Topics of today:

Canonical inversion distance and sorting:

1. Breakpoint diagram

2. Split / Neutral / Joining inversions
3. Good / bad components

4. Safe inversions and overlap graph

5. Hurdles and fortress / component tree



Canonical inversion model - circular chromosomes

(Unichromosomal genomes = chromosomes)

Given two canonical circular chromosomes A and B,...

Canonical Inversion Distance Problem:  Compute the minimum number of inversions
required to transform A into B.

Denote by divv(A, B) the inversion distance of A and B.

Canonical Inversion Sorting Problem: Find a sequence of dixv(A, B) inversions
that transform A into B.



Breakpoint diagram of canonical circular chromosomes

Let A and B be canonical circular chromosomes, with n = |G,|.

The breakpoint diagram BD(A,B) = (V, E) is described as follows:

Lv=J{x} sv=¢ga)=¢B) ; [Vi=2n
X€G«

there is a vertex for each extremity of each gene in G,

each vertex v has a label £(v), that corresponds to the extremity it represents

The vertices are drawn in one line, next to each other.

The vertices must follow the same (circular) order of the corresponding extremities in chromosome A,
according to one of the two reading directions.
2. E = Er(A)U Er(B), where:

Er(A) ={uv:u,ve V() and L(u)l(v) € T(A)}

~ Adiacency edges: {Er(IB%) ={uv:u v e V(B)) and L(u)l(v) € T(B)}

The number of edges is |E| = 2n (n adjacency edges per chromosome)



Two equivalent breakpoint diagrams

BD(A,B) = BD(B,A)

(1745362)

(1234567)




Properties of the breakpoint diagram

Every vertex has degree two:

BD(A,B) is a collection of (even) cycles
(alternating edes in Er(A) and in Er(B))

cycle with k edges: k-cycle (always even)

C = set of cycles in BD(A, B)

B = (1234567)

n=1G«=7

fA=B, — -
RG(A,B) has only 2-cycles: Otherwise, if A 7 B:
n>|C|

2n=2c| = n=|C|




Types of inversion and lower bound for the inversion distance

Assign one (arbitrary) direction to each cycle of BD(A, B)
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Lower bound for the inversion distance: diy (A, B) > n — |C|



Types of cycles

Trivial cycle: one adjacency in each chromosome

2-cycle (sorted)

Good cycle: at least one pair of adjacencies with opposite directions

Can be split into two cycles by applying an inversion
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(1234567)



Types of cycles

Bad cycle: all adjacencies have the same direction

Cannot be split into two cycles
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(Interleaving) components

Breakpoint diagram:

(1745362) .

//

T234567)

Two interleaving cycles: c...c’...c...c’ (cfojﬂns t‘-’“ )

Interleaving sequence of cycles:

C1, €2, ..., ¢k such that ¢; and c¢jy; are interleaving forall 1 < i< k—1
Interleaving component or simply component K:

either a cycle c that does not interleave with any other cycle

for each pair of cycles ¢, ¢’ € K there is an interleaving sequence from ¢ to ¢’
or
K is maximal



Types of (interleaving) components

Trivial component: only one trivial 2-cycle

Good component: at least one good cycle
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Types of (interleaving) components

Bad component: only bad cycles
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Overlap graph of a component

Good.: U Bad : 4‘@7“
good: black vertex
Target adjacency: U
bad: white vertex 7 % f ;
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Effects on the overlap graph by inverting a bad adjacency
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Effects on the overlap graph by inverting a bad adjacency
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Effects on the overlap graph by inverting a bad adjacency
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Sorting a bad component with a neutral inversion
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Sorting a bad component with a neutral inversion
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Sorting bad components with a joining inversion

K1, K> and K3 are three distinct components in BD(A,B) so that K3 ... K1 ... K1 ... K3 ... K2 ... K>

= K tes K1 and K;
3 eeparie ’ ( Mo hrdlas )
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By joining with an inversion two cycles ¢; and ¢, that belong to two distinct components K; and K3
respectively, we merge not only the components K; and K>, but also all components that separate K; and K3 ,

into a single good component K.
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Sorting bad components with a joining inversion
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By joining with an inversion two cycles ¢; and ¢, that belong to two distinct components Kj and K3
respectively, we merge not only the components K; and K>, but also all components that separate K; and K3 ,

into a single good component K.
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Quiz 1

1 Which of the following statements about the breakpoint diagram are true?

><A cycle can always be split into two cycles with an inversion.
x A neutral inversion cannot be optimal.

XA joining inversion cannot be optimal.

@ It is always possible to split a good cycle into two.

@A bad cycle cannot be split by an inversion.



Unsafe inversions
@%
A split inversion applied to a’cycle of a good component can create bad components
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Effects on the overlap graph by inverting a good adjacency
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Effects on the overlap graph by inverting a good adjacency
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Effects on the overlap graph by inverting a good adjacency
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Sorting a good component - finding safe split inversions
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Sorting a good component - finding safe split inversions
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Sorting a good component - finding safe split inversions
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Sorting bad components with a joining inversion

K1, K> and K3 are three distinct components in BD(A,B) so that K3 ... K1 ... K1 ... K3 ... K2 ... K>

= K tes K1 and K;
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By joining with an inversion two cycles ¢; and ¢, that belong to two distinct components K; and K3
respectively, we merge not only the components K; and K>, but also all components that separate K; and K3 ,

into a single good component K.
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Sorting bad components - simple hurdles and super hurdles

h: number of hurdles in BD(A, B)

b luck o
2 hd coM(»*“B

<o a n'«t’z(fki
§dfaf /\M‘(AI@ K: £1K'wj K—‘%/

jagefg1on oruabes o el
hwrdle
On Me ‘vravfouf P‘a¢ , bobn groen ol bloe are svper /wnlﬂa;

,ﬁ}(.;.s ouL’ e green or oal, e blse quMML wilh «

I-n-c nvorzIon wovlt( hrn ﬂ\!- ft& um{MGv\" It,-;u

lNd(AZ(,; h“"'q :0’""0" G
ho sa(-f-fg

Y 2%



Sorting bad components - simple hurdles and super hurdles
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Sorting bad components - fortress fortass 1= Mere is on oddll
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Canonical inversion distance of circular chromosomes

daw(AB)=n—|C|+h+f
-



Quiz 2

1 Which of the following statements about the inversion model are true?

XThe inversion distance depends only on the number of cycles in the breakpoint diagram.
x Every bad component in the diagram is a hurdle.

% A split inversion is always optimal.

@A good component can always be sorted with (safe) split inversions.

X A super hurdle can be optimally sorted with a neutral inversion. ‘h‘“ 4 80 5 « }fh‘;

@A diagram with an even number of bad components can be a fortress.



Chained and nested components on the breakpoint diagram

Alternative to component separation: chaining and nesting relationships between components

sequence of components Ki, Ka, ..., Ky

Chain: 4 i, rightmost adjacency-edge of K; is succeeded by

the leftmost adjacency-edge of Kjy1, for 1 <i<?
Maximal chain: cannot be extended to the left nor to the right.

A maximal chain H is nested in a component K when the leftmost adjacency-edge of H is preceded by an
adjacency-edge of K and the rightmost adjacency-edge of H is succeeded by an adjacency-edge of K.

1" 10 10" 2 2" 4* 4" 6° 6" 5t sh 7P 7 3h 3t g s” of o' 11f 11" 15° 15" 14° 14" 12 12h 13° 13" 1°

—pe oPpo  oPpo
C4 C 7

Ki={a} K ={c} Ks = {cs} Ky = {ca} Ks = {cs, o} Ks = {cr}

Hy = Ki ™ Ks
Masximal chains: Hy = K 1 Ky (n.ested in component Ki) ,
H3 = K3 (nested in component K3) ,

Hs = Kg (nested in component Ks)



Chained component tree Ty (rooted)

e opo  ope
A Ay
C1 2 % Co

Ki={a} K= {c} Ks = {cs} Ky = {cs} Ks = {cs, ¢} Ks = {cr}

H1 = K1 > K5 B

H, = K 1 Ky (nested in component Ki) ,
H3 = K3 (nested in component K3) ,

H, = Ks (nested in component Ks)

Maximal chains:

bad node (0): K; is a bad component;

1. One round node per component K;: . .
good node (o): K; is a trivial or a good component.

2. One square (m) node per maximal chain H;, whose children are the round nodes corresponding to the
components of H;. A square node is either the root or a child of the component in which Hj is nested.

Hy
T : K1 Ks

H He o p path connecting two distinct round nodes u; and wy in Tm(A, B)
K>
H3

K3

Ky Ke round nodes in P\{u1, uz}: components that separate u; and up in RG(A, B).



Contraction of Ty into unrooted component tree T,

Max-flower:

maximal connected subgraph of Tm
composed of good and/or square nodes only

Obtaining T, from Ty
For each max-flower F of Tn:

1. Replace F by a single good round node g
(g is connected to all bad nodes connected to F)

If g has exactly two neighbors by and by:
remove g from the tree and connect b; to by;

If g is a leaf:
simply remove g from the tree
(= in the end, all leaves in T, are bad)

\LL ¢1

Ki Ks
Vi
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\Lz. \Lz.
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3

V3 V4

Hy
T. : K. K
V2
H, H,
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Hs Ky Ko Vi

Ks V3 V4
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Topology and paths in the component tree T,

Vi V2 Vi V2
All leaves in T, are bad nodes (= hurdles)
L: # of leaves in To
va
Traversal: path connecting two leaves of To Vi vy V3

Branching node of T,: any node whose degree is > 3

if £ < 2: the complete tree T,

Leaf-branch of To: ¢ if £ > 3: maximal path uy, up, ..., ug, such that u; is a leaf of T, and,
for i = 2, ..., k, the degree of internal node u; in T is two

A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of o)

Vs



Cost of covering the component tree T,

. short: contains a single bad node = if Pis a br ch it corresponds to a simple hurdle
path P in Tg: in

long: contains at least two bad nodes = if Pisa 8‘ nch it corresponds to a super hurdle

cost of path P: (P) P is short : 7(P) =1 (cut a bad component)

P is long : 7(P) = 2 (merge two or more bad components)
Cover of To: set of paths P such that each bad node of T, is contained in at least one path P € P
Cost of cover P: ‘r(ﬁ) =2 pep T(P)

Cost of an optimal cover of Ts: (M) = min (P)

P is a cover of Ty

Ta To Ta To
H, %1 %)
K 1 K: 5 K 1 K 5
Vv
— 2
H, H,
K Ks
Hs Ka Ks Vi Vs V4
Ks T < 1 V3 |7

(Tm) = 7(To)



Covering the component tree T, .C

L: # of leaves in T5 ; Branching node of T,: any node whose degree is > 3

if £ < 2: the complete tree T,

Leaf-branch of To: ¢ if £ > 3: maximal path u1, w2, ..., Uy, such that uy is a leaf of T, and,
for i = 2, ..., k, the degree of internal node u; in T is two

A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of 1)

Traversal: path connecting two leaves of To

Suppose L = 2,4,6, ...:

P(To): smallest set of traversals covering all nodes of Ty : |B(To)| = %

COVERTREEWITHTRAVERSALS

Input: unrooted tree To with £ = 2n leaves
Output: set P of n traversals covering all nodes of T,

Based on any planar view of Ty, enumerate the leaves from 1 to 2n in circular order;

P=0;
for i=1to ndo
P. = P U {traversal connecting leaves i and i + n};

Return 73T;

n



Computing 7(T5)

Lower bound for the cost of an optimal cover of To:  7(To) > L
Each traversal T has cost 7(T) =2

If £ is even, B(Ts) is an optimal cover:
=7(T) =7 (ﬁ(n)) —2£—r

If £ is odd and T, has a short leaf-branch s (7(s) = 1):
= 7(To) =7 (P(To\5)) +7(s) =255 +1= £

If £ is odd and T, has no short leaf-branch (“fortress”); let £ be any long leaf-branch of T, (7(¢) = 2):
= 7(To) = T(ﬁ(n \e)) +r() =252 42=L41

The cost of any optimal cover of 15 is:

L+41 if L is odd and all leaf-branches are long ( “fortress”),
m(To) =

L otherwise.



Canonical inversion distance

dI]\'V(AyB) =n-— |C| —+ T

where

T« = T(To(A,B)) =h+f



Components are framed conserved intervals

Assuming that B=(1 2 3 ... 16), let us identify its framed conserved intervals with respect to

For given i > 1 and j > 1 such that i+ < n+1:

Conserved interval: interval of A composed of values i,i+1,...,i4+j (assuming n+1=1)

. direct: first element is /i and last elementis i+j; or
Framed conserved interval . . .3
reverse: first element is i+, and last element is i

Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13];[13..10], [16..10]

Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13]; [13..10]

_ ~ N —_— — — p— — p— p— I
1 4 2 3 5 7 6 8 16 14 15 13 11 12 10 9 17=1
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Components are framed conserved intervals
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Complexity of inversion distance and sorting

The inversion distance can be computed in linear time, by efficiently identifying chains of framed conserved
intervals (Bergeron et al., 2002: Common intervals and sorting by reversals: a marriage of necessity)

An optimal inversion sorting scenario can be computed in subquadratic time.
(Tannier and Sagot, 2004: Sorting by reversals in subquadratic time)



Canonical inversion distance of linear chromosomes

Given canonical linear chromosomes A and B: 3 s (0 ] L ’ AR n )

Add one new family (e.g. 0) and circularize chromosome B into B’ = (0 B)

diwv((0 A), B')

divv (A, B) = min {dmv(((‘) A),B')

Example:

A=[1234 and B=[12345]
B =(012345)
dn((051234),B)=3
dav((051234),B)=2

diwv (A, B) = 2



Quiz 3

1 What is the bottleneck of the running time of inversion sorting?

A Finding inversions that fix bad components.
B Finding split inversions.

@Finding safe split inversions.

D Finding inversions that merge bad components.
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