Topics of today:

Canonical inversion distance and sorting:

1. Breakpoint diagram
2. Split / Neutral / Joining inversions
3. Good / bad components
4. Safe inversions and overlap graph
5. Hurdles and fortress / component tree

Canonical inversion model - circular chromosomes

(Unichromosomal genomes \equiv chromosomes)

Given two canonical circular chromosomes \mathbb{A} and \mathbb{B}, \ldots

Canonical Inversion Distance Problem: Compute the minimum number of inversions required to transform \mathbb{A} into \mathbb{B}.

Denote by $d_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})$ the inversion distance of \mathbb{A} and \mathbb{B}.

Canonical Inversion Sorting Problem:
Find a sequence of $\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})$ inversions that transform \mathbb{A} into \mathbb{B}.

Breakpoint diagram of canonical circular chromosomes

Let \mathbb{A} and \mathbb{B} be canonical circular chromosomes, with $n=\left|\mathcal{G}_{*}\right|$.
The breakpoint diagram $B D(\mathbb{A}, \mathbb{B})=(V, E)$ is described as follows:

1. $V=\bigcup_{\mathrm{x} \in \mathcal{G}_{\star}}\left\{\mathrm{x}^{h}, \mathrm{x}^{t}\right\} \quad \Rightarrow V=\xi(\mathbb{A})=\xi(\mathbb{B}) ; \quad|V|=2 n$
there is a vertex for each extremity of each gene in \mathcal{G}_{\star}
each vertex v has a label $\ell(v)$, that corresponds to the extremity it represents
The vertices are drawn in one line, next to each other.
The vertices must follow the same (circular) order of the corresponding extremities in chromosome \mathbb{A}, according to one of the two reading directions.
2. $E=E_{\Gamma}(\mathbb{A}) \cup E_{\Gamma}(\mathbb{B})$, where:

- Adjacency edges: $\left\{\begin{array}{l}E_{\Gamma}(\mathbb{A})=\{u v: u, v \in V(\xi(\mathbb{A})) \text { and } \ell(u) \ell(v) \in \Gamma(\mathbb{A})\} \\ E_{\Gamma}(\mathbb{B})=\{u v: u, v \in V(\xi(\mathbb{B})) \text { and } \ell(u) \ell(v) \in \Gamma(\mathbb{B})\}\end{array}\right.$

The number of edges is $|E|=2 n$ (n adjacency edges per chromosome)

Two equivalent breakpoint diagrams

$$
B D(\mathbb{A}, \mathbb{B}) \cong B D(\mathbb{B}, \mathbb{A})
$$

Properties of the breakpoint diagram

$$
\begin{equation*}
\mathbb{A}= \tag{7}
\end{equation*}
$$

$$
n=\left|\mathcal{G}_{\star}\right|=7
$$

If $\mathbb{A}=\mathbb{B}$,
$R G(\mathbb{A}, \mathbb{B})$ has only 2 -cycles:

$$
2 n=2|\mathcal{C}| \Rightarrow n=|\mathcal{C}|
$$

Otherwise, if $\mathbb{A} \neq \mathbb{B}$:

$$
n>|\mathcal{C}|
$$

Types of inversion and lower bound for the inversion distance

Assign one (arbitrary) direction to each cycle of $B D(\mathbb{A}, \mathbb{B})$

$$
\mathbb{A}=(1 \overline{7} 453 \overline{6} \overline{2})
$$

$\mathbb{B}=\quad(1234567)$

$$
\mathbb{A}=(1 \overline{7} 453 \overline{6} \overline{2})
$$

$$
\mathbb{B}=\quad(1234567)
$$

Lower bound for the inversion distance: $\quad \mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B}) \geq n-|\mathcal{C}|$

Types of cycles

Trivial cycle: one adjacency in each chromosome
2-cycle (sorted)

Good cycle: at least one pair of adjacencies with opposite directions
Can be split into two cycles by applying an inversion

(1234567)

Types of cycles

Bad cycle: all adjacencies have the same direction
Cannot be split into two cycles
(132)

(123)

(Interleaving) components

Breakpoint diagram:

Two interleaving cycles: $c \ldots c^{\prime} \ldots c \ldots c^{\prime} \quad$ (crossing edges)
Interleaving sequence of cycles:
$c_{1}, c_{2}, \ldots, c_{k}$ such that c_{i} and c_{i+1} are interleaving for all $1 \leq i \leq k-1$

Interleaving component or simply component K :
$\left\{\begin{array}{l}\text { either a cycle } c \text { that does not interleave with any other cycle } \\ \text { or }\left\{\begin{array}{l}\text { for each pair of cycles } c, c^{\prime} \in K \text { there is an interleaving sequence from } c \text { to } c^{\prime} \\ K \text { is maximal }\end{array}\right.\end{array}\right.$

Types of (interleaving) components

Trivial component: only one trivial 2-cycle
Good component: at least one good cycle

Types of (interleaving) components

Bad component: only bad cycles

Overlap graph of a component

Target adjacency: $\left\{\begin{array}{l}\text { good: black vertex } \\ \text { bad: white vertex }\end{array}\right.$

Bad: 7∞

Overlapping: q
Target adjacencies can be $\left\{\begin{array}{l}\text { overlapping: connected in the graph } \\ \text { non overlapping: disconnected in the graph Non ovarlappiar :- }\end{array}\right.$

Another example

Overlap graph:

Effects on the overlap graph by inverting a bad adjacency
Three overlapping adjaconcias:

Slip the types of the other two vertices complement the edge between the other two vertical

Effects on the overlap graph by inverting a bad adjacency
Three overlapping adjaconcies:

Slip the types of the other two vertices complement the edge between the other two vertices

Effects on the overlap graph by inverting a bad adjacency

(0)

Sorting a bad component with a neutral inversion

(1234)

Overlap graph:

Sorting a bad component with a neutral inversion

Any neutral inversion applied to a bad adjacency of a bad component k turns k cato a good component
b: \# of bad components
Upper bound: one extra inversion per bad component:

$$
\operatorname{dinv}(\mathbb{A}, B) \leqslant n-|C|+b
$$

Sorting bad components with a joining inversion
K_{1}, K_{2} and K_{3} are three distinct components in $B D(\mathbb{A}, \mathbb{B})$ so that $K_{3} \ldots K_{1} \ldots K_{1} \ldots K_{3} \ldots K_{2} \ldots K_{2}$
$\Rightarrow \quad K_{3}$ separates K_{1} and K_{2}
(Margins hurdles)

the red component soparctes the green and the blue components \Downarrow
only green and the are hurdles

By joining with an inversion two cycles c_{1} and c_{2}, that belong to two distinct components K_{1} and K_{2} respectively, we merge not only the components K_{1} and K_{2}, but also all components that separate K_{1} and K_{2}, into a single good component K.

Hurdle: a bad component that does not separate two bad compononfs

Sorting bad components with a joining inversion
h : \# of hurdles
One joining intorsion "fuses" two hurdles
Lower bound: $\quad d_{\text {INV }} \geqslant n-|C|+h$

By joining with an inversion two cycles c_{1} and c_{2}, that belong to two distinct components K_{1} and K_{2} respectively, we merge not only the components K_{1} and K_{2}, but also all components that separate K_{1} and K_{2}, into a single good component K.

Another example:
 bad component, non hurdle bad component, hurdle non hurdle

Quiz 1

1 Which of the following statements about the breakpoint diagram are true?
A cycle can always be split into two cycles with an inversion.
X A neutral inversion cannot be optimal.
A A joining inversion cannot be optimal.
D It is always possible to split a good cycle into two.
E A bad cycle cannot be split by an inversion.

Unsafe inversions

A split inversion applied to a cycle of a good component can create bad components

(168792435)

Effects on the overlap graph by inverting a good adjacency
Three overlapping adjaconcias:

flip the types of the vertices $+$
complement the edges

Effects on the overlap graph by inverting a good adjacency
Three overlapping adjaconcias:

flip the types of. the vertices
$+$
complement the edges

Effects on the overlap graph by inverting a good adjacency

Sorting a good component - finding safe split inversions
$G: \#$ of good adjucancies in $B D(\mathbb{A}, \mathbb{B})$
$g(x y)$: \# of good adjacancios overlapping $x y$ in $B D(A, B)$
$b(x y)$: \# of bad adjacencies overleaping ry in $B D(A, B)$
score $(x y): \#$ good adjacencies in the diagram after fixing $x y$

$$
\operatorname{score}(x y)=G+b(x y)-g(x y)-1
$$

An inversion that fixes a good target adjacency with maximal sore is SAFE. (does not create new bad components)

Sorting a good component - finding safe split inversions

Let θ be the overlap graph of component K
Suppose $\left\{\begin{array}{l}x y \text { is a good adjacency with maxianal score in } \theta \\ \text { reversion fixing } x y \text { creator a bad component } k_{B}\end{array}\right.$
At $\frac{1}{1}$ least one (had) adjacency ww $\in K_{B}$ was adjacent to $x y$ in $\theta \Rightarrow z w$ was good in θ
sucres in $\theta\left\{\begin{array}{l}\text { score }(x y)=G+b(x y)-g(x y)-1 \\ \text { score }(z w)=G+b(z w)-\delta(z w)-1\end{array}\right.$

Sorting a good component - finding safe split inversions

$$
\text { But: } \begin{aligned}
B(x y) \subseteq B(z w) & \Rightarrow b(x y) \leqslant b(z w) \\
G(z w) \subseteq G(x y) & \Rightarrow g(z w) \leqslant g(x y)
\end{aligned}
$$

\Downarrow
we cannot have $\left\{\begin{array}{l}b(x y)=b(z w) \text { and } \\ g(x y)=g(x y)\end{array}\right.$
(1)

$$
\operatorname{swre}(z w)>\operatorname{score}(x y)
$$

Sorting bad components with a joining inversion
K_{1}, K_{2} and K_{3} are three distinct components in $B D(\mathbb{A}, \mathbb{B})$ so that $K_{3} \ldots K_{1} \ldots K_{1} \ldots K_{3} \ldots K_{2} \ldots K_{2}$
$\Rightarrow \quad K_{3}$ separates K_{1} and K_{2}
(Merging hurdles)

the red component separates the green and the blue components \downarrow
only green and the are hurdles

By joining with an inversion two cycles c_{1} and c_{2}, that belong to two distinct components K_{1} and K_{2} respectively, we merge not only the components K_{1} and K_{2}, but also all components that separate K_{1} and K_{2}, into a single good component K.

Hurdle: a bad component that does not separate two bad compononfs

Sorting bad components - simple hurdles and super hurdles
h : number of hurdles in $B D(\mathbb{A}, \mathbb{B})$
hurdle: had component that doer not separate 2 had components
super hurdle K : fixing K by a neutral inversion crater a now hurdle
On the previous page, both green and blue are super hurdles fixing only the green or only the blue component with a neutral inversion would turn the red component into a horde

Sorting bad components - simple hurdles and super hurdles
simple hurdle: a hurdle that is not a super hurdle

- each simple hurdle can be fixed with a neutral

$$
\text { (cutting c hurdle) inversion } B_{\text {In }}=+1
$$

* each pair of super hurdles can be fixed with a joining inversion (merging hurdles) $\Delta_{\text {INV }}=+2$

Canonical inversion distance of circular chromosomes

$$
d_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+h+f
$$

$$
f:\left\{\begin{array}{l}
0 \\
1
\end{array}\right.
$$

Quiz 2

1 Which of the following statements about the inversion model are true?

XThe inversion distance depends only on the number of cycles in the breakpoint diagram.
X Every bad component in the diagram is a hurdle.
\& A split inversion is always optimal.
(D) A good component can always be sorted with (safe) split inversions.

X A super hurdle can be optimally sorted with a neutral inversion. thee if 80 is a fortress
(F) A diagram with an even number of bad components can be a fortress.

Chained and nested components on the breakpoint diagram

Alternative to component separation: chaining and nesting relationships between components
Chain: $\left\{\begin{array}{l}\text { sequence of components } K_{1}, K_{2}, \ldots, K_{\ell} \\ \text { the rightmost adjacency-edge of } K_{i} \text { is succeeded by } \\ \text { the leftmost adjacency-edge of } K_{i+1}, \text { for } 1 \leq i \leq \ell\end{array}\right.$
Maximal chain: cannot be extended to the left nor to the right.
A maximal chain H is nested in a component K when the leftmost adjacency-edge of H is preceded by an adjacency-edge of K and the rightmost adjacency-edge of H is succeeded by an adjacency-edge of K.

$K_{1}=\left\{c_{1}\right\}$
$K_{2}=\left\{c_{2}\right\}$
$K_{3}=\left\{c_{3}\right\}$
$K_{4}=\left\{c_{4}\right\}$
$K_{5}=\left\{c_{5}, c_{6}\right\}$
$K_{6}=\left\{c_{7}\right\}$

Maximal chains: $\left\{\begin{array}{l}H_{1}=K_{1} \bowtie K_{5}, \\ H_{2}=K_{2} \bowtie K_{4}\left(\text { nested in component } K_{1}\right), \\ H_{3}=K_{3}\left(\text { nested in component } K_{2}\right), \\ H_{4}=K_{6}\left(\text { nested in component } K_{5}\right)\end{array}\right.$

Chained component tree $\Upsilon_{■}$ (rooted)

$K_{1}=\left\{c_{1}\right\} \quad K_{2}=\left\{c_{2}\right\}$
$K_{3}=\left\{c_{3}\right\}$
$K_{4}=\left\{c_{4}\right\}$
$K_{5}=\left\{c_{5}, c_{6}\right\}$
$K_{6}=\left\{c_{7}\right\}$

Maximal chains: $\left\{\begin{array}{l}H_{1}=K_{1} \bowtie K_{5}, \\ H_{2}=K_{2} \bowtie K_{4}\left(\text { nested in component } K_{1}\right), \\ H_{3}=K_{3}\left(\text { nested in component } K_{2}\right), \\ H_{4}=K_{6}\left(\text { nested in component } K_{5}\right)\end{array}\right.$

1. One round node per component $K_{i}:\left\{\begin{array}{l}\text { bad node }(\circ): K_{i} \text { is a bad component; } \\ \text { good node }(\bullet): K_{i} \text { is a trivial or a good component. }\end{array}\right.$
2. One square (■) node per maximal chain H_{i}, whose children are the round nodes corresponding to the components of H_{i}. A square node is either the root or a child of the component in which H_{1} is nested.

P : path connecting two distinct round nodes u_{1} and u_{2} in $\Upsilon_{\square}(\mathbb{A}, \mathbb{B})$ round nodes in $P \backslash\left\{u_{1}, u_{2}\right\}$: components that separate u_{1} and u_{2} in $R G(\mathbb{A}, \mathbb{B})$.

Contraction of $\Upsilon_{■}$ into unrooted component tree Υ_{\circ}

Max-flower:

maximal connected subgraph of $\Upsilon_{■}$ composed of good and/or square nodes only

Obtaining Υ_{0} from $\Upsilon_{■}$

For each max-flower F of Υ_{\square} :

1. Replace F by a single good round node g (g is connected to all bad nodes connected to F)
2. $\left\{\begin{array}{l}\text { If } g \text { has exactly two neighbors } b_{1} \text { and } b_{2} \text { : } \\ \text { remove } g \text { from the tree and connect } b_{1} \text { to } b_{2} ; \\ \text { If } g \text { is a leaf: } \\ \text { simply remove } g \text { from the tree } \\ \left(\Rightarrow \text { in the end, all leaves in } \Upsilon_{0} \text { are bad }\right)\end{array}\right.$

Topology and paths in the component tree $\Upsilon_{\text {。 }}$

All leaves in Υ_{\circ} are bad nodes (\equiv hurdles)
$\mathcal{L}: \#$ of leaves in $\Upsilon_{\text {。 }}$

Traversal: path connecting two leaves of Υ_{\circ}

Branching node of Υ_{0} : any node whose degree is ≥ 3
Leaf-branch of $\Upsilon_{0}:\left\{\begin{array}{r}\text { if } \mathcal{L} \leq 2 \text { : the complete tree } \Upsilon_{\circ} \\ \text { if } \mathcal{L} \geq 3 \text { : maximal path } u_{1}, u_{2}, \ldots, u_{k} \text {, such that } u_{1} \text { is a leaf of } \Upsilon_{\circ} \text { and, } \\ \text { for } i=2, \ldots, k, \text { the degree of internal node } u_{i} \text { in } \mathrm{T} \text { is two }\end{array}\right.$
A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of Υ_{\circ})

Cost of covering the component tree $\Upsilon_{\text {。 }}$

 cost of path $P: \tau(P)\left\{\begin{array}{l}P \text { is short : } \tau(P)=1 \text { (cut a bad component) } \\ P \text { is long : } \tau(P)=2 \text { (merge two or more bad components) }\end{array}\right.$
Cover of Υ_{0} : set of paths $\widehat{\mathcal{P}}$ such that each bad node of Υ_{0} is contained in at least one path $P \in \widehat{\mathcal{P}}$
Cost of cover $\widehat{\mathcal{P}}: \tau(\widehat{\mathcal{P}})=\sum_{P \in \widehat{\mathcal{P}}} \tau(P)$
Cost of an optimal cover of Υ_{0} :

$$
\tau\left(\Upsilon_{0}\right)=\min _{\hat{\mathcal{P}} \text { is a cover of } \Upsilon_{0}} \tau(\widehat{\mathcal{P}})
$$

Covering the component tree $\Upsilon_{\text {。 }}$

$\mathcal{L}: \#$ of leaves in $\Upsilon_{\circ} ;$ Branching node of Υ_{\circ} : any node whose degree is ≥ 3
Leaf-branch of $\Upsilon_{\circ}:\left\{\begin{array}{l}\text { if } \mathcal{L} \leq 2 \text { : the complete tree } \Upsilon_{\circ} \\ \text { if } \mathcal{L} \geq 3 \text { : maximal path } u_{1}, u_{2}, \ldots, u_{k} \text {, such that } u_{1} \text { is a leaf of } \Upsilon_{\circ} \text { and, } \\ \text { for } i=2, \ldots, k, \text { the degree of internal node } u_{i} \text { in } T \text { is two }\end{array}\right.$
A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of Υ_{\circ})

Traversal: path connecting two leaves of Υ_{\circ}

Suppose $\mathcal{L}=2,4,6, \ldots$:
$\widehat{\mathcal{P}}_{\mathrm{T}}\left(\Upsilon_{\circ}\right)$: smallest set of traversals covering all nodes of $\Upsilon_{\circ}:\left|\widehat{\mathcal{P}}_{\mathrm{T}}\left(\Upsilon_{0}\right)\right|=\frac{\mathcal{L}}{2}$
CoverTreewithTraversals
Input: unrooted tree Υ_{\circ} with $\mathcal{L}=2 n$ leaves
Output: set $\widehat{\mathcal{P}}_{\mathrm{T}}$ of n traversals covering all nodes of Υ_{\circ}
Based on any planar view of Υ_{0}, enumerate the leaves from 1 to $2 n$ in circular order; $\widehat{\mathcal{P}}_{\mathrm{T}}=\emptyset$;
for $i=1$ to n do
$\widehat{\mathcal{P}}_{\mathrm{T}}=\widehat{\mathcal{P}}_{\mathrm{T}} \cup\{$ traversal connecting leaves i and $i+n\} ;$
Return $\widehat{\mathcal{P}}_{\mathrm{T}}$;

Computing $\tau\left(\Upsilon_{\circ}\right)$

Lower bound for the cost of an optimal cover of $\Upsilon_{0}: \quad \tau\left(\Upsilon_{0}\right) \geq \mathcal{L}$

Each traversal T has cost $\tau(T)=2$

If \mathcal{L} is even, $\widehat{\mathcal{P}}_{\mathrm{T}}\left(\Upsilon_{\circ}\right)$ is an optimal cover:

$$
\Rightarrow \tau\left(\Upsilon_{\circ}\right)=\tau\left(\widehat{\mathcal{P}}_{\mathrm{T}}\left(\Upsilon_{\circ}\right)\right)=2 \frac{\mathcal{L}}{2}=\mathcal{L}
$$

If \mathcal{L} is odd and Υ_{0} has a short leaf-branch $s(\tau(s)=1)$:

$$
\Rightarrow \tau\left(\Upsilon_{\circ}\right)=\tau\left(\widehat{\mathcal{P}}_{\mathrm{r}}\left(\Upsilon_{\circ} \backslash s\right)\right)+\tau(s)=2 \frac{\mathcal{L}-1}{2}+1=\mathcal{L}
$$

If \mathcal{L} is odd and Υ_{\circ} has no short leaf-branch ("fortress"); let ℓ be any long leaf-branch of $\Upsilon_{\circ}(\tau(\ell)=2)$:

$$
\Rightarrow \tau\left(\Upsilon_{\circ}\right)=\tau\left(\widehat{\mathcal{P}}_{\mathrm{r}}\left(\Upsilon_{\circ} \backslash \ell\right)\right)+\tau(\ell)=2 \frac{\mathcal{L}-1}{2}+2=\mathcal{L}+1
$$

The cost of any optimal cover of Υ_{\circ} is:

$$
\tau\left(\Upsilon_{\circ}\right)= \begin{cases}\mathcal{L}+1 & \text { if } \mathcal{L} \text { is odd and all leaf-branches are long ("fortress") } \\ \mathcal{L} & \text { otherwise. }\end{cases}
$$

Canonical inversion distance

$$
\begin{gathered}
\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+\tau_{*} \\
\text { where } \\
\tau_{*}=\tau\left(\Upsilon_{\circ}(\mathbb{A}, \mathbb{B})\right)=h+f
\end{gathered}
$$

Components are framed conserved intervals

Assuming that $\mathbb{B}=\left(\begin{array}{lllll}1 & 2 & 3 & \ldots & 16\end{array}\right)$, let us identify its framed conserved intervals with respect to

$$
\mathbb{A}=\left(\begin{array}{llllllllllllll}
1 & \overline{4} & 2 & 3 & 5 & 7 & 6 & 8 & \overline{16} & \overline{14} & \overline{15} & \overline{13} & \overline{11} & \overline{12} \\
\hline 10 & 9
\end{array}\right)
$$

For given $i \geq 1$ and $j \geq 1$ such that $i+j \leq n+1$:
Conserved interval: interval of \mathbb{A} composed of values $i, i+1, \ldots, i+j$ (assuming $n+1 \equiv 1$)
Framed conserved interval $\left\{\begin{array}{l}\text { direct: first element is } i \text { and last element is } i+j ; \text { or } \\ \text { reverse: first element is } \overline{i+j} \text { and last element is } \bar{i}\end{array}\right.$
Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [$\overline{16} . . \overline{13}] ;[\overline{13} . . \overline{10}],[\overline{16} . . \overline{10}]$
Component: framed conserved interval that is not a union of framed conserved intervals
Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [$\overline{16} . . \overline{13}] ;[\overline{13} . . \overline{10}]$

Components are framed conserved intervals

Complexity of inversion distance and sorting

The inversion distance can be computed in linear time, by efficiently identifying chains of framed conserved intervals (Bergeron et al., 2002: Common intervals and sorting by reversals: a marriage of necessity)

An optimal inversion sorting scenario can be computed in subquadratic time. (Tannier and Sagot, 2004: Sorting by reversals in subquadratic time)

Canonical inversion distance of linear chromosomes

Given canonical linear chromosomes \mathbb{A} and \mathbb{B} :

$B=\left(\begin{array}{llll}0 & 1 & 3 & \ldots\end{array}\right)$

Add one new family (e.g. 0) and circularize chromosome \mathbb{B} into $\mathbb{B}^{\prime}=(0 \mathbb{B})$

$$
\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})=\min \left\{\begin{array}{l}
\mathrm{d}_{\mathrm{INV}}\left((0 \mathbb{A}), \mathbb{B}^{\prime}\right) \\
\mathrm{d}_{\mathrm{INV}}\left((\overline{0} \mathbb{A}), \mathbb{B}^{\prime}\right)
\end{array}\right.
$$

Example:

$$
\begin{gathered}
\mathbb{A}=\left[\begin{array}{llllllll}
5 & 1 & 2 & \overline{3} & 4
\end{array}\right] \text { and } \mathbb{B}=\left[\begin{array}{lllll}
1 & 2 & 3 & 4
\end{array}\right] \\
\mathbb{B}^{\prime}=\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}\right] \\
\mathrm{d}_{\mathrm{INV}}\left(\left(\begin{array}{llllll}
0 & \overline{5} & 1 & 2 & \overline{3} & 4
\end{array}\right), \mathbb{B}^{\prime}\right)=3 \\
\mathrm{~d}_{\mathrm{INV}}\left(\left(\begin{array}{l}
\overline{0} \\
\overline{5}
\end{array} 1\right.\right.
\end{gathered}
$$

Quiz 3

1 What is the bottleneck of the running time of inversion sorting?

A Finding inversions that fix bad components.
B Finding split inversions.
(C) Finding safe split inversions.

D Finding inversions that merge bad components.

References

Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals Sridhar Hannenhalli and Pavel A. Pevzner

Journal of the ACM, vol 46, issue 1, pages 1-27 (1999)

Reversal Distance without Hurdles and Fortresses
(Anne Bergeron, Julia Mixtacki and Jens Stoye)
LNCS, volume 3109, pages 388-399 (2004)

The Inversion Distance Problem
(Anne Bergeron, Julia Mixtacki and Jens Stoye)
In: Mathematics of Evolution and Phylogeny. Gascuel O (Ed); (2005)

