
Topics of today:

Canonical inversion distance and sorting:

1. Breakpoint diagram

2. Split / Neutral / Joining inversions

3. Good / bad components

4. Safe inversions and overlap graph

5. Hurdles and fortress / component tree

Canonical inversion model - circular chromosomes

(Unichromosomal genomes ⌘ chromosomes)

Given two canonical circular chromosomes A and B,...

Canonical Inversion Distance Problem: Compute the minimum number of inversions
required to transform A into B.

Denote by dinv(A,B) the inversion distance of A and B.

Canonical Inversion Sorting Problem: Find a sequence of dinv(A,B) inversions
that transform A into B.

Breakpoint diagram of canonical circular chromosomes

Let A and B be canonical circular chromosomes, with n = |G?|.
The breakpoint diagram BD(A,B) = (V ,E) is described as follows:

1. V =
[

X2G?

{Xh, Xt}) V = ⇠(A) = ⇠(B) ; |V | = 2n

there is a vertex for each extremity of each gene in G?

each vertex v has a label `(v), that corresponds to the extremity it represents

The vertices are drawn in one line, next to each other.

The vertices must follow the same (circular) order of the corresponding extremities in chromosome A,
according to one of the two reading directions.

2. E = E�(A) [E�(B), where:

I Adjacency edges:

(
E�(A) = {uv : u, v 2 V (⇠(A)) and `(u)`(v) 2 �(A)}

E�(B) = {uv : u, v 2 V (⇠(B)) and `(u)`(v) 2 �(B)}

The number of edges is |E | = 2n (n adjacency edges per chromosome)

Two equivalent breakpoint diagrams

BD(A,B) ⇠= BD(B,A)

(1 7̄ 4 5 3 6̄ 2̄) (1 7̄ 4 5 3 6̄ 2̄)g1h�� g7h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g2t�� g1t

g1h�� g2t g2h�� g3t g3h�� g4t g4h�� g5t g5h�� g6t g6h�� g7t g7h�� g1t
(1 2 3 4 5 6 7) (1 2 3 4 5 6 7)

Properties of the breakpoint diagram

A = (1 7̄ 4 5 3 6̄ 2̄)

g1h�� g7h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g2t�� g1t

B = (1 2 3 4 5 6 7)

n = |G?| = 7

Every vertex has degree two:

BD(A,B) is a collection of (even) cycles
(alternating edes in E�(A) and in E�(B))

cycle with k edges: k-cycle (always even)

C = set of cycles in BD(A,B)

If A = B,
RG(A,B) has only 2-cycles:

2n = 2|C|) n = |C|

Otherwise, if A 6= B:

n > |C|

Types of inversion and lower bound for the inversion distance

Assign one (arbitrary) direction to each cycle of BD(A,B)

A = (1 7̄ 4 5 3 6̄ 2̄) A = (1 7̄ 4 5 3 6̄ 2̄)

g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h

B = (1 2 3 4 5 6 7) B = (1 2 3 4 5 6 7)

- �wg wg wg... wg wg wg split
inversion
!

joining
inversion

wg wg wg... wg wg wgx1

|
x2 x3 x4 x5

|
x6 x1

|
x5 x4 x3 x2

|
x6 - - - -wg wg wg... wg wg wg $

neutral
inversion

wg wg wg... wg wg wgx1

|
x2 x3 x4 x5

|
x6 x1

|
x5 x4 x3 x2

|
x6

Lower bound for the inversion distance: dinv(A,B) � n � |C|

Types of cycles

Trivial cycle: one adjacency in each chromosome

2-cycle (sorted)

Good cycle: at least one pair of adjacencies with opposite directions

Can be split into two cycles by applying an inversion

(1 7̄ 4 5 3 6̄ 2̄)

g1h�� g7h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g2t�� g1t

(1 2 3 4 5 6 7)

→

¥i÷.a.

Types of cycles

Bad cycle: all adjacencies have the same direction

Cannot be split into two cycles

(1 3 2)

g1h�� g3t g3h�� g2t g2h�� g1t

(1 2 3)

bad cycle

(Interleaving) components

Breakpoint diagram:

(1 7̄ 4 5 3 6̄ 2̄)g1h�� g7h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g2t�� g1t

(1 2 3 4 5 6 7)

Two interleaving cycles: c ... c 0 ... c ... c 0

Interleaving sequence of cycles:

c1, c2, ..., ck such that ci and ci+1 are interleaving for all 1  i  k � 1

Interleaving component or simply component K :
8
>>>><

>>>>:

either a cycle c that does not interleave with any other cycle

or

(
for each pair of cycles c, c 0 2 K there is an interleaving sequence from c to c

0

K is maximal

(crossing edges)

Types of (interleaving) components

Trivial component: only one trivial 2-cycle

Good component: at least one good cycle

(1 7̄ 4 5 3 6̄ 2̄) (1 7̄ 4 5 3 6̄ 2̄)

g1h�� g7h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g2t�� g1t g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h

(1 2 3 4 5 6 7) (1 2 3 4 5 6 7)

trivial cycle good cycle bad cycle

;÷.

"

good component

Types of (interleaving) components

Bad component: only bad cycles

(1 4 3 2)

g1h�� g4t g4h�� g3t g3h�� g2t g2h�� g1t

(1 2 3 4)

bad cycle bad cycle

bad component

Overlap graph of a component

Target adjacency:

8
<

:

good: black vertex

bad: white vertex

Target adjacencies can be

8
<

:

overlapping: connected in the graph

non overlapping: disconnected in the graph

(1 7̄ 4 5 3 6̄ 2̄)

g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h

(1 2 3 4 5 6 7)

Good:€0T Bad : -7¥
→ ←o

overlapping :¥0
Non overlapping :

OCR) on

6h 7-too-⑧243T¥,É
into.•osnEComponent K

Sorting a good component - finding safe split inversions

(1 5 4̄ 2 6̄ 3̄)

(1 2 3 4 5 6)

Overlap graph:

AnÉ--I--f--g__@-@f_Bs-fBkoAf@BAzThIÉmp

"

445T gk6t 0 zhzt

÷¥÷¥÷:

E↵ects on the overlap graph by inverting a bad adjacency

Three overlapping adjacona.es :

flip the types÷÷ÑY. (of the other

two vertices

+

Hr complement
-the edge

0-9 between the
other two

bad
'

glad
'

good Oirertic.es

E↵ects on the overlap graph by inverting a bad adjacency

Three overlapping adjacona.es :

-

[•① µ⑧ flip the types

of the othergood 1
bad

"

bad two vortices

+

H complement
-the edge

¥⑦• between me

1
other two

ball
/

bad
"
good ↳gqI vertices

E↵ects on the overlap graph by inverting a bad adjacency

(17-4536-5) OCR)

%É¥(→
"

shat 2h}t

"%☒••%.
⑥-•O

component K Ghtt

(1234567) ,ny%☒¥
""

shoot

O(34Gt) - 33h44O(344T)
⑧
zhzt

2h}t
⑧

flip and :3h4t•@shot complement•|@shot

Sorting a bad component with a neutral inversion

(1 4 3 2)

g1h�� g4t g4h�� g3t g3h�� g2t g2h�� g1t

(1 2 3 4)

Overlap graph:

1 4 I 5 it

%

Dz

34T that
*

flip %•€oo(D.)
and

complement ,hzt zh3t

Sorting a bad component with a neutral inversion

(1 4 3 2)

g1h�� g4t g4h�� g3t g3h�� g2t g2h�� g1t

(1 2 3 4)

Overlap graph:

Mfgg@eyeBABBIgAuyninrorsi.n
applied to a

bad

adjacency of

a bad component K
BREAKS K into a good component

Rom
b :# of bad components

Upper bound :
one extra inversion per

bad component -

.

dinr (A.B) f
n -It+ b

Sorting bad components with a joining inversion

K1, K2 and K3 are three distinct components in BD(A,B) so that K3 ...K1 ...K1 ...K3 ...K2 ...K2

) K3 separates K1 and K2

(1 6 8 7 9 2 4 3 5)g1h�� g6t g6h�� g8t g8h�� g7t g7h�� g9t g9h�� g2t g2h�� g4t g4h�� g3t g3h�� g5t g5h�� g1t

(1 2 3 4 5 6 7 8 9)

By joining with an inversion two cycles c1 and c2, that belong to two distinct components K1 and K2

respectively, we merge not only the components K1 and K2, but also all components that separate K1 and K2 ,

into a single good component K .

(merging hurdles)
the red component
separates the green
and the blue components

3 bad
only green andcomponents
blue are hurdles

Hurdle : a bad component that does not separate
two bad components

Sorting bad components with a joining inversion

K1, K2 and K3 are three distinct components in BD(A,B) so that K3 ...K1 ...K1 ...K3 ...K2 ...K2

) K3 separates K1 and K2

(1 6 8 7 9 2 4 3 5)g1h�� g6t g6h�� g8t g8h�� g7t g7h�� g9t g9h�� g2t g2h�� g4t g4h�� g3t g3h�� g5t g5h�� g1t

(1 2 3 4 5 6 7 8 9)

By joining with an inversion two cycles c1 and c2, that belong to two distinct components K1 and K2

respectively, we merge not only the components K1 and K2, but also all components that separate K1 and K2 ,

into a single good component K .

°É€É@ff§""
""

÷÷:÷÷⇐←sq←amB-F-
÷ : ÷: ÷÷÷÷÷

Quiz 1

1 Which of the following statements about the breakpoint diagram are true?

A A cycle can always be split into two cycles with an inversion.

B A neutral inversion cannot be optimal.

C A joining inversion cannot be optimal.

D It is always possible to split a good cycle into two.

E A bad cycle cannot be split by an inversion.

✗
✗
✗

8

Unsafe inversions

A split inversion applied to a cycle of a good component can create bad components

(1 6 8 7 2̄ 9̄ 4 3 5)g1h�� g6t g6h�� g8t g8h�� g7t g7h�� g2h g2t�� g9h g9t�� g4t g4h�� g3t g3h�� g5t g5h�� g1t

(1 2 3 4 5 6 7 8 9)

(1 6 8 7 9 2 4 3 5)g1h�� g6t g6h�� g8t g8h�� g7t g7h�� g9t g9h�� g2t g2h�� g4t g4h�� g3t g3h�� g5t g5h�� g1t

(1 2 3 4 5 6 7 8 9)

god

-

a. see
component

*

-

3 bad

components

E↵ects on the overlap graph by inverting a good adjacency

Three overlapping adjacona.es :

Tj %
I flip the

good had
"

8
'd

types of
It lnirorhics

*

••• ☒ A complacent
the edges2-cycle gf.ae 'bad 0

E↵ects on the overlap graph by inverting a good adjacency

three overlapping adjacana.es :

••JEY•-
god %good

"

glad flip the

☒ types of
the vortices

I
µ

*

compliment
; YU ☒ the edges

2-cycle Had
'

good ol

E↵ects on the overlap graph by inverting a good adjacency

(1 I 453 6- I) OCR)
•-•

"
"

shat 2h}t ✓✓
iv.t%☒••⑧snotcomponent K 6h7 zhzt

④
(I 2 3 4 56 7)

zhgt / ④shoot⑧
oat

6h 7-to zhzt
2h3 shift

flip and
3h4☒••|•%6t complement

Sorting a good component - finding safe split inversions

G:# of good adjacena.es in BDCA
,B)

gcny) :# of good adjacencios overlapping ay in BDCA,B)
b(*y) :# of

bad adjacena.es overlapping ay in BDCA
,B)

score Cny) : # good adjacencies in the diagram after fixing xy
-

|sure(ny)=G+b(ny)-g(ry#_'

fanin.rsionthatfixesasodtrs.tw?adi;;p?n:iY#L.maxinaalsoreissn-FE.fdeo.es#-crea-ene~

Sorting a good component - finding safe split inversions

Let 0 be the overlap graph of component K
suppose they is a good adjacency with maximal score in 0

inversion fixing my creates
a bad component kpy

At least one (bad) adjacency Éw E KB was

adjacent to my in 0
⇒ zw was good in 0

scores in 0 { swore (ay) = Gtb↳ I - glny) - I

score (zw) = G + bltw) -glzw) - I

Sorting a good component - finding safe split inversions

a
set of bad forget adjacencies connected to Ry

in 0

But = Blay) EB (Zw) ⇒ bcny)f blew)

Glzw) e- Glay) ⇒ gczw) Eg Cny)

It

we cannot have { b↳
) = b G-w) canard

glory 1-- g Cny)

sure lzw) 7 Score (ng)

Sorting bad components with a joining inversion

K1, K2 and K3 are three distinct components in BD(A,B) so that K3 ...K1 ...K1 ...K3 ...K2 ...K2

) K3 separates K1 and K2

(1 6 8 7 9 2 4 3 5)g1h�� g6t g6h�� g8t g8h�� g7t g7h�� g9t g9h�� g2t g2h�� g4t g4h�� g3t g3h�� g5t g5h�� g1t

(1 2 3 4 5 6 7 8 9)

By joining with an inversion two cycles c1 and c2, that belong to two distinct components K1 and K2

respectively, we merge not only the components K1 and K2, but also all components that separate K1 and K2 ,

into a single good component K .

(merging hurdles)
the red component
separates the green
and the blue components

3 bad
only green andcomponents
blue are hurdles

Hurdle : a bad component that does not separate
two bad components

Sorting bad components - simple hurdles and super hurdles

h : number of hurdles in BD(A,B)

hurdle :
bad component that does
not separate 2 bad components

super
hurdle K : fixing Kk by a neutral

inversion creates a new

hurdle

On the previous page , both green and
blue are super hurdles

fixing only the green or only the
blue component with a

neutral inversion would turn the red component into ahurdle

Sorting bad components - simple hurdles and super hurdles

srdlf : a hurdle that is not a super hurdle

* each simple hurdle can be fixed with
a neutral

inversion

(cutting a hurdle) inr
-
-

+1

* each pair of super hurdles can be fixed with a

joining inversion

(merging hurdles) B.
inv

= 1- 2

Sorting bad components - fortress

f :

(
0 BD(A,B) is not a fortress

1 BD(A,B) is a fortress

fortress

:[
there is an odd

number of hurdles
A ,B,C,D,E,F are bad components

*all hurdles are

Bs!¥ super hurdles

1: :: : r.

A and E

'

☒B

C separates
A.D and F are

D and A E separates

µ and B F and A
A super

-
hurdles ,☐D and E F and B but joining any

F and ☐

⇒ only A ,
D andF

D and
F F and C are hurdles pair among APF

creates a new hurdle

Canonical inversion distance of circular chromosomes

dinv(A,B) = n � |C|+ h + f
-

fi / q

Quiz 2

1 Which of the following statements about the inversion model are true?

A The inversion distance depends only on the number of cycles in the breakpoint diagram.

B Every bad component in the diagram is a hurdle.

C A split inversion is always optimal.

D A good component can always be sorted with (safe) split inversions.

E A super hurdle can be optimally sorted with a neutral inversion.

F A diagram with an even number of bad components can be a fortress.

✗

¥
✗ true if Bri is a fortress

0

Chained and nested components on the breakpoint diagram

Alternative to component separation: chaining and nesting relationships between components

Chain:

8
><

>:

sequence of components K1,K2, ...,K`

the rightmost adjacency-edge of Ki is succeeded by
the leftmost adjacency-edge of Ki+1, for 1  i  `

Maximal chain: cannot be extended to the left nor to the right.

A maximal chain H is nested in a component K when the leftmost adjacency-edge of H is preceded by an
adjacency-edge of K and the rightmost adjacency-edge of H is succeeded by an adjacency-edge of K .

c1
c2c3

c4

c5

c7

c6

K1 = {c1} K2 = {c2} K3 = {c3} K4 = {c4} K5 = {c5, c6} K6 = {c7}

r-r r-r r-r r-r r-r r-r r� r r� r r-r r-r r-r r-r r-r r-r r-rA : 1h 10t 10h 2t 2h 4t 4h 6t 6h 5t 5h 7t 7h 3h 3t 8t 8h 9t 9h 11t 11h 15t 15h 14t 14h 12t 12h 13t 13h 1t

Maximal chains:

8
>>><

>>>:

H1 = K1 ./ K5 ,

H2 = K2 ./ K4 (nested in component K1) ,

H3 = K3 (nested in component K2) ,

H4 = K6 (nested in component K5)

Chained component tree ⌥⌅ (rooted)

c1
c2c3

c4
c5

c7

c6

K1 = {c1} K2 = {c2} K3 = {c3} K4 = {c4} K5 = {c5, c6} K6 = {c7}

r-r r-r r-r r-r r-r r-r r�r r�r r-r r-r r-r r-r r-r r-r r-r

Maximal chains:

8
>>><

>>>:

H1 = K1 ./ K5 ,

H2 = K2 ./ K4 (nested in component K1) ,

H3 = K3 (nested in component K2) ,

H4 = K6 (nested in component K5)

1. One round node per component Ki :

(
bad node (�): Ki is a bad component;

good node (•): Ki is a trivial or a good component.

2. One square (⌅) node per maximal chain Hi , whose children are the round nodes corresponding to the
components of Hi . A square node is either the root or a child of the component in which H1 is nested.

⌥⌅ : ⌘⌘ QQ
⌅H1wgK1

��@@
⌅H2wK2

⌅H3 wgK3

w
K4

wgK5

⌅H4w
K6

P: path connecting two distinct round nodes u1 and u2 in ⌥⌅(A,B)
round nodes in P\{u1, u2}: components that separate u1 and u2 in RG(A,B).

Contraction of ⌥⌅ into unrooted component tree ⌥�

Max-flower:

maximal connected subgraph of ⌥⌅
composed of good and/or square nodes only

Obtaining ⌥� from ⌥⌅

For each max-flower F of ⌥⌅:

1. Replace F by a single good round node g

(g is connected to all bad nodes connected to F)

2.

8
>>>>>>><

>>>>>>>:

If g has exactly two neighbors b1 and b2:

remove g from the tree and connect b1 to b2;

If g is a leaf:

simply remove g from the tree

() in the end, all leaves in ⌥� are bad)

⌥⌅: ⌘⌘ QQ
⌅H1wgK1

��@@
⌅H2wK2

⌅H3 wgK3

w
K4

wgK5

⌅H4w
K6

⌘⌘ QQ
⌅w

��AA
⌅w

��AA
⌅w w

wg
v1

wgv2
��AA
⌅wg
⌅wgv3

wg
⌅wgv4

#
⌘⌘ QQ
wwgK1wwg

K3

wgK5w
wwg
v1

wgv2
��AA
wwgwwg

v3

wgwwg
v4

#
⌥�: wgK1wg

K3

wgK5 wgv1 wgv2
��AA
wwgwg

v3

wgwg
v4

¥0
0

✗✗

② ②

0

Topology and paths in the component tree ⌥�

All leaves in ⌥� are bad nodes (⌘ hurdles)

L: # of leaves in ⌥�

Traversal: path connecting two leaves of ⌥�

zjv1 zjv2
�� AA

zzjzj
v3

zjzj
v4

zjv1 zjv2
⇢⇢ ZZ
zzjzj

v3

zj
v4

zjzj
v5

Branching node of ⌥�: any node whose degree is � 3

Leaf-branch of ⌥�:

8
>><

>>:

if L  2: the complete tree ⌥�

if L � 3: maximal path u1, u2, ..., uk , such that u1 is a leaf of ⌥� and,

for i = 2, ..., k, the degree of internal node ui in T is two

A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of ⌥�)

Cost of covering the component tree ⌥�

path P in ⌥�:

(
short: contains a single bad node) if P is a branch it corresponds to a simple hurdle

long: contains at least two bad nodes) if P is a branch it corresponds to a super hurdle

cost of path P: ⌧(P)

(
P is short : ⌧(P) = 1 (cut a bad component)

P is long : ⌧(P) = 2 (merge two or more bad components)

Cover of ⌥�: set of paths bP such that each bad node of ⌥� is contained in at least one path P 2 bP

Cost of cover bP: ⌧(bP) =
P

P2 bP ⌧(P)

Cost of an optimal cover of ⌥�: ⌧(⌥�) = min
bP is a cover of ⌥�

⌧(bP)

⌥⌅ ⌥� ⌥⌅ ⌥�

⌘⌘ QQ
⌅H1wgK1

��@@
⌅H2wK2

⌅H3 wgK3

w
K4

wgK5

⌅H4w
K6

! wgK1wg
K3

wgK5 ⌘⌘ QQ
⌅w

��AA
⌅w

��AA
⌅w w

wg
v1

wgv2
��AA
⌅wg

⌅wgv3

wg
⌅wgv4

!
wgv1 wgv2

��AA
wwgwg

v3

wgwg
v4

⌧(⌥⌅) = ⌧(⌥�)

deaf-

deaf .

A
Yi 2

Covering the component tree ⌥�

L: # of leaves in ⌥� ; Branching node of ⌥�: any node whose degree is � 3

Leaf-branch of ⌥�:

8
>><

>>:

if L  2: the complete tree ⌥�

if L � 3: maximal path u1, u2, ..., uk , such that u1 is a leaf of ⌥� and,

for i = 2, ..., k, the degree of internal node ui in T is two

A leaf-branch may be a path of length 1 (a leaf directly connected to a branching node of ⌥�)

Traversal: path connecting two leaves of ⌥�

Suppose L = 2, 4, 6, ...:

bPt(⌥�): smallest set of traversals covering all nodes of ⌥� : | bPt(⌥�)| = L
2

CoverTreeWithTraversals

Input: unrooted tree ⌥� with L = 2n leaves
Output: set bPt of n traversals covering all nodes of ⌥�

Based on any planar view of ⌥�, enumerate the leaves from 1 to 2n in circular order;
bPt = ;;
for i = 1 to n do

bPt = bPt [{traversal connecting leaves i and i + n};
Return bPt;

[=h

Computing ⌧(⌥�)

Lower bound for the cost of an optimal cover of ⌥�: ⌧(⌥�) � L

Each traversal T has cost ⌧(T) = 2

If L is even, bPt(⌥�) is an optimal cover:

) ⌧(⌥�) = ⌧
⇣
bPt(⌥�)

⌘
= 2L

2 = L

If L is odd and ⌥� has a short leaf-branch s (⌧(s) = 1):

) ⌧(⌥�) = ⌧
⇣
bPt(⌥� \ s)

⌘
+ ⌧(s) = 2L�1

2 + 1 = L

If L is odd and ⌥� has no short leaf-branch (“fortress”); let ` be any long leaf-branch of ⌥� (⌧(`) = 2):

) ⌧(⌥�) = ⌧
⇣
bPt(⌥� \ `)

⌘
+ ⌧(`) = 2L�1

2 + 2 = L+ 1

The cost of any optimal cover of ⌥� is:

⌧(⌥�) =

(
L+ 1 if L is odd and all leaf-branches are long (“fortress”),

L otherwise.

Canonical inversion distance

dinv(A,B) = n � |C|+ ⌧⇤

where

⌧⇤ = ⌧(⌥�(A,B)) = h + f

Components are framed conserved intervals

Assuming that B = (1 2 3 ... 16), let us identify its framed conserved intervals with respect to

A = (1 4 2 3 5 7 6 8 16 14 15 13 11 12 10 9)

For given i � 1 and j � 1 such that i+j  n+1:

Conserved interval: interval of A composed of values i , i+1, ... , i+j (assuming n+1 ⌘ 1)

Framed conserved interval

(
direct: first element is i and last element is i+j ; or

reverse: first element is i+j and last element is i

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10], [16..10]

Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10]

1

z }| {
4 2

z}|{
3 5

z }| {
7 6 8

z }| {

16

z }| {
14 15 13

z }| {
11 12 10 9 17⌘1

g1h�� g4h g4t�� g2t i2h�� i3t g3h�� g5t g5h�� g7t g7h�� g6t g6h�� i8t g8h�� i16h i16t�� i14h i14t�� i15h i15t�� i13h i13t�� i11h i11t�� i12h i12t�� i10h i10t�� g9t g9h�� g1t

Components are framed conserved intervals

1

z }| {
4 2

z}|{
3 5

z }| {
7 6 8

z }| {

16

z }| {
14 15 13

z }| {
11 12 10 9 17⌘1

g1h�� g4h g4t�� g2t i2h�� i3t g3h�� g5t g5h�� g7t g7h�� g6t g6h�� i8t g8h�� i16h i16t�� i14h i14t�� i15h i15t�� i13h i13t�� i11h i11t�� i12h i12t�� i10h i10t�� g9t g9h�� g1t

⇣⇣⇣⇣⇣
PPPPP
⌅z[1..5]

⌅z
[2..3]

zj
[5..8]

z[8..17]

�� @@
⌅zj

[16..13]

zj
[13..10]

Complexity of inversion distance and sorting

The inversion distance can be computed in linear time, by e�ciently identifying chains of framed conserved
intervals (Bergeron et al., 2002: Common intervals and sorting by reversals: a marriage of necessity)

An optimal inversion sorting scenario can be computed in subquadratic time.
(Tannier and Sagot, 2004: Sorting by reversals in subquadratic time)

Canonical inversion distance of linear chromosomes

Given canonical linear chromosomes A and B:

Add one new family (e.g. 0) and circularize chromosome B into B0 = (0 B)

dinv(A,B) = min

(
dinv((0 A),B0)

dinv((0̄ A),B0)

Example:

A = [5̄ 1 2 3̄ 4] and B = [1 2 3 4 5]

B0 = (0 1 2 3 4 5)

dinv((0 5̄ 1 2 3̄ 4),B0) = 3

dinv((0̄ 5̄ 1 2 3̄ 4),B0) = 2

dinv(A,B) = 2

113=10123 .
. .
n)

Quiz 3

1 What is the bottleneck of the running time of inversion sorting?

A Finding inversions that fix bad components.

B Finding split inversions.

C Finding safe split inversions.

D Finding inversions that merge bad components.

O

References

Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals

Sridhar Hannenhalli and Pavel A. Pevzner

Journal of the ACM, vol 46, issue 1, pages 1–27 (1999)

Reversal Distance without Hurdles and Fortresses

(Anne Bergeron, Julia Mixtacki and Jens Stoye)

LNCS, volume 3109, pages 388-399 (2004)

The Inversion Distance Problem

(Anne Bergeron, Julia Mixtacki and Jens Stoye)

In: Mathematics of Evolution and Phylogeny. Gascuel O (Ed); (2005)

