles ( p = (Af
.) + (Bf

.) )

length of a component: number of edges

dbp(Af
.,Bf

.) = n � c2 � p0
2

(
c2 = number of 2-cycles in BG(Af

.,Bf
.) (common adjacencies)

p0 = number of 0-paths in BG(Af
.,Bf

.) (common telomeres)
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Complete graph of a set of genes

Complete graph G of A = {1, 2, ... ,n}:

Set of vertices V (G) =

[

X2A
{Xh, Xt} ) |V (G)| = 2n

A perfect matching M in G corresponds to |M| = n adjacencies and, consequently,

defines a circular singular genome C, with �(C) = M.

C = (1) (2) (3)
yt 1h

C :( I 2 3)
* :
"

÷÷É☒¥:
µ
Set of non- incident edges covering all vertices



SCJ median of k canonical genomes

Given k canonical genomes Cf
1
, Cf

2
, . . .Cf

k , find another canonical genome Mf
that minimizes the sum:

sscj(Mf
) = dscj(Mf

,Cf
1
) + dscj(Mf

,Cf
2
) + ... + dscj(Mf

,Cf
k )

= |�(Cf
1
)|+ |�(Cf

2
)|+ ... + |�(Cf

k )| + !(Mf
)

For computing the median, we need to minimize:

!(Mf
) =

X

xy2�(Mf )

!(xy)

where !(xy) = k � 2 · �(xy ,Cf
1..k ) 2 {�k,�k + 2, ... , +k � 2,+k}.

Solution: take only the adjacencies with negative weight



SCJ median of k canonical circular genomes
Canonical genomes Cf

1
, Cf

2
, . . .Cf

k are circular:

sscj(Mf
) = |�(Cf

1
)|+ |�(Cf

2
)|+ ... + |�(Cf

k )| + !(Mf
)

= 3n + !(Mf
)

Again, we need to minimize !(Mf
) =

P
xy2�(Mf

.)
!(xy) , where !(xy) = k � 2 · �(xy ,Cf

1..k ), but since the

median is required to be circular, it may not be possible to take only the adjacencies that have a negative weight

Solution:

1. Build the complete graph G of G?

2. Assign weights to each edge xy of G: !(xy) = k � 2 · �(xy ,Cf
1..k ).

Perfect matching M in G , Circular genome Mf
; with !(M) = !(Mf

)

A perfect matching Mmin with minimum weight gives a circular SCJ median Mf
min with minimum weight
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Breakpoint median of three canonical circular genomes
Given canonical circular genomes Cf

1
, Cf

2
and Cf

3
, find a canonical circular genome Mf

. that minimizes the sum:

sbp(Mf
.) = dbp(Mf

.,Cf
1
) + dbp(Mf

.,Cf
2
) + dbp(Mf

.,Cf
k )

= n �
P

xy2�(Mf
.)

�(xy ,Cf
1
) + n �

P
xy2�(Mf

.)
�(xy ,Cf

2
) + n �

P
xy2�(Mf

.)
�(xy ,Cf

3
)

= 3n �
P

xy2�(Mf
.)

�(xy ,Cf
1..3

)

= 3n � !0
(Mf

.)

Here we need to maximize !0
(Mf

.) =
P

xy2�(Mf
.)

!0
(xy) , where !0

(xy) = �(xy ,Cf
1..3

).

1. Build the complete graph G of G?

2. Assign weights to each edge xy of G: !0
(xy) = �(xy ,Cf

1..k ).

Perfect matching M in G , Circular genome Mf
; with !0

(M) = !0
(Mf

)

A perfect matching Mmin with maximum weight gives a circular BP median Mf
min with maximum weight

i.
0 :

'

:
"

zt i'• ,
2 '

'

i.
• 2h

Ex : Cy = ( 1 2 3.)
w (Ky) c- { 0, 1 , 2 , 3 ] 0

I

Cz= ( 3 2 T) }t••?
. .÷ . . !É 3h

c} =
(3 • i÷,

M = ( 1 I 3)



Breakpoint median of three canonical genomes
Given canonical genomes Cf

1
, Cf

2
and Cf

3
, find a canonical genome Mf

. that minimizes the sum:

sbp(Mf
.) = dbp(Mf

.,Cf
1
) + dbp(Mf

.,Cf
2
) + dbp(Mf

.,Cf
k )

= n �
P

xy2�(Mf
.)

�(xy ,Cf
1
)�

P
x2⇥(Mf

.)

�(x ,Cf
1
)

2
+ n �

P
xy2�(Mf

.)
�(xy ,Cf

2
)

�
P

x2⇥(Mf
.)

�(x ,Cf
2
)

2
+ n �

P
xy2�(Mf

.)
�(xy ,Cf

3
)�

P
x2⇥(Mf

.)

�(x ,Cf
3
)

2

= 3n �
P

xy2�(Mf
.)

�(xy ,Cf
1..3

) �
P

x2⇥(Mf
.)

�(x ,Cf
1..3

)

2

Here !0
(Mf

.) =
P

xy2�(Mf
.)

!0
(xy) +

P
x2⇥(Mf

.)
!0

(x) , where !0
(xy) = �(xy ,Cf

1..3
) and !0

(x) =
�(x ,Cf

1..3
)

2
.

1. Build the complete graph G

2. Assign weights to each edge xy of G: !0
(xy) = �(xy ,Cf

1..k ).

3. Build the complete graph Gt with vertices V (Gt) =
[

X2G?

{tXh , tXt }

4. Assign weight 0 to each edge of Gt

5. Add one edge connecting each vertex x in G to the corresponding vertex tx in Gt , with weight

!0
(xtx ) =

�(x ,Cf
1..k )

2

Perfect matching M in G+ Gt , Genome Mf
; with !0

(M) = !0
(Mf

)

A matching Mmin with maximum weight gives a BP median Mf
min with maximum weight
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The breakpoint halving can

be computed in a similar way



Quiz 1

1 Which of the following statements are true?

A The breakpoint median can only be computed for circular genomes.

B The circular SCJ median is equivalent to the circular breakpoint median of three canonical

circular genomes.

C The problem of computing a circular breakpoint halving of a circular duplicated genome is

polynomial.



NP-hardness of unichromosomal breakpoint median

A unichromosomal circular genome C can be represented as a simple directed cycle graph:

Ex: C = (1 2̄ 3)

Assume that the genes in three canonical circular genomes Cf
1
, Cf

2
and Cf

3
have the same relative orientation

and represent these three genomes in the same directed cycle graph:

Ex: Cf
1
= (1 2 3 4) , Cf

2
= (2 4 1 3) , Cf

3
= (2 3 1 4)

⑤→②→①①→(E)→③ or I

Every vertex has indegree =

outdone =3

M :( 1 2 34)



NP-hardness of unichromosomal breakpoint median

The Problem of determining whether a directed graph G has a hamiltonian cycle is NP-complete, even if G has

maximum indegree and maximum outdegree equal to 3.

Reduction of this problem to the problem of computing a breakpoint median of three canonical circular genomes

A, B and C that have the same relative orientation:

We need to transform G into another directed graph G 00
, such that G 00

is the union of three hamiltonian

cycles (each one representing one input genome of the median problem)

,
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NP-hardness of unichromosomal breakpoint median

Build a modified directed graph G 00
, such that G 00

is the union of three hamiltonian cycles (each one

representing one genome among A, B and C)

G 00
has only adjacencies that occur in one or in two genomes

Let M be a solution to the circular

breakpoint median of A, B and C:

M contains all adjacencies common to two input genomes

and no ”new” adjacency

l
Initial graph G has an hamiltonian cycle
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NP-hardness of unichromosomal breakpoint median
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Quiz 2

1 Which of the following statements are true?

A There is a polynomial time algorithm for solving the unichromosomal breakpoint median.

B There cannot be a polynomial time algorithm for solving the unichromosomal breakpoint

median.

C The unichromosomal breakpoint median is NP-hard because it can be reduced to the

hamiltonian cycle problem.

D The unichromosomal breakpoint median is NP-hard because the hamiltonian cycle

problem can be reduced to it.



Double-cut-and-join (DCJ) model

Double-cut-and-join (DCJ) operation: two cuts + two joins

I Cuts the genome twice and rejoins loose ends in a di↵erent way.

I Represents most large-scale genome rearrangements (inversions, translocations, fusions, fissions... )

translocation (inter-chromosomal)

fusion (change # of chromosomes)

(intra-chromosomal) inversion



The double-cut-and-join (DCJ) operation

9/39

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

l translocation
translo-
cation

l translocation

l translocation
translo-
cation

l translocation

excision # " incorporation

inver-
sion

excision " # incorporation

excision # " incorporation

inver-
sion

excision " # incorporation

fusion # " fission
circularization # " linearization

I I

Beg



The double-cut-and-join (DCJ) operation

9/39

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

l translocation
translo-
cation

l translocation

l translocation
translo-
cation

l translocation

excision # " incorporation

inver-
sion

excision " # incorporation

excision # " incorporation

inver-
sion

excision " # incorporation

fusion # " fission
circularization # " linearization

I I.
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The double-cut-and-join (DCJ) operation

9/39

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

l translocation
translo-
cation

l translocation

l translocation
translo-
cation

l translocation

excision # " incorporation

inver-
sion

excision " # incorporation

excision # " incorporation

inver-
sion

excision " # incorporation

fusion # " fission
circularization # " linearization
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DCJ model

DCJ operation
involving

two adjacencies

xv + wz two possibilities
of rejoining

in a di↵erent way4
xz + wv xw + vz

Cases:

A. Each adjacency is in a distinct linear chromosome:

[ 1
x
H

v
H
2 3 ] [ 4

w
H

z
H
5 6 ]

reciprocal

translocation
4 reciprocal

translocation

[ 1
x
H

z
H
5 6 ] [ 4

w
H

v
H
2 3 ]

reciprocal

translocation
[ 1

x
H

w
H
4̄ ] [ 3̄ 2̄

v
H

z
H
5 6 ]

B. Both adjacencies are in the same chromosome, or one is in a circular chromosome:

([ 1
x
H

v
H
2 3 4

z
H

w
H
5 6 ])

inversion 4 excision/

integration

([ 1
x
H

z
H
4̄ 3̄ 2̄

v
H

w
H
5 6 ])

excision/

integration
([ 1

x
H

w
H
5 6 ]) ( 3 4

z
H

v
H
2 )



DCJ model

DCJ operation
involving one adjacency

and one telomere

x + wz two possibilities
of rejoining

in a di↵erent way4
xz + w xw + z

Cases:

A. The adjacency and the telomere are in distinct linear chromosomes:

[ 1 2 3
x
HH

] [ 4
w
H

z
H
5 6 ]

translocation 4 translocation

[ 1 2 3
x
H

z
H
5 6 ] [ 4

w
HH

]
translocation

[ 1 2 3
x
H

w
H
4̄ ] [

H

z
H
5 6 ]

B. The adjacency is in the same linear chromosome, or in a circular chromosome:

[ 1 2 3 4
z
H

w
H
5 6

x
HH

]

inversion 4 excision/

integration

[ 1 2 3 4
z
H

x
H
6̄ 5̄

w
HH

]
excision/

integration
[ 1 2 3 4

z
HH

] ( 6
x
H

w
H
5 )



DCJ model

DCJ operation
involving one adjacency

or two telomeres

x + z one possibility
of rejoining

in a di↵erent way
l
xz

Cases:

A. The adjacency is in a linear chromosome / the telomeres are in two distinct chromosomes:

[ 1 2 3
x
HH

] [
H

z
H
4 5 ]

fusion #" fission

[ 1 2 3
x
H

z
H
4 5 ] [

HH
]

B. The adjacency is in a circular chromosome / the telomeres are in the same chromosome:

[
H

x
H
1 2 3 4 5

z
HH

]

circularization #" linearization

( 2 3 4 5
z
H

x
H
1 ) [

HH
]



Quiz 3

1 Which transformations can be done with a single DCJ operation?

A [1 2 3] [4 5] $ [1 2 4 5 3]

B [1 2 3] [4 5] $ [1 2 3 5̄ 4̄]

C [1 2 3] [4 5] $ [1 2 5] [ 4 3]

D [1 2 3 4 5] $ [1 4̄ 3 2̄ 5]

E [1 2 3 4 5] $ [1 2 5̄ 4̄ 3̄]

F [1 2 3] (4 5) $ [1 2 4 5 3]

G [1 2 3] (4 5) $ [1 2 5 4 3]

H (1 2 3 4 5) $ [3 4 5 1 2]
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