Topics of today:

More about framed conserved intervals and inversion distance

inversion x DCJ distance
Relations < DCJ x SCJ distance
inversion x SCJ distance

Singular DCJ-indel distance and sorting:
1. Indels: insertions and deletions
2. Relational graph of singular genomes
3. Runs and indel-potential

4. Deducting path recombinations

5. Restricted DCJ-indel model



Components are framed conserved intervals

Assuming that B=(1 2 3 ... 16), let us identify its framed conserved intervals with respect to

For given i > 1 and j > 1 such that i+j < n+41:

Conserved interval: interval of A composed of values i,i+1,...,i4+j (assuming n+1=1)

. direct: first element is /i and last elementis i+j; or
Framed conserved interval . . .3
reverse: first element is i+j and last element is i

Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13];[13..10], [16..10]

Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13]; [13..10]
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|dentifying good and bad framed conserved intervals
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Component: framed conserved interval that is not a union of framed conserved intervals
Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13];[13..10]
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Component tree based on framed conserved intervals
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Component: framed conserved interval that is not a union of framed conserved intervals
Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13];[13..10]
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Any rotation of the diagram gives the same component tree

Components: Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13];[13..10]
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Any rotation of the diagram gives the same component tree

Components: Direct: [1..5];[2..3];[5..8];[8..17]  Reverse: [16..13];[13..10]
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Components: Direct: [A..P]=(1.5]; [P..A]= 2.3]; [C..F]= [5.8); [F..0]= .11 Reverse: [N..K|= (5.13); [K..H]= [13.10]



Any rotation of the diagram gives the same component tree
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Components: Direct: [A..P]= 1.5]; [P..A]= 2.3]; [C..F]= [5.5]; [F..0]= 5.171 Reverse: [N..X]= (1. 13; [K..H]= .10
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Inversion x DCJ distance

dpos(A,B) = n —[C]| + ’(\(T;)

dINV(Ay B) = dDCJ(ArB) =n—- |C| + T(TO)

For unichromosomal circular canonical genomes
and 7(To)=h+f

A= (1745362)
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B = (1234567)
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Inversion x DCJ distance

A= (1735462)
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SCJ x DCJ distance

a single SCJ: operation creating or “destroying” a single adjacency
(fusion / fission / circularization / linearization)
A DCJ can correspond to . . .
two SClJs: operations rearranging one adjacency and one telomere

fours SCJs: operations rearranging two adjacencies

dpes (AT, BY) < dses (AF, BY) < 4dpe, (A7, BF)



SCJ x inversion distance

two SClJs: inversion at the end of a linear chromosome
An inversion can correspond to
fours SClJs: inversion in the “middle” of a chromosome

2div (A", BY) < dses(AF, BF) < 4div (AT, BY)



Quiz 1 - quick review

1 Which of the following statements about the inversion model are true?

KThe inversion distance depends only on the number of cycles in the breakpoint diagram.

@ A good component can always be sorted with (safe) split inversions.
XEvery bad component in the diagram is a hurdle.
@If there is a bad component there is a hurdle in the diagram.
@If there are exactly two bad components there are two hurdles in the diagram.
XIf there are exactly three bad components there are three hurdles in the diagram
GJ A diagram needs at least six bad components to be a fortress. O

A diagram with an odd number of bad components can be a fortress.



DCJ and indels

» DCJ: structural rearrangements

_)E(— > _) >

\L translocation (DCJ)

L 24 (_ (_ > >

} fusion (DCJ)

_)E(— (—_) D

\l, inversion (DCJ)

D > D —> D

> Modifying the content: insertions and deletions (indels)
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Singular DCJ-indel model

Recall that G, = G(A) N G(B)

Let A = G(A)\ G« (set of genes exclusive to genome A)
B = G(B) \ G« (set of genes exclusive to genome B)

Restrictions for indel operations:
» At most one chromosome can be deleted or inserted at once
» Only genes of set A can be deleted

» Only genes of set B can be inserted



Singular DCJ-indel model

Given two singular genomes A and B,...

Singular DCJ-indel Distance Problem:

Singular DCJ-indel Sorting Problem:

Compute the minimum number of DCJ and indel operations
required to transform A into B.

Denote by dpv,; (A, B) the DCJ-indel distance of A and B.

Find a sequence of dii,;(A, B) DCJ and indel operations
that transform A into B.



Relational graph of singular genomes

Given two singular genomes A and B, their relational graph RG(A,B) = (V, E) is described as follows:

1. V=V((A)UV(EB)): thereis a vertex for each extremity of each gene in A

and a vertex for each extremity of each gene in B

Each vertex v has a label ¢(v), that corresponds to the extremity it represents.

2. E = Er(A)UEr(B) U E¢ U Eip(A) U Eip(B), where:

Er(A) ={uv:u,v e V((A)) and £(u)l(v) € T(A)}
Er(B) = {uv:u,v e V(EMB)) and £(u)l(v) € T(B)}

v

Adjacency edges: {

> Extremity edges: E; = {uv: u € V(§(A)) and v € V(§(B)) and £(u) = £(v)}

Ep(A) = {uv: ¢(u) =gt and £(v) = g" and g € A}
Epn(B) = {uv: f(u) = gt and £(v) = gh and g € B}

v

Indel edges: {



Graph model for the DCJ-indel distance of ,smavlmr genomes

Relational graph n = # common families (n=7)
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Graph model for the DCJ-indel distance of smavlmr genomes

Relational graph n = # common families (n=7)

A CEmmEL O (o) D) EED> N> M
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Graph model for the DCJ-indel distance of 5mau|¢r genomes

Relational graph n = # common families (n=7)

<o o} (G > > D> D> >
A
. . . . . .

. L . . .

one vertex per gene extremity
adjacency edges
extremity edges : n pairs of siblings

. . . . L . .

. . . .
B G D> G —> o} > L 24 24



Graph model for the DCJ-indel distance of smavlmr genomes

Relational graph n = # common families (n=7)

o} (G > > D> D> >

one vertex per gene extremity
adjacency edges
extremity edges : n pairs of siblings

G D> G —> o} > L 24 24



Graph model for the DCJ-indel distance of slnavlmr genomes

Relational graph n = # common families (n=7)

o} (G > > D> D> >

one vertex per gene extremity
adjacency edges

extremity edges : n pairs of siblings
indel edges

G D> G ——> o} > L 24 24



Graph model for the DCJ-indel distance of smav‘wr genomes

Relational graph n = # common families (n=7) n ’

o} (G > > D> D> >

one vertex per gene extremity
adjacency edges

extremity edges : n pairs of siblings
indel edges

(G D> < G ——> o} > 24 24

each vertex has degree 1 or 2:

connected components:

cycles, AB-paths, AA- and BB-paths ) indel-enclosing
U C; Pas Paa Prr indel-free

(>2)-cycles

¢

length of a component: # of extremity edges

cycles, AA- and BB-paths have even length
AB-paths have odd length



Graph model for the DCJ-indel distance of .smavlmr genomes

Relational graph n = # common families (n=7) A;céjB ‘n>|Cl+ |P2F\B|

o} (G > > D> D> >

one vertex per gene extremity
adjacency edges
extremity edges : n pairs of siblings
indel edges

G D> G ——> o} > L 24 24

each vertex has degree 1 or 2:

connected components:
P . . AchB 2-cycles, 1-paths
cycles, AB-paths, AA- and BB-paths ) indel-enclosing
/ U(E Pas Paa Pre indel-free

(>2)-cycles
7/%/

length of a component: # of extremity edges (EmEmmemmEremEm mEm

P
cycles, AA- and BB-paths have even length 2n=2|C|+|Pss| = n=|[C|+ | ;B‘
AB-paths have odd length




Relational graph of singular genomes

(O > > D> D> B>

W

C G D> I > o > D

components can be indel-inclosing or indel-free

Every vertex has degree one or two:
RG(A, B) is a collection of paths and cycles

cycle with k edges in E¢: k-cycle or ¢,
path with k edges n E¢: k-path or pj

if k = 0 the component is a singleton
C = {ck : k>2} : set of cycles (k is even)
S = {ck : k=0} : set of circular singletons

sa = {pk : starts and ends in A} :
set of AA-paths (k is even)

Pee = {pk : starts and ends in B} :
set of BB-paths (k is even)

Par = {pk : starts in A and ends in B} :
set of AB-paths (k is odd)

|Pas| is even (E¢ has 2n edges)
[Pan| + |Per| + [Par| = w(A) + x(B)

If Af = BY,
RG(A,B) has only 2-cycles and 1-paths:

\Pmlﬂ

2n=2(C| + |Pus| = n=|C|+ 22

Otherwise, if Af #* ]Bg:

P
n>\C|+‘§“|




Singular DCJ-indel model

First upper bound:
d (A, B) < dpey (AL, BY) + | A] + |8

where Af is the genome obtained from A by simply removing the genes of A
IBZ is the genome obtained from B by simply removing the genes of B



Apc; = 0 (gaining): creates one cycle or two AB-paths
Types of DCJ operation ¢ Apc; = 1 (neutral): does not change the number of cycles nor of AB-paths
Apcy; = 2 (losing): destroys one cycle or two AB-paths



Runs of indel-paths

.

One indel-enclosing cycle:

A

indel-path indel-path indel-path e
e ',—/h\

—_———
N% k-—-'l “ gl .L
_— — ] A=4

indel edges , runs

Each indel-path can be inserted/deleted at once

Each run can be inserted/deleted at once { Each run can be accumulated into one indel-path

with ﬁa'm {nj DClJs

A(C) is the number of runs in cycle C



Runs of indel—pa&hs

One indel-enclosing cycle:

indel edges , runs

cycles or paths
A(C) is the number of runs in component C cycles, paths and singletons
cycles, paths

paths

cycles, paths

paths

cycles, paths

Each run can be inserted/deleted at once
= Second upper bound:

7)
az(a.8) < n e~ 22l 5 age)
CeRG



Runs of indel-pa&hs

Apc; = 0 (gaining): creates one cycle or two AB-paths
Types of DCJ operation ¢ Apc; = 1 (neutral): does not change the number of cycles nor of AB-paths
Apcy; = 2 (losing): destroys one cycle or two AB-paths

Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once
= Second upper bound:

P
an(nB) < n e~ P2l 5 A
CeRG

DCJ operations can modify the number of runs:

Ap = —2 (merges two pairs of runs)

Ap = —1 (merges one pair of runs)
A DCJ operation can have ¢ Ay =0 (preserves the runs)

/\” 1 (cr\”fc o0 um)

Arf;') (splitst 4‘;&-)



Runs can be merged and accumulated in both genomes
AZ[ a 2 1 ED) 3 ]

. @0 G tmt

Singular genomes

B=[ b 1 b 2 3]

A sequence of 3 operations
sorting A into I =12 3]

A

B:

ai i 1 az §

o e— | —
inversion

1 2,2 a 3
deletion .

1 2,3

DU NP

inversion |

L2, 3,

T deletion
‘ by b 1 2 3
— e

T inversion

by, 1 b 2 3

A sequence of 2 operations
sorting B into I = [1 2 3]

A sequence of 5 operations
sorting A into B

~ 5 -
A2 1,2 3
1 inversion
i1 2 ,a a@ 3
deletion |
1 2.3
inversion |,
J insertion
by ‘ by 1 2 3
J, inversion

B: by 1, by 2 3,




Merging runs with “internal” gaining DCJ operations

An gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component
can decrease the number of runs:

s r v o) =
= F\{:

AN=4 ~ 2 + 1 =3 (Ax=—1)

DCJ-sorted (or short) components: 2-cycles and 1-paths (and O-cycles and 0-paths)
Long components: k-cycles (with k > 4) and k-paths (with k > 2)

DCJ-sorting a long component C: transforming C into a set of DCJ-sorted components

Indel-potential A\(C) of a component C:

minimum number of runs that we can obtain by DCJ-sorting C with gaining DCJ operations



Indel-potential A of a cycle C

A(C)=0,1,2,4,6,8, ...

We will show that A(C) depends only on the value A(C): denote A\(C) = A(A(C))
ANC)=1=X1)=1
ANC)=2=)A(2)=2
A(C) > 4 : AN(C) = o1 + 02 such that o1 and oy are odd, and assume o1 > 0

. one with o; — 1 runs
two resulting cycles: i i i . i
one with either 1 run (if oo = 1) or with 0 — 1 runs (if oo > 3)

= A4)=A2)+M1)=2+1=3 T
M@+ AM2)=2+2=4 i
:>>\(6)—{ AA)+A1)=3+1=4 117:%2 3 ;i'\
M@ +A2)=3+2=5 G
:>)\(8)_{ A6)+ A1) =4+1=5

L)
Induction: {hypothe5|s AA(C)) =

base cases: A\(1) =1 and )\(2) =2
Induction step: in general, for A(C) > 4, we can state \(A(C)) = M(A(C) — 2) + A(1)

:( (©)-2 1)+1

:Ml



Indel-potential A of a path P

A(P)=0,1,2,3,4,56,7,8, ...
If A(P)=1isodd = A(P) =1
If A(P) > 2 is even = A(P) = &) 41
If A(P) > 3 is odd = A(P) = A(A(P) — 1)

In general, for A(P) > 1, we can state A\(A(P)) = [

AP)+1
2

|
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Indel-potential A\ of a component C

If C is a singleton: A\(C) =1

If Cis a cycle:
0 if A(C) =0 (C is indel-free)
AC) = 1 ifA(C)=1
MO 11 ifA(C) > 2
If C is a path:

0 if A(C) =0 (C is indel-free)
MC) = {P\(Cyﬂ ifA(C)>1

In general, for any component C:

A(C) 0 if A(C) =0 (C is indel-free)
= A(C .
(MG A > 1

TN oo B w N | o >

BB WN N O

paths and cycles

paths, cycles and singletons
paths and cycles

paths

paths and cycles

paths

paths and cycles

paths

P
Third upper bound:  din (A, B) < n—|C| — % + > MO)

(gaining DCJ operations + indels sorting components separately)




Types of DCJ operation

Apc; = 0 (gaining): creates one cycle or two AB-paths
DCJ-types of DCJ operation ¢ Apc; = 1 (neutral): does not change the number of cycles nor of AB-paths
Apcy; = 2 (losing): destroys one cycle or two AB-paths

Ay = —2 : decreases the overall indel-potential by two
Ay = —1 : decreases the overall indel-potential by one
Indel-types of DCJ operation ¢ Ay = 0 : does not change the overall indel-potential
AN - increasesathe averall indel natential l-J
Dy 2 increasesih lLindelpetentiatby-—two

Effect of a DCJ operation p on the third upper bound: A} (p) = Apci(p) + Ax(p)

Apc; =0 (gaining) and Ay = —2 : A}, = -2
DCJ Operations that can decrease the third upper bound: < Apc; = 0 (gaining) and Ay = -1 : A}, = —1
Apey =1 (neutral) and Ay = -2 : A}, = -1

DCJ

> By definition: any “internal” gaining DCJ operation p (applied to a single component)
has Ay(p) > 0 and, consequentely, A}, (p) > 0

> Any losing DCJ operation p has A}, (p) >0



DCJ operations involving cycles

> Any DCJ operation involving two cycles is losing and has A}, > 0
(cannot decrease the DCJ-indel distance)

o|o| s ||| >
ol swln] =] o] >

»> A DCJ operation p applied to a single cycle C can be:
> Gaining, with A),(p) > 0 (cannot decrease the DCJ-indel distance)
> Neutral (Apcs(p) = 1):

If A(C) > 4, the DCJ p can merge at most two pairs of runs: Ap(p) > —2 and Ay(p) > —1

= Any neutral DCJ operation applied to a single cycle has A}, > 0
(cannot decrease the DCJ-indel distance)

If singular genomes A and B are circular, the graph RG(A, B) has only cycles (and eventually singletons).

In this case:

i (AB)=n—[Cl+ > XC)
CERG



Quiz 2

1 Which of the following statements about the DCJ-indel model are true?

@Any gaining DCJ operation applied to a single component has A]g\cJ > 0.

x Any gaining DCJ operation has A, > 0.
—

XAny DCJ operation has A}, 20./

AprC O

XAny DCJ that decreases the number of runs has Ay < 0.
———

@If the input genomes are circular, we can obtain an optimal sequence of DCJ operations
and indels that sort each component of the relational graph separately.



DCJ operations involving paths

> Any DCJ operation involving a path and a cycle is losing and has A}, > 0

(cannot decrease the DCJ-indel distance)

~N oo slwn|=o >
B FREN FRIOY FORNY PO Y BV

» A DCJ operation p applied to a single path P can be:

> Gaining, with A).,(p) > 0 (cannot decrease the DCJ-indel distance)

> Neutral (Apcs(p) = 1):
If A(P) > 4, the DCJ p can merge at most two pairs of runs: Ap(p) > —2 and Ay(p) > —1

= Any neutral DCJ operation applied to a single path has AB‘CJ >0
(cannot decrease the DCJ-indel distance)



Path recombinations can have A} < —1

DCJ
An gaining (deducting) path recombination with A}, = —2:
Sources Resultants
>A=2+42=4) >CA=2+0=2)
AA + BB AB + AB
2 runs + 2 runs 3 runs + no run
€2 €3 — € €3
[ — \o—e—sp gaining e
DCJ
€1 =2 el en
AIEBB.AB’ + ABE

Deducting path recombinations

have A}, < -1

AAgA +BBug = { (ABaga +AB:)  (all variants have A}, =—2)
(AB4  + ABg)

General DClJ-indel distance formula:

at(08) = n— e - 22l 5y,
CeRG

where § is the value obtained by optimizing deducting path
recombinations




Optimizing deducting path recombinations (for computing ¢)

€ = ¢ (empty) A, AAL, Ahg, AAag(=Adga)
ABAB...A = A (odd)
BB., BB4, BBg, BB4ag(=BB
Run-type of a path BABA..B = B (odd) Path types N A 5, BB B)
ABAB..AB = AB (even) ABc, AB4, ABg), ABaz, ABga
BABA..BA = BA (even) l = an AB-path is always read from A to B
[
Deducting path recombinations that allow the best reuse of the resultants:
sources resultants Ay Ay, AN, sources resultants Ay Apey A7
Ahas T BBaz e+ e —2 0 -2 Abas t Ahas  Aha + Ahp -2 +1 -1 Sources:
AAss + BBy e+ ABga -1 O — BBas +BBas BB4 +BBg -2 +1 -1
Abus + BBy e+ ABus -1 0 —1 Ak t ABas e I AAs 2 11 1 Wi Adus
AAs BBz e+ ABss -1 0 —1 AMas +ABga e +AAp 2 41 -1 T Ahs
AAp +BBazs e+ABga -1 0 —1 BBas + ABas e I BBs -2 41 1
Ahs | BB4 et o 1 0 1 BBag + ABra o + BBy -2 +1 -1 W:AAg
Ap + BBs e+ e —1 0 -1 ABus +ABps e + e 5 11 —1 M - BBas
M: BBy
Path recombinations with A7),; = 0 creating resultants that can be used in deducting recombinations: M:BBg
Z:AB
sources resultants Ax Dpey AL, sources resultants Ay Dpey A, A3
AhA F ABpa e F Aha -1 1 0 AAi T BBg e T ABn 0 o0 0 N:ABga
AAp + ABuz e + AAus -1 +1 0 AAg + BBy o + ABpa 0 0 0
BBs + ABas o + BBas —1 +1 0 ABas T ABas  AAs + BBg -2 12 0
BBs + ABga o + BBays —1 +1 0 ABga + ABga AAp + BBy -2 +2 0




Optimizing deducting path recombinations (for computing ¢)

transforming 2 X AAgz + BBy + BBg

Deducting chain of path recombinations into
with
Ahap + BBy ABe + ABpy
2runs + 1run no run + 2 runs
A=2 +Aa=1 A=0+ A=2
A
AL, =—1
e e oes=—1)

€1 €1
AA s + BB ABe + AByp
2runs + 1run norun + 2 runs
A=2 + A=1 A=0+ A=2
A
(Af,=—1)
e LI e5

3 x AB. + ABg

overall A}, = -3

LTI

| R O W

ABe  + ABp
N norun  + 3 runs
A=0 + A=2

@ & e

(Aémzf 1)
neutral _
DCJ



[ id [ sources resultants A [ scr ]
l P WM [ AAar BB ag —_— —_— —_— —_— 2X e -2 [ -1 l
Q WWMM | 2 X AAgs BB4 +BBgs —_— — — — 4xe -3 | -3/4

MMWW | AA4+AAR 2 X BBag — — — — 4%e -3 | —3/4

T wzM AAugs BBA ABas — — — 3xe -2 | —-2/3
WWM | 2 X AAugs BBA — AAp — — 2X e -2 | -2/3
WNM AA s BBg ABpa — — — 3Xxe -2 | -2/3
WWM | 2 X AAggs BBg —_— AAA —_— —_— 2x e -2 | =2/3
MNW AAL BB s ABga — — — 3xe -2 | =2/3
MMW AAL 2 X BBas —_— — BBs — 2Xxe -2 | =2/3
MZW AAp BB ABas —_— — — 3Xe -2 72/3
MMW AAp 2 X BBag — — BB — 2X e —2 | —2/3
S IN — — ABas+ABpa — — — 2Xe -1 -1/2
WM ARy BB4 — —_ — — 2X e —1| —-1/2
WM AAp BBg _ _ _ _ 2X e —1 —1/2
WM AAag BBA — — — ABgra . -1 -1/2
WM AAas BBg —_— —_— — ABag . -1 -1/2
Wz AAas —_— ABag AAA — —_— . -1 -1/2
WN AAas —_— ABpa AAp — —_— . -1 -1/2
WW 2 x AAug —_— —_— AAA+AARB — —_— —_— -1 -1/2
MW AAL BB g — — — AB s . -1 -1/2
MW AAp BB —_— —_— — ABpra . —1 71/2
MZ — BB as AB s — BBs — . -1 -1/2
MN — BB as ABga — BB — . -1 -1/2
MM — 2 X BBag — — BB +BBg — — —1|—1/2




id sources resultants | Af‘m I scr |
ZZWM AAp BBA 2 X ABag — — — 4 x -2 | —1/2
NNWM AAL BB 2 X ABprg — — — 4 x —2 | —1/2
Zﬂﬁ AAp BBa ABan — —_— ABra 2 x -1 71/3
ZZW AAp — 2 x ABag AAL — — 2 % —1|-1/3
ZZM — BBA 2 X ABag —_— BBg —_— 2 X —-1|-1/3
NWM AAg BBy ABpa — — ABugp 2 % —-1|-1/3
NNW AAg —_— 2 X ABra AAp —_— — 2 x —-1|-1/3
NNM — BB 2 x ABga — BBA — 2 X —1|—-1/3

Sources: DClJ-indel distance formula:
: P,

W:Ahas d® (AB) = n—|C| — | ;”"' + 37 A0) -4,

W:AAg CERG

W:AAg . . . . . .

- where 9§ is the value obtained by optimizing deducting path recombinations:

M : BBag

M : BB

A §=2P+3Q+2T +S+2M+ N
M:BBg
Z : ABas the values P, Q, 7, S, M and N refer to the corresponding number of
) chains of deducting path recombinations of each type and can be obtained by a
N: ABra greedy approach (simple top-down screening of the table)




Singular DCJ-indel model - summary

. . i | Paz| where § is the value obtained by opti-
DCJ-indel distance: dey (A B) = n—|C| — T + Z A(C) -4, mizing deducting path recombinations
CERG

A and B arecircular:  d) (A, B) =n—|C| + Z A(C)
CERG

Sorting genome A into genome B (with a minimum number of DClJs):

1. Apply all P, Q, T, S, M and N chains of deducting path recombinations, in this order.

2. For each component C € RG(A, B):

2.1 Split C with gaining DCJs (that have Ay = 0) until only components with at most two runs are
obtained and the total number of runs in all new components is equal to A(C).

2.2 Accumulate all runs in the smaller components derived from C with gaining DCJ operations (that
have Ay = 0).

2.3 Apply gaining DCJ operations (that have A = 0) in the smaller components derived from C until
only DCJ-sorted components exist.

2.4 Delete all runs in the DCJ-sorted components derived from C.

Computing the distance and sorting can be done in linear time.



Singular DCJ-indel sorting: trade-off between DCJ and indels

The presented sorting algorithm maximizes gaining DCJs with Ay = 0 (minimizing indels).

neutral DCJs with Ay = —1

However, these gaining DCJs can often be replaced by . .
losing DCJs with Ay = —2

There is a big range of possibilities between the presented sorting algorithm and
a sorting algorithm that minimizes gaining DCJs with Ay = 0 (maximizing indels)



Restricted DCJ-indel-distance (singular linear genomes)

general DCJ-indel sorting

u & f__e Vv d

J inversion
A by B f, 6 YV d
J, inversion
a, by & f, e v,d
excision ,L
8, b ¢ d (8 f, & v U
deletion .
a__b, _c d (g‘f‘e}
excision J,

3, boc d (B8 (D)

reincorporation l,
8, b ¢ d e &
reincorporation .
3, by d e f, &
| insertion

a__b X Y _c d e f,_ &

— L — - — - —

In any sorting sequence, it is always possible to {

restricted DCJ-indel sorting

a,c u 8 f e v d

1 inversion

c,u & f. e Vv d

,L inversion
. b c U & f, e v, d
excision J,
3, b, ¢ d, (g:‘LﬁL:U )
reincorporation
8, boc dyf e v u g
excision i/

a b ¢ d e,v u §

i e A

reincorporation ,L

a b c d e f

v u, 8

deletion .
&, b, c, d, e f, &

| insertion

a__b X Y _c d _e f,__§

move deletions down

move insertions up

S : general sequence of DCJ and indel operations sorting linear A into linear B

S ~ S = SINS 5% 5Dc.1 D SDEL

R = Sins @ Rocy @ Spew and ‘S|:|S/|:|R‘



Quiz 3

1 Which of the following statements about the DCJ-indel model are true?

%A sequence of DCJ operations and indels that sort each component of the relational graph
separately is always optimal.

@ An optimal sequence of DCJ operations and indels sorting one singular genome into
another can have gaining, neutral and losing DClJs.

XThe DCJ-indel distance can be distinct from the restricted DCJ-indel distance.

2 The best known algorithm for the restricted DCJ-indel sorting runs in...

A O(n) time.

(nlog n) time.

C O(n?) time.
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