Topics of today:

1. Breakpoint graph of two genomes
2. SCJ circular median
3. Breakpoint median and halving
4. NP-hardness of unichromosomal breakpoint median
5. Large-scale rearrangements and the DCJ operation

Breakpoint graph of canonical genomes

Genomes $\mathbb{A}_{\triangleright}^{f}$ and $\mathbb{B}_{\triangleright}^{f}$ are canonical, with $\mathcal{F}_{\star}=\mathcal{G}_{\star}=\{1,2, \ldots, n\}$
Breakpoints graph of $\mathbb{A}_{\triangleright}^{f}$ and $\mathbb{B}_{\triangleright}^{f} \quad \rightarrow \quad G=B G\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)$:

1. Set of vertices $V(G)=\bigcup_{\mathrm{x} \in \mathcal{G}_{\star}}\left\{\mathrm{x}^{h}, \mathrm{X}^{t}\right\} \quad \Rightarrow|V(G)|=2 n$
2. Set of edges $E(G)=\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right) \cup \Gamma\left(\mathbb{B}_{\triangleright}^{f}\right) \quad \Rightarrow|E(G)|=\left|\Gamma\left(\mathbb{A}_{\triangleright}^{f}\right)\right|+\left|\Gamma\left(\mathbb{B}_{\triangleright}^{f}\right)\right| \leq 2 n$

Each vertex has degree 1 or 2: collection of p paths and $c($ even $)$ cycles $\quad\left(p=\kappa\left(\mathbb{A}_{\triangleright}^{f}\right)+\kappa\left(\mathbb{B}_{\triangleright}^{f}\right)\right)$ length of a component: number of edges alternating
$\mathrm{d}_{\mathrm{BP}}\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right)=n-c_{2}-\frac{p_{0}}{2}\left\{\begin{array}{l}c_{2}=\text { number of 2-cycles in } B G\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) \text { (common adjacencies) } \\ p_{0}=\text { number of 0-paths in } B G\left(\mathbb{A}_{\triangleright}^{f}, \mathbb{B}_{\triangleright}^{f}\right) \text { (common telomeres) }\end{array}\right.$

Complete graph of a set of genes

Complete graph \mathfrak{G} of $\mathcal{A}=\{1,2, \ldots, n\}$:
Set of vertices $V(\mathfrak{G})=\bigcup_{\mathrm{x} \in \mathcal{A}}\left\{\mathrm{X}^{h}, \mathrm{X}^{t}\right\} \quad \Rightarrow|V(\mathfrak{G})|=2 n$

$$
E_{x}: n=3
$$

$$
\begin{aligned}
& C_{=(1)(2)(3)} \\
& C_{0}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)
\end{aligned}
$$

P Set of non-incident edges covering all vertices A perfect matching M in \mathfrak{G} corresponds to $|M|=n$ adjacencies and, consequently, defines a circular singular genome \mathbb{C}, with $\Gamma(\mathbb{C})=M$.

SCJ median of k canonical genomes

Given k canonical genomes $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \ldots \mathbb{C}_{k}^{f}$, find another canonical genome \mathbb{M}^{f} that minimizes the sum:

$$
\begin{aligned}
\mathrm{s}_{\mathrm{SCJ}}\left(\mathbb{M}^{f}\right) & =\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}^{f}, \mathbb{C}_{1}^{f}\right)+\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}^{f}, \mathbb{C}_{2}^{f}\right)+\ldots+\mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{M}^{f}, \mathbb{C}_{k}^{f}\right) \\
& =\left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\ldots+\left|\Gamma\left(\mathbb{C}_{k}^{f}\right)\right|+\omega\left(\mathbb{M}^{f}\right)
\end{aligned}
$$

For computing the median, we need to minimize:

$$
\omega\left(\mathbb{M}^{f}\right)=\sum_{x y \in \Gamma\left(\mathbb{M}^{f}\right)} \omega(x y)
$$

where $\omega(x y)=k-2 \cdot \phi\left(x y, \mathbb{C}_{1 . .}^{f}\right) \in\{-k,-k+2, \ldots,+k-2,+k\}$.

Solution: take only the adjacencies with negative weight

SCJ median of k canonical circular genomes

Canonical genomes $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}, \ldots \mathbb{C}_{k}^{f}$ are circular:

$$
\begin{aligned}
\mathrm{s}_{\mathrm{SCJ}}\left(\mathbb{M}^{f}\right) & =\left|\Gamma\left(\mathbb{C}_{1}^{f}\right)\right|+\left|\Gamma\left(\mathbb{C}_{2}^{f}\right)\right|+\ldots+\left|\Gamma\left(\mathbb{C}_{k}^{f}\right)\right|+\omega\left(\mathbb{M}^{f}\right) \\
& =\frac{3 k}{\mathbf{K n}}+\omega\left(\mathbb{M}^{f}\right)
\end{aligned}
$$

Again, we need to minimize $\omega\left(\mathbb{M}^{f}\right)=\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \omega(x y)$, where $\omega(x y)=k-2 \cdot \phi\left(x y, \mathbb{C}_{1 . . k}^{f}\right)$, but since the median is required to be circular, it may not be possible to take only the adjacencies that have a negative weight

Solution:

1. Build the complete graph \mathfrak{G} of \mathcal{G}_{\star}
2. Assign weights to each edge $x y$ of $\mathfrak{G}: \omega(x y)=k-2 \cdot \phi\left(x y, \mathbb{C}_{1 \ldots k}^{f}\right)$.

$$
w(x y) \in\left\{\begin{aligned}
-3,-1,+1,+3
\end{aligned}\right\} \quad \text { Ex: } \begin{aligned}
c_{1} & =\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
c_{2} & =\left(\begin{array}{ll}
3 & 2, \overline{1})
\end{array}\right) \\
c_{3} & =(3,1, \overline{2})
\end{aligned}
$$

Perfect matching M in $\mathfrak{G} \Leftrightarrow$ Circular genome $\mathbb{M}^{f} \quad ; \quad$ with $\omega(M)=\omega\left(\mathbb{M}^{f}\right)$
A perfect matching $M_{\text {MIN }}$ with minimum weight gives a circular SCJ median $\mathbb{M}_{\text {min }}^{f}$ with minimum weight

Breakpoint median of three canonical circular genomes

Given canonical circular genomes $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$ and \mathbb{C}_{3}^{f}, find a canonical circular genome $\mathbb{M}_{\triangleright}^{f}$ that minimizes the sum:

$$
\begin{aligned}
\mathrm{s}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}\right) & =\mathrm{d}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{1}^{f}\right)+\mathrm{d}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{2}^{f}\right)+\mathrm{d}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{k}^{f}\right) \\
& =n-\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{1}^{f}\right)+n-\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{2}^{f}\right)+n-\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{3}^{f}\right) \\
& =3 n-\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right) \\
& =3 n-\omega^{\prime}\left(\mathbb{M}_{\triangleright}^{f}\right)
\end{aligned}
$$

Here we need to maximize $\omega^{\prime}\left(\mathbb{M}_{\triangleright}^{f}\right)=\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \omega^{\prime}(x y)$, where $\omega^{\prime}(x y)=\phi\left(x y, \mathbb{C}_{1 . .3}^{f}\right)$.

1. Build the complete graph \mathfrak{G} of $\mathcal{G}_{\text {* }}$
2. Assign weights to each edge $x y$ of $\mathfrak{G}: \omega^{\prime}(x y)=\phi\left(x y, \mathbb{C}_{1 . . k}^{f}\right)$.

$$
\omega(x, y) \in\{0,1,2,3\} \quad \text { Ex: } \begin{aligned}
c_{1} & =(12,3) \\
c_{2} & =(32, \overline{1}) \\
c_{3} & =(3,1, \overline{2})
\end{aligned}
$$

Perfect matching M in $\mathfrak{G} \Leftrightarrow$ Circular genome $\mathbb{M}^{f} \quad ; \quad$ with $\omega^{\prime}(M)=\omega^{\prime}\left(\mathbb{M}^{f}\right)$
A perfect matching $M_{\text {MIN }}$ with maximum weight gives a circular BP median $\mathbb{M}_{\text {min }}^{f}$ with maximum weight

Breakpoint median of three canonical genomes

Given canonical genomes $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$ and \mathbb{C}_{3}^{f}, find a canonical genome $\mathbb{M}_{\triangleright}^{f}$ that minimizes the sum:

$$
\begin{aligned}
\mathrm{s}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}\right)= & \mathrm{d}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{1}^{f}\right)+\mathrm{d}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{2}^{f}\right)+\mathrm{d}_{\mathrm{BP}}\left(\mathbb{M}_{\triangleright}^{f}, \mathbb{C}_{k}^{f}\right) \\
= & n-\sum_{x y \in \Gamma\left(\left(\mathbb{M}_{\triangleright}^{f}\right)\right.} \phi\left(x y, \mathbb{C}_{1}^{f}\right)-\sum_{x \in \Theta\left(\mathbb{M}_{\triangleright}^{f}\right)} \frac{\phi\left(x, \mathbb{C}_{1}^{f}\right)}{2}+n-\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{2}^{f}\right) \\
& -\sum_{x \in \Theta\left(\mathbb{M}_{\triangleright}^{f}\right)} \frac{\phi\left(x, \mathbb{C}_{2}^{f}\right)}{2}+n-\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{3}^{f}\right)-\sum_{x \in \Theta\left(\mathbb{M}_{\triangleright}^{f}\right)} \frac{\phi\left(x, \mathbb{C}_{3}^{f}\right)}{2} \\
= & 3 n-\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \phi\left(x y, \mathbb{C}_{1.3}^{f}\right)-\sum_{x \in \Theta\left(\mathbb{M}_{\triangleright}^{f}\right)} \frac{\phi\left(x, \mathbb{C}_{1.3}^{f}\right)}{2}
\end{aligned}
$$

Here $\omega^{\prime}\left(\mathbb{M}_{\triangleright}^{f}\right)=\sum_{x y \in \Gamma\left(\mathbb{M}_{\triangleright}^{f}\right)} \omega^{\prime}(x y)+\sum_{x \in \Theta\left(\mathbb{M}_{\triangleright}^{f}\right)} \omega^{\prime}(x)$, where $\omega^{\prime}(x y)=\phi\left(x y, \mathbb{C}_{1.3}^{f}\right)$ and $\omega^{\prime}(x)=\frac{\phi\left(x, \mathbb{C}_{1.3}^{f}\right)}{2}$.

1. Build the complete graph \mathfrak{G}
2. Assign weights to each edge $x y$ of $\mathfrak{G}: \omega^{\prime}(x y)=\phi\left(x y, \mathbb{C}_{1 . . k}^{f}\right)$.
3. Build the complete graph \mathfrak{G}_{t} with vertices $V\left(\mathfrak{G}_{t}\right)=\bigcup_{\mathrm{x} \in \mathcal{G}_{\star}}\left\{t_{\mathrm{x}^{h}}, \mathrm{t}_{\mathrm{x}^{t}}\right\}$
4. Assign weight 0 to each edge of \mathfrak{G}_{t}
5. Add one edge connecting each vertex x in \mathfrak{G} to the corresponding vertex t_{x} in \mathfrak{G}_{t}, with weight $\omega^{\prime}\left(x t_{x}\right)=\frac{\phi\left(x, \mathbb{C}_{1 . k}^{f}\right)}{2}$

Perfect matching M in $\mathfrak{G}+\mathfrak{G}_{t} \Leftrightarrow$ Genome $\mathbb{M}^{f} \quad ; \quad$ with $\omega^{\prime}(M)=\omega^{\prime}\left(\mathbb{M}^{f}\right)$
A matching $M_{\text {MIN }}$ with maximum weight gives a BP median $\mathbb{M}_{\text {min }}^{f}$ with maximum weight

$$
\begin{aligned}
& L_{1}=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right] \\
& L_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right][4] \\
& L_{3}=\left[\begin{array}{llll}
\overline{1} & 2 & \overline{4} & \overline{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& M=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right] \\
& w(M)=6
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right] \\
& L_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right][4] \\
& L_{3}=\left[\begin{array}{llll}
\overline{1} & 2 & \overline{4} & \overline{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
M_{2}=\left[\begin{array}{llll}
3 & 4 & \overline{2} & 1
\end{array}\right] \\
\omega\left(M_{2}\right)=6
\end{gathered}
$$

The breakpoint halving can be computed in a similar way

Quiz 1

1 Which of the following statements are true?

A The breakpoint median can only be computed for circular genomes.
B The circular SCJ median is equivalent to the circular breakpoint median of three canonical circular genomes.

C The problem of computing a circular breakpoint halving of a circular duplicated genome is polynomial.

NP-hardness of unichromosomal breakpoint median

A unichromosomal circular genome \mathbb{C} can be represented as a simple directed cycle graph:
$\mathrm{Ex}: \mathbb{C}=(1 \overline{2} 3)$

OR

Assume that the genes in three canonical circular genomes $\mathbb{C}_{1}^{f}, \mathbb{C}_{2}^{f}$ and \mathbb{C}_{3}^{f} have the same relative orientation and represent these three genomes in the same directed cycle graph:
$\mathrm{Ex}: \quad \mathbb{C}_{1}^{f}=(1234), \mathbb{C}_{2}^{f}=(2413), \mathbb{C}_{3}^{f}=(2314)$

Every vertex has indegree = ouldegrae $=3$

$$
M=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)
$$

NP-hardness of unichromosomal breakpoint median
The Problem of determining whether a directed graph G has a hamiltonian cycle is NP-complete, even if G has maximum indegree and maximum outdegree equal to 3 .

Reduction of this problem to the problem of computing a breakpoint median of three canonical circular genomes \mathbf{A}, \mathbf{B} and \mathbf{C} that have the same relative orientation:

We need to transform G into another directed graph $G^{\prime \prime}$, such that $G^{\prime \prime}$ is the union of three hamiltonian cycles (each one representing one input genome of the median problem)

NP-hardness of unichromosomal breakpoint median

Build a modified directed graph $G^{\prime \prime}$, such that $G^{\prime \prime}$ is the union of three hamiltonian cycles (each one representing one genome among \mathbf{A}, \mathbf{B} and \mathbf{C})

$G^{\prime \prime}$ has only adjacencies that occur in one or in two genomes
Let \mathbb{M} be a solution to the circular breakpoint median of \mathbf{A}, \mathbf{B} and \mathbf{C} :
\mathbb{M} contains all adjacencies common to two input genomes and no "new" adjacency \downarrow

Initial graph G has an hamiltonian cycle

NP-hardness of unichromosomal breakpoint median

Quiz 2

1 Which of the following statements are true?

A There is a polynomial time algorithm for solving the unichromosomal breakpoint median.
B There cannot be a polynomial time algorithm for solving the unichromosomal breakpoint median.

C The unichromosomal breakpoint median is NP-hard because it can be reduced to the hamiltonian cycle problem.

D The unichromosomal breakpoint median is NP-hard because the hamiltonian cycle problem can be reduced to it.

Double-cut-and-join (DCJ) model

Double-cut-and-join (DCJ) operation: two cuts + two joins

- Cuts the genome twice and rejoins loose ends in a different way.
- Represents most large-scale genome rearrangements (inversions, translocations, fusions, fissions...)

The double-cut-and-join (DCJ) operation
Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

The double-cut-and-join (DCJ) operation

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

The double-cut-and-join (DCJ) operation

Cuts the genome in (at most) 2 positions and rejoins the open ends in a distinct way

DCJ model

Cases:

A. Each adjacency is in a distinct linear chromosome:

$$
\left.\quad\left[\begin{array}{lll}
1 \\
1 \\
\nabla \vee v
\end{array}\right) 23\right]\left[\begin{array}{lll}
4 \\
4 & w z v & 6
\end{array}\right]
$$

B. Both adjacencies are in the same chromosome, or one is in a circular chromosome:

DCJ model

DCJ operation

 involving one adjacency and one telomere
two possibilities
of rejoining
in a different way

Cases:

A. The adjacency and the telomere are in distinct linear chromosomes:

B. The adjacency is in the same linear chromosome, or in a circular chromosome:

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & \gtrless_{v}^{w} \\
5 & 6 \times v
\end{array}\right]
$$

inversion
 excision/ integration

```
[1 2 3 4 4v z \overline{\sigma}}\overline{5
```


DCJ model

Cases:

A. The adjacency is in a linear chromosome / the telomeres are in two distinct chromosomes:

B. The adjacency is in a circular chromosome / the telomeres are in the same chromosome:

(2345マス)

Quiz 3

1 Which transformations can be done with a single DCJ operation?

A [123] [45] $\leftrightarrow[12453]$
B [123] [45] $\leftrightarrow\left[\begin{array}{llll}1 & 2 & 3 & 5 \\ \hline\end{array}\right]$
C [123] [45] $\leftrightarrow[125]$ [43]
D $[12345] \leftrightarrow[1 \overline{4} 3 \overline{2} 5]$
$E\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right] \leftrightarrow\left[\begin{array}{lll}1 & 2 & 5 \\ 4 & \overline{3}\end{array}\right]$
$F[123](45) \leftrightarrow[12453]$
$G[123](45) \leftrightarrow[12543]$
$H(12345) \leftrightarrow[34512]$

References

Multichromosomal median and halving problems under different genomic distances (Eric Tannier, Chunfang Zheng and David Sankoff)

BMC Bioinformatics volume 10, Article number: 120 (2009)

SCJ: A Breakpoint-Like Distance that Simplifies Several Rearrangement Problems (Pedro Feijão and João Meidanis)

TCBB volume 8 Number: 5 (2011)

The complexity of the breakpoint median problem
(David Bryant)
Tech. Rep. CRM-2579, Centre de recherches mathématiques, Université de Montréal, 1998

