Topics of today:

1. DCJ double distance
2. DCJ halving
3. DCJ median

4. Inversion distance (unichromosomal genomes)



DCJ double distance

The DCJ distance of balanced genomes A" and Bf is:
dDCJ(Afr ]Bf) = n’}in dpey (Aémv B[Qn)

where fr, is any function that produces a maximal matching of the families defined by f

DCJ double distance:

d2,(sf,pf) = _min dpes (P, DY)
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DCJ halving

DCJ Halving Distance Problem:

Compute the minimum DCJ double distance for a (rearranged) duplicated genome Df:

hpey (D) = min  d2.,(H', DF)
singular Hf
DCJ Halving Problem:
Find a singular genome ]I/-I? and a perfectly duplicated genome @/Ptf S 2~]I/-I? such that
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Natural graph of a duplicated genome

Natural graph NG(D) = (V, E) of a duplicated genome D':
First assign arbitrarily indices a and b to the two genes of each family in Df, obtaining D'f

1. V= F(]D)’f) u @(]D)’f) (each adjacency or telomere of D7 is a vertex of NG (D))

2. For each family X € F(Df), each pair of paralogous extremities is connected by an edge in NG(Df), i.e.:
> there is an edge connecting the vertex u that contain Xg and the vertex v that contain X{;

> there is an edge connecting the vertex u’ that contain X} and the vertex v that contain)({)

Note that:

> There can be adjacencies/vertices of type XX/ and/or X;x{ (NG(Df) can contain 1-cycles)

f
> Let n=|F(DF)| = @. The number of edges in NG(D') = 2n (two edges per element of F(Df)).



Natural graph of a duplicated genome

Ex: 't = [4a 1a b 3a 2a]

rD)ue(D) = {4, 4015, 1247, 4532, 3520, 22, 20, 23, 301f, 17, 57,5750, 5¢ 1

n=|FD) =5 and k(DF)=3

@
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[2b 3b 1b] [52 5b]

Every vertex has degree one or two:
NG(D) is a collection of paths and cycles

cycle with k edges: k-cycle or ¢k
path with k edges: k-path or py

Ce = {ck : k is even} : set of even cycles
Pe = {px : k is even} : set of even paths
Co = {ck : kisodd} : set of odd cycles
Po = {pk : k is odd} : set of odd paths

|Co| + | Po| is even (NG has 2n edges)
|Pe| + [Po| = x(D")

For a perfectly duplicated genome Pf,
NG(P') has only 2-cycles and 1-paths:

[Pol

20 =20Cel +[Po| = n=[Cel +

Otherwise, if a duplicated genome Df
is not perfectly duplicated:

P,
n > |Ce| + \‘%J




Types of DCJ operation

Goal: increase the number of even cycles (|Ce|) and/or the number of odd paths (|Ps|) in NG
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Types of DCJ operation

Goal: increase the number of even cycles (|Ce|) and/or odd paths (|Po|) in NG
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DCJ Halving: Sorting & Distance

Recall that, if the genome is perfectly duplicated, we have n = |Ce| + ‘732"', otherwise n > [Ce| + V@"lJ

p increases the number of even cycles by one, or

p increases the number of odd paths by two, or

A DCJ operation p is called optimal if
the number of odd paths is odd and

p increases the number of odd paths by one
(can occur at most once)

Given a duplicated genome DY, it is possible to find an optimal DCJ operation at each sorting step. Therefore:

Po
hDCJ(Df) =n— |Ce| - [uJ
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DCJ halving: obtaining an optimal perfectly duplicated genome

Given a duplicated genome D,
with natural graph NG(DF),
and DCJ halving distance h = h.]CJ(]D)f) =n—|Ce| — V%"lJ:

1. NGy + NG(D)

2. Fori=1to h:

> Find and apply one optimal DCJ operation, transforming NG;_; into NG;.

3. NGy is a simple collection of 2-cycles and 1-paths:
reconstruct the perfectly duplicated genome Pf € 2.H from NG},
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Quiz 1

1 Which of the following statements about the Natural Graph are true?

@ Merging two odd cycles is always optimal.

?L,M,,L /,f /Po/ 33 OJA

')é Breaking an odd cycle into an odd path cannot be optimal.

@ Breaking an even path into two odd paths is always optimal.

who L wen

XBreaking an even cycle into two cycles is always optimal. &4\’ }( &'V%“f (0;
MC

@Recombining two even paths into two odd paths is always optimal.



Solving the DCJ double distance

Let ST be a singular and Df be a duplicated genome.

We want to compute the double distance d2,(Sf, D)

Assign arbitrarily indices a and b to the two genes of each family in D, obtaining D’

All possible adjacencies in 2-S:

either P(uv) = {uava, tpbw }

the paralogous adjacencies are ~
or P(uv) = {uawp, UpVva}

For each uv € T(S)

and the square of uv is defined as Q(uv) = P(uv) U P(uv)



DCJ double distance: ambiguous breakpoint graph

The ambiguous breakpoint graph ABD(D', 2-S) = (V, E):

LVv=J &L} = Vv=¢D) |Vi=4n
Xe€G«
there are two verticgfor each extremity of each gene in G,

each vertex v has a label £(v), that corresponds to the extremity of D’ it represents

2. E=E(D')UEg(2-S), where:
> D-adjacency edges: Er(D’) = {uv : u,v € V(£{(D')) and £(u)é(v) € T(D')}

> Ambiguous S-adjacency edges: Eg(2-S) = U {uv:u,ve V(ED)) and £(u)(v) € Q(uv)}
uverl(S)

. |Er(D)| < 2n
The number of edges is |E| = |Er(D)| + 4|Er(S)|
|Er(S)[ < n



Ambiguous breakpoint graph
- J— — D’ = [Z"a 1azl’b :_)’aza] [1b zb 3b]
Exx D = [41432] [123] =
r) = {4i1f 1047, 4332, 382f, 1920, 23} }
Q(1h2*) = {182, 1f2f, 112], 1721}
= | Q(2"3) = {2[3}, 273}, 213, 230}
Q(3"4t) = {304¢, 3044, 3047, 3041}

a

=
@ ©

S = [1234]
r(S) = { 1h2t, 2h3t, 3h4t}

Solution: for each square Q(uv), fix either P(uv) or P(uv) so that the number of cycles is maximized.



Bicolored graph of two unsigned canonical chromosomes

Each vertex of a bicolored graph has degree 0, 2 or 4:

Unsigned canonical circular
chromosomes

A=(153246)
—————mr—

B=(123456)
e ———

One possible
decomposition:

Idea:

Entirely decompose a bicolored graph

into edge-disjoint alternating even cycles
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Bicolored graph of two unsigned canonical chromosomes

Another possible decomposition:

Unsigned canonical circular
chromosomes

(15465342) (15645342) (15643542)
h t h t h t
6t6'Ol h Gtﬁ'Ol h 6t6'ol h
%/\(\J 4h 5h 4t 5h
= 4t 5h OR 4t 5t OR 4h 5t
h h h
227103}3 22h 3t3 22h 3t3



Bicolored graph decomposition (BGDECQ)

Each vertex of a bicolored graph has degree 0, 2 or 4

The number of red and of blue edges inciding in each vertex is identical

Problem:

Entirely decompose a bicolored graph
into the maximum number of edge-disjoint
alternating even cycles
4
NP-hard



Reducing BGDEC to the DCJ double distance

Ambiguous breakpoint graph of D and 2-S:

ho gt hoogt
6’2 6l 12 11




DCJ median of three canonical genomes

Given three canonical genomes A, B, C, find another canonical genome M that minimizes the sum

des (M, A) + dpes (M, B) + dpey (M, C)

Example:

Genomes Breakpoint graph of A, B and C Median candidate

A=(15324%6)

dpes (M, A) = 0
dpcs (M, B) =6 — 2 = 4
dpcs(M,C) =6 — 4 =2

‘IB:(1§4) (256)‘

‘(C:(123456) ‘




Reducing BGDEC to the DCJ median of three canonical genomes
I
F:ﬂ"zl L\'))/L'/s'/S} Breakpoint graph of A, B and C

B-0 (1) G)E)(59) (0)



Quiz 2

1 Which of the following statements are true?

The multi mixed/circular DCJ double distance is NP-hard, therefore the multi
ixed/circular DCJ halving is also NP-hard.

The multi linear breakpoint double distance is polynomial, therefore the multi linear
breakpoint halving is also polynomial.

2 We prove that DCJ median is NP-hard...

A ... by reducing it to the bicolored graph decomposition.

.. by reducing the bicolored graph decomposition to it.



Canonical inversion model - circular chromosomes

(Unichromosomal genomes = chromosomes)

Given two canonical circular chromosomes A and B,...

Canonical Inversion Distance Problem:  Compute the minimum number of inversions
required to transform A into B.

Denote by divv(A, B) the inversion distance of A and B.

Canonical Inversion Sorting Problem: Find a sequence of dixv(A, B) inversions
that transform A into B.



Breakpoint diagram of canonical circular chromosomes

Let A and B be canonical circular chromosomes, with n = |G,|.

The breakpoint diagram BD(A,B) = (V, E) is described as follows:

Lv=J{x} =v=¢a)=¢B) ; [Vi=2n
X€G«

there is a vertex for each extremity of each gene in G,

each vertex v has a label £(v), that corresponds to the extremity it represents

The vertices are drawn in one line, next to each other.

The vertices must follow the same (circular) order of the corresponding extremities in chromosome A,
according to one of the two reading directions.
2. E = Er(A)U Er(B), where:

Er(A) ={uv:u,ve V(A)) and L(u)l(v) € T(A)}

~ Adiacency edges: {Er(IB%) ={uv:u v e V(B)) and L(u)l(v) € T(B)}

The number of edges is |E| = 2n (n adjacency edges per chromosome)



Two equivalent breakpoint diagrams

BD(A,B) = BD(B,A)

(1745362)

(1234567)




Properties of the breakpoint diagram

Every vertex has degree two:

BD(A,B) is a collection of (even) cycles
(alternating edes in Er(A) and in Er(B))

cycle with k edges: k-cycle (always even)

C = set of cycles in BD(A, B)

B = (1234567)

n=1G«=7

fA=B, — -
RG(A, B) has only 2-cycles: Otherwise, if A 7 B:
n>|C|

2n=2c| = n=|C|
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