Topics of today:

- More about framed conserved intervals and inversion distance

Relations $\left\{\begin{array}{l}\text { inversion } \times \text { DCJ distance } \\ \text { DCJ } \times \text { SCJ distance } \\ \text { inversion } \times \text { SCJ distance }\end{array}\right.$

- Singular DCJ-indel distance and sorting:

1. Indels: insertions and deletions
2. Relational graph of singular genomes
3. Runs and indel-potential
4. Deducting path recombinations
5. Restricted DCJ-indel model

Components are framed conserved intervals

Assuming that $\mathbb{B}=\left(\begin{array}{lllll}1 & 2 & 3 & \ldots & 16\end{array}\right)$, let us identify its framed conserved intervals with respect to

$$
\mathbb{A}=\left(\begin{array}{llllllllllllll}
1 & \overline{4} & 2 & 3 & 5 & 7 & 6 & 8 & \overline{16} & \overline{14} & \overline{15} & \overline{13} & \overline{11} & \overline{12} \\
\hline 10 & 9
\end{array}\right)
$$

For given $i \geq 1$ and $j \geq 1$ such that $i+j \leq n+1$:
Conserved interval: interval of \mathbb{A} composed of values $i, i+1, \ldots, i+j$ (assuming $n+1 \equiv 1$)
Framed conserved interval $\left\{\begin{array}{l}\text { direct: first element is } i \text { and last element is } i+j ; \text { or } \\ \text { reverse: first element is } \overline{i+j} \text { and last element is } \bar{i}\end{array}\right.$
Direct: $[1 . .5] ;[2 . .3] ;[5 . .8] ;[8 . .17]$ Reverse: $[\overline{16} . . \overline{13}] ;[\overline{13} . . \overline{10}],[\overline{16} . . \overline{10}]$
Component: framed conserved interval that is not a union of framed conserved intervals
Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [$\overline{16} . . \overline{13}] ;[\overline{13} . . \overline{10}]$

Identifying good and bad framed conserved intervals

Component: framed conserved interval that is not a union of framed conserved intervals
Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16.. $\overline{13}] ;[\overline{13} . . \overline{10}]$ goad thivil had good

```
bad a.d
```


GOOD

Component tree based on framed conserved intervals

Component: framed conserved interval that is not a union of framed conserved intervals
Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [$\overline{16} . . \overline{13}] ;[\overline{13} . . \overline{10}]$

Any rotation of the diagram gives the same component tree
Components: Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [$\overline{16} . . \overline{13}] ;[\overline{13} . . \overline{10}]$

Any rotation of the diagram gives the same component tree

Components: Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [$\overline{16} . . \overline{13}] ;[\overline{13} . . \overline{10}]$

Components: Direct: $[\mathrm{A} . . \mathrm{P}]_{\equiv}[1 . .5] ;[\mathrm{P} . . \mathrm{A}] \equiv[2 . .3] ;[\mathrm{C} . \mathrm{F}] \equiv[5.8] ;[\mathrm{F} . . \mathrm{O}] \equiv[8 . .17]$ Reverse: $[\overline{\mathrm{N}} . . \overline{\mathrm{K}}] \equiv[\overline{16} . \overline{13}] ;[\overline{\mathrm{K}} . . \overline{\mathrm{H}}] \equiv[\overline{13} . \overline{10}]$

Any rotation of the diagram gives the same component tree

Inversion \times DCJ distance

For unichromosomal circular canonical genomes $\left\{\begin{array}{r}d_{\mathrm{DCJ}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}| \\ \mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})=\mathrm{d}_{\mathrm{DCJ}}(\mathbb{A}, \mathbb{B})=\tau\left(\Upsilon_{0}\right) \\ =n-|\mathcal{C}|+\tau\left(\Upsilon_{0}\right) \\ \text { and } \tau\left(\Upsilon_{0}\right)=h+f\end{array}\right.$

$$
\mathbb{A}=\quad(1 \overline{7} 453 \overline{6} \overline{2})
$$

$$
\begin{gathered}
n=\left|\mathcal{G}_{\star}\right|=7 \\
|\mathcal{C}|=4 \\
h=0 \text { and } f=0
\end{gathered}
$$

$$
\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})=\mathrm{d}_{\mathrm{DCJ}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|=7-4=3
$$

$\mathbb{B}=$
(1234567)

Scenario (1234567)

Inversion \times DCJ distance
$\mathbb{A}=$
(1735̄62)

$\mathbb{B}=$
(1234567)
$n=\left|\mathcal{G}_{*}\right|=7$
$|\mathcal{C}|=4$
$\mathrm{d}_{\mathrm{DCJ}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|=7-4=3$
$h=1$ and $f=0$
$\mathrm{d}_{\mathrm{INV}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+h=7-4+1=4$

SCJ \times DCJ distance

A DCJ can correspond to $\left\{\begin{array}{l}\begin{array}{r}\text { a single SCJ: operation creating or "destroying" a single adjacency } \\ \text { (fusion / fission / circularization / linearization) }\end{array} \\ \text { two SCJs: operations rearranging one adjacency and one telomere } \\ \text { fours SCJs: operations rearranging two adjacencies }\end{array}\right.$

$$
\mathrm{d}_{\mathrm{DCJ}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right) \leq \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right) \leq 4 \mathrm{~d}_{\mathrm{DCJ}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)
$$

SCJ \times inversion distance

An inversion can correspond to $\left\{\begin{array}{l}\text { two SCJs: inversion at the end of a linear chromosome } \\ \text { fours SCJs: inversion in the "middle" of a chromosome }\end{array}\right.$

$$
2 \mathrm{~d}_{\mathrm{INV}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right) \leq \mathrm{d}_{\mathrm{SCJ}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right) \leq 4 \mathrm{~d}_{\mathrm{INV}}\left(\mathbb{A}^{f}, \mathbb{B}^{f}\right)
$$

Quiz 1 - quick review

1 Which of the following statements about the inversion model are true?
The inversion distance depends only on the number of cycles in the breakpoint diagram.
(B) A good component can always be sorted with (safe) split inversions.
8. Every bad component in the diagram is a hurdle.
(D) If there is a bad component there is a hurdle in the diagram.

E If there are exactly two bad components there are two hurdles in the diagram.
X If there are exactly three bad components there are three hurdles in the diagram.

A diagram needs at least six bad components to be a fortress.
(H) A diagram with an odd number of bad components can be a fortress.

DCJ and indels

- DCJ: structural rearrangements

- Modifying the content: insertions and deletions (indels)

Singular DCJ-indel model

$$
\begin{aligned}
& \text { Recall that } \mathcal{G}_{\star}=\mathcal{G}(\mathbb{A}) \cap \mathcal{G}(\mathbb{B}) \\
& \text { Let }\left\{\begin{array}{l}
\left.\mathcal{A}=\mathcal{G}(\mathbb{A}) \backslash \mathcal{G}_{\star} \text { (set of genes exclusive to genome } \mathbb{A}\right) \\
\left.\mathcal{B}=\mathcal{G}(\mathbb{B}) \backslash \mathcal{G}_{\star} \text { (set of genes exclusive to genome } \mathbb{B}\right)
\end{array}\right.
\end{aligned}
$$

Restrictions for indel operations:

- At most one chromosome can be deleted or inserted at once
- Only genes of set \mathcal{A} can be deleted
- Only genes of set \mathcal{B} can be inserted

Singular DCJ-indel model

Given two singular genomes \mathbb{A} and \mathbb{B}, \ldots

Singular DCJ-indel Distance Problem:

Compute the minimum number of DCJ and indel operations required to transform \mathbb{A} into \mathbb{B}.

Denote by $\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{DD}}(\mathbb{A}, \mathbb{B})$ the DCJ -indel distance of \mathbb{A} and \mathbb{B}.

Singular DCJ-indel Sorting Problem:
Find a sequence of $\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \mathrm{DCJ}$ and indel operations that transform \mathbb{A} into \mathbb{B}.

Relational graph of singular genomes

Given two singular genomes \mathbb{A} and \mathbb{B}, their relational graph $R G(\mathbb{A}, \mathbb{B})=(V, E)$ is described as follows:

1. $\quad V=V(\xi(\mathbb{A})) \cup V(\xi(\mathbb{B}))$: there is a vertex for each extremity of each gene in \mathbb{A} and a vertex for each extremity of each gene in \mathbb{B}

Each vertex v has a label $\ell(v)$, that corresponds to the extremity it represents.
2. $E=E_{\Gamma}(\mathbb{A}) \cup E_{\Gamma}(\mathbb{B}) \cup E_{\xi} \cup E_{\mathrm{ID}}(\mathbb{A}) \cup E_{\mathrm{ID}}(\mathbb{B})$, where:

- Adjacency edges: $\left\{\begin{array}{l}E_{\Gamma}(\mathbb{A})=\{u v: u, v \in V(\xi(\mathbb{A})) \text { and } \ell(u) \ell(v) \in \Gamma(\mathbb{A})\} \\ E_{\Gamma}(\mathbb{B})=\{u v: u, v \in V(\xi(\mathbb{B})) \text { and } \ell(u) \ell(v) \in \Gamma(\mathbb{B})\}\end{array}\right.$
- Extremity edges: $E_{\xi}=\{u v: u \in V(\xi(\mathbb{A}))$ and $v \in V(\xi(\mathbb{B}))$ and $\ell(u)=\ell(v)\}$
- Indel edges: $\left\{\begin{array}{l}E_{\mathrm{ID}}(\mathbb{A})=\left\{u v: \ell(u)=g^{t} \text { and } \ell(v)=g^{h} \text { and } g \in \mathcal{A}\right\} \\ E_{\mathrm{ID}}(\mathbb{B})=\left\{u v: \ell(u)=g^{t} \text { and } \ell(v)=g^{h} \text { and } g \in \mathcal{B}\right\}\end{array}\right.$

Graph model for the DCJ-indel distance of singular genomes

Relational graph

$$
n=\# \text { common families }(n=7)
$$

Graph model for the DCJ-indel distance of singular genomes
Relational graph
$n=\#$ common families $(n=7)$

A

B

Graph model for the DCJ-indel distance of singular genomes

Relational graph

$$
n=\# \text { common families }(n=7)
$$

A

B

Graph model for the DCJ-indel distance of singular genomes

Relational graph

$$
n=\# \text { common families }(n=7)
$$

A

B

$\left\{\begin{array}{l}\text { one vertex per gene extremity } \\ \text { adjacency edges } \\ \text { extremity edges : } n \text { pairs of siblings }\end{array}\right.$

Graph model for the DCJ-indel distance of singular genomes

Relational graph

$$
n=\# \text { common families }(n=7)
$$

A

B

Graph model for the DCJ-indel distance of singular genomes

Relational graph

$$
n=\# \text { common families }(n=7)
$$

A

B

$\left\{\begin{array}{l}\text { one vertex per gene extremity } \\ \text { adjacency edges } \\ \text { extremity edges : } n \text { pairs of siblings } \\ \text { indel edges }\end{array}\right.$
each vertex has degree 1 or 2 :
connected components:

$$
\left|\mathcal{P}_{\mathrm{AB}}\right| \text { is even }
$$

length of a component: \# of extremity edges
$\left\{\begin{array}{l}\text { cycles, } A A \text { - and } \mathbb{B} B \text {-paths have even length } \\ \mathbb{A} B \text {-paths have odd length }\end{array}\right.$ ($A B$-paths have odd length

Graph model for the DCJ-indel distance of
 singular genomes

Relational graph

$$
n=\# \text { common families }(n=7)
$$

$$
\mathbf{A} \neq \mathbf{B c j}: n>|\mathcal{C}|+\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}
$$

A

B

$\left\{\begin{array}{l}\text { one vertex per gene extremity } \\ \text { adjacency edges } \\ \text { extremity edges : } n \text { pairs of siblings } \\ \text { indel edges }\end{array}\right.$
each vertex has degree 1 or 2 :
connected components:

length of a component: \# of extremity edges $\{$ cycles, A A- and $B B$-paths have even length
 AB-paths have odd length

Relational graph of singular genomes

components can be indel-inclosing or indel-free
Every vertex has degree one or two: $R G(\mathbb{A}, \mathbb{B})$ is a collection of paths and cycles cycle with k edges in $E_{\xi}: k$-cycle or c_{k} path with k edges $n E_{\xi}$: k-path or p_{k}
if $k=0$ the component is a singleton

$$
\text { If } \mathbb{A}_{c}^{f}=\mathbb{B}_{c}^{f}
$$

$R G(\mathbb{A}, \mathbb{B})$ has only 2 -cycles and 1 -paths:
Otherwise, if $\mathbb{A}_{c}^{f} \neq \mathbb{B}_{c}^{f}$:
$2 n=2|\mathcal{C}|+\left|\mathcal{P}_{\mathrm{AB}}\right| \Rightarrow n=|\mathcal{C}|+\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}$

$$
n>|\mathcal{C}|+\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}
$$

Singular DCJ-indel model

First upper bound:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq \mathrm{d}_{\mathrm{DCJ}}\left(\mathbb{A}_{c}^{f}, \mathbb{B}_{c}^{f}\right)+|\mathcal{A}|+|\mathcal{B}|
$$

where $\left\{\begin{array}{l}\mathbb{A}_{c}^{f} \text { is the genome obtained from } \mathbb{A} \text { by simply removing the genes of } \mathcal{A} \\ \mathbb{B}_{c}^{f} \text { is the genome obtained from } \mathbb{B} \text { by simply removing the genes of } \mathcal{B}\end{array}\right.$

Types of DCJ operation $\left\{\begin{array}{l}\Delta_{\mathrm{DCJ}}=0 \text { (gaining): creates one cycle or two } \mathbb{A} \mathbb{B} \text {-paths } \\ \Delta_{\mathrm{DCJ}}=1 \text { (neutral): does not change the number of cycles nor of } \mathbb{A} \mathbb{B} \text {-paths } \\ \Delta_{\mathrm{DCJ}}=2 \text { (losing): destroys one cycle or two } \mathbb{A} \mathbb{B} \text {-paths }\end{array}\right.$

Runs of indel-paths

One indel-enclosing cycle:

Each run can be inserted/deleted at once $\left\{\begin{array}{c}\text { Each indel-path can be inserted/deleted at once } \\ \text { Each run can be accumulated into one indel-path } \\ \text { with gaining DCJs }\end{array}\right.$
$\Lambda(C)$ is the number of runs in cycle C

Runs of indel-paths

One indel-enclosing cycle:

$\Lambda(C)$ is the number of runs in component C

\wedge	
0	cycles or paths
1	cycles, paths and singletons
2	cycles, paths
3	paths
4	cycles, paths
5	paths
6	cycles, paths
:	

Each run can be inserted/deleted at once
\Rightarrow Second upper bound:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}+\sum_{C \in R G} \Lambda(C)
$$

Runs of indel-paths

Types of DCJ operation $\left\{\begin{array}{l}\Delta_{\text {DCJ }}=0 \text { (gaining): creates one cycle or two } \mathbb{A B} \text {-paths } \\ \Delta_{\text {DCJ }}=1 \text { (neutral): does not change the number of cycles nor of } \mathbb{A B} \text {-paths } \\ \Delta_{\text {DCJ }}=2 \text { (losing): destroys one cycle or two } \mathbb{A} \mathbb{B} \text {-paths }\end{array}\right.$

Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once
\Rightarrow Second upper bound:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}+\sum_{C \in R G} \Lambda(C)
$$

DCJ operations can modify the number of runs:

A DCJ operation can have $\begin{cases}\Delta_{\Lambda}=-2 & \text { (merges two pairs of runs) } \\ \Delta_{\Lambda}=-1 & \text { (merges one pair of runs) } \\ \Delta_{\Lambda}=0 & \text { (preserves the runs) } \\ \Delta_{\Lambda}-1 & \text { (splits_nonen) } \\ \Delta_{\Lambda}-2 & \text { (splits }\end{cases}$

Runs can be merged and accumulated in both genomes

A sequence of 3 operations sorting \mathbb{A} into $\mathbb{I}=\left[\begin{array}{ll}1 & 2\end{array}\right]$

A sequence of 5 operations sorting \mathbb{A} into \mathbb{B}

A sequence of 2 operations sorting \mathbb{B} into $\mathbb{I}=\left[\begin{array}{lll}\overline{1} & 2 & 3\end{array}\right]$

Merging runs with "internal" gaining DCJ operations

An gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component can decrease the number of runs:

$$
\Lambda=4 \quad \rightsquigarrow \quad 2 \quad+\quad 1=3\left(\Delta_{\Lambda}=-1\right)
$$

DCJ-sorted (or short) components: 2-cycles and 1-paths (and 0-cycles and 0-paths)

Long components: k-cycles (with $k \geq 4$) and k-paths (with $k \geq 2$)

DCJ-sorting a long component C : transforming C into a set of DCJ-sorted components

$$
\text { Indel-potential } \lambda(C) \text { of a component } C \text { : }
$$

minimum number of runs that we can obtain by DCJ-sorting C with gaining DCJ operations

Indel-potential λ of a cycle C

$\Lambda(C)=0,1,2,4,6,8, \ldots$
We will show that $\lambda(C)$ depends only on the value $\Lambda(C)$: denote $\lambda(C)=\lambda(\Lambda(C))$

$$
\begin{aligned}
& \Lambda(C)=1 \Rightarrow \lambda(1)=1 \\
& \Lambda(C)=2 \Rightarrow \lambda(2)=2 \\
& \Lambda(C) \geq 4: \Lambda(C)=o_{1}+o_{2} \text { such that } o_{1} \text { and } o_{2} \text { are odd, and assume } o_{1} \geq o_{2}
\end{aligned}
$$

$$
\text { two resulting cycles: }\left\{\begin{array}{l}
\text { one with } o_{1}-1 \text { runs } \\
\text { one with either } 1 \text { run (if } o_{2}=1 \text {) or with } o_{2}-1 \text { runs (if } o_{2} \geq 3 \text {) }
\end{array}\right.
$$

$$
\begin{aligned}
& \Rightarrow \lambda(4)=\lambda(2)+\lambda(1)=2+1=3 \\
& \Rightarrow \lambda(6)=\left\{\begin{array}{l}
\lambda(2)+\lambda(2)=2+2=4 \\
\lambda(4)+\lambda(1)=3+1=4
\end{array}\right. \\
& \Rightarrow \lambda(8)=\left\{\begin{array}{l}
\lambda(4)+\lambda(2)=3+2=5 \\
\lambda(6)+\lambda(1)=4+1=5
\end{array}\right.
\end{aligned}
$$

Induction: $\left\{\begin{array}{l}\text { hypothesis: } \lambda(\Lambda(C))=\frac{\Lambda(C)}{2}+1 \\ \text { base cases: } \lambda(1)=1 \text { and } \lambda(2)=2\end{array}\right.$
Induction step: in general, for $\Lambda(C) \geq 4$, we can state $\lambda(\Lambda(C))=\lambda(\Lambda(C)-2)+\lambda(1)$

$$
\begin{aligned}
& =\left(\frac{\Lambda(C)-2}{2}+1\right)+1 \\
& =\frac{\Lambda(C)}{2}+1
\end{aligned}
$$

Indel-potential λ of a path P

$$
\Lambda(P)=0,1,2,3,4,5,6,7,8, \ldots
$$

$$
\text { If } \Lambda(P)=1 \text { is odd } \Rightarrow \lambda(P)=1
$$

If $\Lambda(P) \geq 2$ is even $\Rightarrow \lambda(P)=\frac{\Lambda(P)}{2}+1$

If $\Lambda(P) \geq 3$ is odd $\Rightarrow \lambda(P)=\lambda(\Lambda(P)-1)$

Λ	λ
0	0
1	1
2	2
3	2
4	3
5	3
6	4
7	4
\vdots	\vdots

In general, for $\Lambda(P) \geq 1$, we can state $\lambda(\Lambda(P))=\left\lceil\frac{\Lambda(P)+1}{2}\right\rceil$

Indel-potential λ of a component C

If C is a singleton: $\lambda(C)=1$
If C is a cycle:

$$
\lambda(C)=\left\{\begin{array}{cl}
0 & \text { if } \Lambda(C)=0(C \text { is indel-free }) \\
1 & \text { if } \Lambda(C)=1 \\
\frac{\Lambda(C)}{2}+1 & \text { if } \Lambda(C) \geq 2
\end{array}\right.
$$

If C is a path:

$$
\lambda(C)=\left\{\begin{array}{cl}
0 & \text { if } \Lambda(C)=0(C \text { is indel-free }) \\
\left\lceil\frac{\Lambda(C)+1}{2}\right\rceil & \text { if } \Lambda(C) \geq 1
\end{array}\right.
$$

Λ	λ
0	

In general, for any component C :

$$
\lambda(C)=\left\{\begin{array}{cl}
0 & \text { if } \Lambda(C)=0(C \text { is indel-free }) \\
\left\lceil\frac{\Lambda(C)+1}{2}\right\rceil & \text { if } \Lambda(C) \geq 1
\end{array}\right.
$$

Third upper bound: $\quad d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B}) \leq n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathrm{A} B}\right|}{2}+\sum_{C \in R G} \lambda(C)$ (gaining DCJ operations + indels sorting components separately)

Types of DCJ operation

DCJ-types of DCJ operation $\left\{\begin{array}{l}\Delta_{\mathrm{DCJ}}=0 \text { (gaining): creates one cycle or two } \mathbb{A} \mathbb{B} \text {-paths } \\ \Delta_{\mathrm{DCJ}}=1 \text { (neutral): does not change the number of cycles nor of } \mathbb{A} \mathbb{B} \text {-paths } \\ \Delta_{\mathrm{DCJ}}=2 \text { (losing): destroys one cycle or two } \mathbb{A} \mathbb{B} \text {-paths }\end{array}\right.$

Effect of a DCJ operation ρ on the third upper bound: $\Delta_{\text {DCJ }}^{\lambda}(\rho)=\Delta_{\text {DCJ }}(\rho)+\Delta_{\lambda}(\rho)$
DCJ Operations that can decrease the third upper bound: $\left\{\begin{array}{l}\Delta_{\mathrm{DCJ}}=0 \text { (gaining) and } \Delta_{\lambda}=-2: \Delta_{\mathrm{DCJ}}^{\lambda}=-2 \\ \Delta_{\mathrm{DCJ}}=0 \text { (gaining) and } \Delta_{\lambda}=-1: \Delta_{\mathrm{DCJ}}^{\lambda}=-1 \\ \Delta_{\mathrm{DCJ}}=1 \text { (neutral) and } \Delta_{\lambda}=-2: \Delta_{\mathrm{DCJ}}^{\lambda}=-1\end{array}\right.$

- By definition: any "internal" gaining DCJ operation ρ (applied to a single component) has $\Delta_{\lambda}(\rho) \geq 0$ and, consequentely, $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$
- Any losing DCJ operation ρ has $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$

DCJ operations involving cycles

- Any DCJ operation involving two cycles is losing and has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

Λ	λ
0	0
1	1
2	2
4	3
6	4
8	5
\vdots	\vdots

- A DCJ operation ρ applied to a single cycle C can be:
- Gaining, with $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$ (cannot decrease the DCJ-indel distance)
- Neutral $\left(\Delta_{\text {DCJ }}(\rho)=1\right)$:

If $\Lambda(C) \geq 4$, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\wedge}(\rho) \geq-2$ and $\Delta_{\lambda}(\rho) \geq-1$ \Rightarrow Any neutral DCJ operation applied to a single cycle has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$
(cannot decrease the DCJ-indel distance)

If singular genomes \mathbb{A} and \mathbb{B} are circular, the graph $R G(\mathbb{A}, \mathbb{B})$ has only cycles (and eventually singletons).
In this case:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+\sum_{C \in R G} \lambda(C)
$$

Quiz 2

1 Which of the following statements about the DCJ-indel model are true?
(A) Any gaining DCJ operation applied to a single component has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$.
(\% Any gaining DCJ operation has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$.
χ Any DCJ operation has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$.
X Any DCJ that decreases the number of runs has $\Delta_{\lambda}<0$.

$\Delta_{\lambda}<0$

If the input genomes are circular, we can obtain an optimal sequence of DCJ operations and indels that sort each component of the relational graph separately.

DCJ operations involving paths

- Any DCJ operation involving a path and a cycle is losing and has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

Λ	λ
0	0
1	1
2	2
3	2
4	3
5	3
6	4
7	4
\vdots	\vdots

- A DCJ operation ρ applied to a single path P can be:
- Gaining, with $\Delta_{\text {DCJ }}^{\lambda}(\rho) \geq 0$ (cannot decrease the DCJ-indel distance)
- Neutral $\left(\Delta_{\mathrm{DCJ}}(\rho)=1\right)$:

If $\Lambda(P) \geq 4$, the DCJ ρ can merge at most two pairs of runs: $\Delta_{\wedge}(\rho) \geq-2$ and $\Delta_{\lambda}(\rho) \geq-1$
\Rightarrow Any neutral DCJ operation applied to a single path has $\Delta_{\text {DCJ }}^{\lambda} \geq 0$ (cannot decrease the DCJ-indel distance)

Path recombinations can have $\Delta_{\text {DCJ }}^{\lambda} \leq-1$

An gaining (deducting) path recombination with $\Delta_{\text {DCJ }}^{\lambda}=-2$:

Sources

Resultants

$$
\left(\sum \lambda=2+2=4\right)
$$

$\mathbb{A} \mathbb{A}$	+	$\mathbb{B B}$
2 runs	+	2 runs

$$
\left(\sum \lambda=2+0=2\right)
$$

$\mathbb{A} B$	+
3 runs	+
no run	

$$
\mathbb{A}_{\mathbb{B}_{\mathcal{A}}}+\mathbb{B B}_{\mathcal{A B}}=\left\{\begin{array}{c}
\mathbb{A B}_{\mathcal{B A \mathcal { B }}}+\mathbb{A B}_{\varepsilon} \\
\left.\left(\mathbb{B}_{\mathcal{A B A}}+\mathbb{A B}_{\varepsilon}\right) \quad \text { (all variants have } \Delta_{\mathrm{DCJ}}^{\lambda}=-2\right) \text {) } \quad\left(\mathbb{B}_{\mathcal{A}}+\mathbb{A B}_{\mathcal{B}}\right)
\end{array} \quad\right. \text { (}
$$

Deducting path recombinations
have $\Delta_{\text {DCJ }}^{\lambda} \leq-1$

General DCJ-indel distance formula:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathbb{A B}}\right|}{2}+\sum_{C \in R G} \lambda(C)-\delta
$$

where δ is the value obtained by optimizing deducting path recombinations

Optimizing deducting path recombinations (for computing δ)

Run-type of a path $\left\{\begin{array}{clll}\varepsilon & \equiv \varepsilon & \text { (empty) } \\ \mathcal{A} \mathcal{B} \mathcal{B} \ldots \mathcal{A} & \equiv \mathcal{A} & \text { (odd) } \\ \mathcal{B} \mathcal{A} \mathcal{A} \ldots \mathcal{B} & \equiv \mathcal{B} & \text { (odd) } \\ \mathcal{A} \mathcal{A B} \ldots \mathcal{A B} & \equiv \mathcal{A B} \text { (even) } \\ \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{A} \ldots \mathcal{B} \mathcal{A} & \equiv \mathcal{B A} \text { (even) }\end{array}\right.$

Deducting path recombinations that allow the best reuse of the resultants:

sources	resultants	Δ_{λ}	$\Delta_{\text {DCJ }}$	$\Delta_{\text {DCJ }}^{\lambda}$
${\overline{A \mathbb{A}_{\mathcal{A B}}}+\mathbb{B B}_{\mathcal{A B}}}^{\text {d }}$	$\bullet+$	-2	0	-2
$\overline{\mathbb{A N}_{\mathcal{A B}}+\mathbb{B B}_{\mathcal{A}}}$	$\bullet+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	-1	0	-1
$\underline{\mathbb{A}_{\mathcal{A}_{\mathcal{A B}}}+\mathbb{B B}_{\mathcal{B}}}$	$\bullet+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	-1	0	-1
$\mathbb{A N A}_{\mathcal{A}}+\mathbb{B B}_{\mathbb{B}_{\mathcal{A B}}}$	- $+\mathbb{A}_{\mathbb{B}_{\mathcal{A B}}}$	-1	0	-1
$\mathbb{A A}_{\mathcal{B}}+\mathbb{B B}_{\mathbb{B}_{\mathcal{A B}}}$	$\bullet+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	-1	0	-1
$\mathbb{A N}_{\mathcal{A}}+\mathbb{B P}_{\mathcal{B}}$	+	-1	0	-1
$\mathbb{A d}_{\mathcal{B}}+\mathbb{B B}_{\mathcal{B}}$	- +	-1	0	-1

sources	resultants	Δ_{λ}	$\Delta_{\text {DCJ }}$	$\Delta_{\text {DCJ }}^{\lambda}$
$\overline{\mathbb{A}_{\mathbb{A} \mathcal{B}}+\mathbb{A}_{\mathbb{A}_{\mathcal{A B}}}}$	$\mathbb{A}_{\mathcal{A}}+\mathbb{A}_{\mathbb{A}_{\mathcal{B}}}$	-2	+1	-1
$\mathbb{B B}_{\mathcal{A B}}+\mathbb{B B}_{\mathcal{A B}}$	$\mathbb{B B}_{\mathcal{A}}+\mathbb{B B}_{\mathcal{B}}$	-2	+1	-1
	- $+\mathbb{A N}_{\mathcal{A}}$	-2	+1	-1
$\mathbb{A N}_{\mathcal{A B}}+\mathbb{A B}_{\mathbb{B}_{\mathcal{B A}}}$	- $+\mathbb{A A}_{\mathcal{B}}$	-2	+1	-1
$\overline{\mathbb{B} \mathbb{B}_{\mathcal{A B}}+\mathbb{A}^{(1)} \mathbb{B}_{\mathcal{A B}}}$	- $+\mathbb{B B}_{\mathcal{B}}$	-2	+1	-1
$\mathbb{B B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	- $+\mathbb{B B}_{\mathcal{A}}$	-2	+1	-1
$\overline{\mathbb{A B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{B} \mathcal{A}}}$	$\bullet+$ •	-2	+1	-1

Path recombinations with $\Delta_{\text {DCJ }}^{\lambda}=0$ creating resultants that can be used in deducting recombinations:

sources	resultants	Δ_{λ}	$\Delta_{\text {DCJ }}$	$\Delta_{\text {DCJ }}^{\lambda}$
$\mathbb{A} \mathbb{A}_{\mathcal{A}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$\bullet+\mathbb{A} \mathbb{A}_{\mathcal{A B}}$	-1	+1	0
$\mathbb{A} \mathbb{A}_{\mathcal{B}}+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	$\bullet+\mathbb{A} \mathbb{A}_{\mathcal{A B}}$	-1	+1	0
$\mathbb{\mathbb { B } _ { \mathcal { A } } + \mathbb { A } \mathbb { B } _ { \mathcal { A B } }}$	$\bullet+\mathbb{B} \mathbb{B}_{\mathcal{A B}}$	-1	+1	0
$\mathbb{B} \mathbb{B}_{\mathcal{B}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$\bullet+\mathbb{B} \mathbb{B}_{\mathcal{A B}}$	-1	+1	0

sources	resultants	Δ_{λ}	$\Delta_{\text {DCJ }}$	$\Delta_{\text {DCJ }}^{\lambda}$	
$\mathbb{A} \mathbb{A}_{\mathcal{A}}+\mathbb{B}_{\mathcal{B}}$	\bullet	$+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	0	0	0
$\mathbb{A}_{\mathcal{B}}+\mathbb{B B}_{\mathcal{A}}$	\bullet	$+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	0	0	0
$\mathbb{A B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	$\mathbb{A} \mathbb{A}_{\mathcal{A}}+\mathbb{B} \mathbb{B}_{\mathcal{B}}$	-2	+2	0	
$\mathbb{A} \mathbb{B}_{\mathcal{B A}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$\mathbb{A} \mathbb{A}_{\mathcal{B}}+\mathbb{B} \mathbb{B}_{\mathcal{A}}$	-2	+2	0	

Optimizing deducting path recombinations (for computing δ)

Deducting chain of path recombinations $\left\{\begin{array}{cc}\text { transforming } & 2 \times \mathbb{A}_{\mathcal{A B}}+\mathbb{B B}_{\mathcal{A}}+\mathbb{B B}_{\mathcal{B}} \\ \text { into } & 3 \times \mathbb{A B}_{\varepsilon}+\mathbb{A B}_{\mathcal{B}} \\ \text { with } & \text { overall } \Delta_{\text {DCJ }}^{\lambda}=-3\end{array}\right.$

id		sources			resultant			$\Delta_{\text {DCJ }}^{\lambda}$	scr
\mathcal{P} WM	$\mathbb{A N A}_{\mathcal{A} \mathcal{B}}$	$\mathbb{B P}_{\mathbb{B}_{\mathcal{A B}}}$	-	-	-	-	$2 \times$ •	-2	-1
$\begin{array}{ll} \mathcal{Q} & \mathrm{WW} \bar{M} M \\ & M M \bar{W} \underline{W} \\ \hline \end{array}$	$\begin{gathered} 2 \times \mathbb{A}_{\mathbb{A}_{\mathcal{B}}} \\ \mathbb{A}_{\mathcal{A}}+\mathbb{A}_{\mathbb{A}_{\mathcal{B}}} \end{gathered}$	$\begin{gathered} \mathbb{B B}_{\mathcal{A}}+\mathbb{B} \mathbb{B}_{\mathcal{B}} \\ 2 \times \mathbb{B B}_{\mathcal{A B}} \end{gathered}$	-	-	-	-	$\begin{aligned} & 4 \times \bullet \\ & 4 \times \bullet \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & -3 / 4 \\ & -3 / 4 \end{aligned}$
\mathcal{T} WZ \bar{M} WWM WNM WWM MNW MMW MZW MMW	$\begin{gathered} \mathbb{A}_{\mathbb{A}_{\mathcal{A B}}} \\ 2 \times \mathbb{A}_{\mathcal{A B}} \\ \mathbb{A}_{\mathbb{A}_{\mathcal{A B}}} \\ \times \mathbb{A}_{\mathcal{A B}} \\ \mathbb{A}_{\mathcal{A}_{\mathcal{A}}} \\ \mathbb{A}_{\mathcal{A}} \\ \mathbb{A}_{\mathcal{B}} \\ \mathbb{A}_{\mathcal{B}} \\ \hline \end{gathered}$	$\mathbb{B}_{\mathbb{B}_{\mathcal{A}}}$ $\mathbb{B}_{\mathcal{B}_{\mathcal{A}}}$ $\mathbb{B B}_{\mathcal{B}}$ $\mathbb{B B}_{\mathcal{B}}$ $2 \times \mathbb{B}_{\mathcal{A B}}$ $\mathbb{B}_{\mathcal{A B}}$ $2 \times \mathbb{B}_{\mathcal{A B}}$ $\mathbb{B}_{\mathcal{A B}}$	$\mathbb{A B}_{\mathcal{A B}}$ $\mathbb{A} \mathbb{B}_{\mathcal{B A}}$ $\mathbb{A B}_{\mathcal{B} \mathcal{A}}$ $\mathbb{A} \mathbb{B}_{\mathcal{A B}}$	$\mathbb{A}_{\mathcal{B}}$ $\overline{\mathbb{A A}_{\mathcal{A}}}$ \qquad - \qquad		- - \square - \square	$\begin{aligned} & 3 \times \bullet \\ & 2 \times \bullet \\ & 3 \times \bullet \\ & 2 \times \bullet \\ & 3 \times \bullet \\ & 2 \times \bullet \\ & 3 \times \bullet \\ & 2 \times \bullet \\ & \hline \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-2 / 3 \\ & -2 / 3 \\ & -2 / 3 \\ & -2 / 3 \\ & -2 / 3 \\ & -2 / 3 \\ & -2 / 3 \\ & -2 / 3 \\ & \hline \end{aligned}$
\mathcal{S} ZN $\overline{W M}$ $\underline{W M}$ $\overline{W M}$ WM WZ WN WW M MW \underline{W} MZ MN MM	$\mathbb{A A}_{\mathcal{A}}$ $\mathbb{A A}_{\mathcal{B}}$ $\mathbb{A A}_{\mathcal{A B}}$ $\mathbb{A A}_{\mathcal{A B}}$ $\mathbb{A A}_{\mathcal{A B}}$ $\mathbb{A A}_{\mathcal{A B}}$ $2 \times \mathbb{A}_{\mathbb{A}_{\mathcal{A B}}}$ $\mathbb{A A}_{\mathcal{A}}$ $\mathbb{A A}_{\mathcal{B}}$ \qquad \qquad \qquad	$\overline{\mathbb{B}_{\mathcal{A}}}$ $\mathbb{B B}_{\mathcal{B}}$ $\mathbb{B}_{\mathbb{B}_{\mathcal{A}}}$ $\mathbb{B B}_{\mathcal{B}}$ - - $\mathbb{B}_{\mathcal{A B}}$ $\mathbb{B B}_{\mathcal{A B}}$ $\mathbb{B B}_{\mathcal{A B}}$ $\mathbb{B B}_{\mathcal{A B}}$ $2 \times \mathbb{B B}_{\mathcal{A B}}$	$\begin{gathered} \mathbb{A B}_{\mathcal{A B}}+\mathbb{A} \mathbb{B}_{\mathcal{B A}} \\ - \\ - \\ - \\ \mathbb{A B}_{\mathcal{A B}} \\ \mathbb{A B}_{\mathcal{B A}} \\ - \\ - \\ \mathbb{A B}_{\mathcal{A B}} \\ \mathbb{A B}_{\mathcal{B A}} \\ - \\ \hline \end{gathered}$	\qquad \qquad \qquad $\mathbb{A A}_{\mathcal{A}}$ $\mathbb{A A}_{\mathcal{B}}$ $\mathbb{A}_{\mathcal{A}}+\mathbb{A}_{\mathcal{B}}$ \qquad \qquad \qquad \qquad \qquad	$=-$ \square \square \square \square \square $\mathbb{B}_{\mathcal{B}}$ $\mathbb{B B}_{\mathcal{A}}$ $\mathbb{B B}_{\mathcal{A}}+\mathbb{B B}_{\mathcal{B}}$	$\begin{aligned} & \bar{Z} \\ & - \\ & \mathbb{A B}_{\mathcal{B A}} \\ & \mathbb{A B}_{\mathcal{A B}} \\ & - \\ & - \\ & \mathbb{A B}_{\mathcal{A B}} \\ & \mathbb{A B}_{\mathcal{B A}} \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 2 \times \bullet \\ & 2 \times \bullet \\ & 2 \times \bullet \end{aligned}$ \square	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	$\begin{aligned} & \hline-1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & -1 / 2 \\ & \hline \end{aligned}$

id	sources			resultants				$\Delta_{\text {DCJ }}^{\lambda}$	scr
\mathcal{M} ZZW̄ \bar{M} NNW̄M	$\mathbb{A N}_{\mathcal{B}}$	$\mathbb{B B}_{\mathcal{A}}$	$2 \times \mathbb{A B}_{\mathcal{A B}}$	-	-	-	$4 \times$ -	-2	-1/2
	$\mathbb{A N}_{\mathcal{A}}$	$\mathbb{B B}_{\mathcal{B}}$	$2 \times \mathbb{A B}_{\mathcal{B} \mathcal{A}}$	-	-	-	$4 \times$ -	-2	-1/2
$\mathcal{N} \quad \mathrm{ZW} \overline{\mathrm{M}}$	$\mathbb{A N}_{\mathcal{B}}$	$\mathbb{B B}_{\mathcal{A}}$	$\mathbb{A B}_{\mathcal{A B}}$			$\mathbb{A} \mathbb{B}_{\mathcal{B A}}$	$2 \times$ •	-1	-1/3
ZZW	$\mathbb{A N}_{\mathcal{B}}$	-	$2 \times \mathbb{A B}_{\mathcal{A B}}$	$\mathbb{A A}_{\mathcal{A}}$	-	-	$2 \times$ •	-1	-1/3
ZZM	-	$\mathbb{B B}_{\mathcal{A}}$	$2 \times \mathbb{A B}_{\mathcal{A B}}$	-	$\mathbb{B B}_{\mathcal{B}}$	-	$2 \times$ •	-1	-1/3
Nप̄M	$\mathbb{A N A}_{\mathcal{A}}$	$\mathbb{B B}_{\mathcal{B}}$	$\mathbb{A B}_{\mathbb{B}_{\mathcal{B}}}$	-	-	$\mathbb{A B}_{\mathcal{A B}}$	$2 \times$	-1	-1/3
NNW	$\mathbb{A N}_{\mathcal{A}}$	-	$2 \times \mathbb{A B}_{\mathcal{B A}}$	$\mathbb{A N}_{\mathcal{B}}$		-	$2 \times$ -	-1	$-1 / 3$
NNM	-	$\mathbb{B B}_{\mathcal{B}}$	$2 \times \mathbb{A B}_{\mathcal{B A}}$	-	$\mathbb{B B}_{\mathcal{A}}$	-	$2 \times$ •	-1	-1/3

Sources:

$\mathrm{W}: \mathbb{A}_{\mathcal{A} \mathcal{B}}$
$\overline{\mathrm{W}}: \mathbb{A}_{\mathcal{A}}$
$\underline{\mathrm{W}}: \mathbb{A}_{\mathbb{A}_{\mathcal{B}}}$
$\mathrm{M}: \mathbb{B}_{\mathbb{B}_{\mathcal{A B}}}$
$\overline{\mathrm{M}}: \mathbb{B B}_{\mathcal{A}}$
$\underline{M}: \mathbb{B B}_{\mathcal{B}}$
$\mathrm{Z}: \mathbb{A}_{\mathbb{B}_{\mathcal{A B}}}$
$\mathrm{N}: \mathbb{A B}_{\mathcal{B A}}$

DCJ-indel distance formula:

$$
\mathrm{d}_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathbb{A B}}\right|}{2}+\sum_{C \in R G} \lambda(C)-\delta,
$$

where δ is the value obtained by optimizing deducting path recombinations:

$$
\delta=2 \mathcal{P}+3 \mathcal{Q}+2 \mathcal{T}+\mathcal{S}+2 \mathcal{M}+\mathcal{N}
$$

the values $\mathcal{P}, \mathcal{Q}, \mathcal{T}, \mathcal{S}, \mathcal{M}$ and \mathcal{N} refer to the corresponding number of chains of deducting path recombinations of each type and can be obtained by a greedy approach (simple top-down screening of the table)

Singular DCJ-indel model - summary

DCJ-indel distance: $\quad d_{\mathrm{DCJ}}^{\mathrm{D}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|-\frac{\left|\mathcal{P}_{\mathrm{AB}}\right|}{2}+\sum_{C \in R G} \lambda(C)-\delta, \quad \begin{aligned} & \text { where } \delta \text { is the value obtained by opti- } \\ & \text { mizing deducting path recombinations }\end{aligned}$
\mathbb{A} and \mathbb{B} are circular: $\quad d_{\mathrm{DCJ}}^{\mathrm{ID}}(\mathbb{A}, \mathbb{B})=n-|\mathcal{C}|+\sum_{C \in R G} \lambda(C)$

Sorting genome \mathbb{A} into genome \mathbb{B} (with a minimum number of DCJs):

1. Apply all $\mathcal{P}, \mathcal{Q}, \mathcal{T}, \mathcal{S}, \mathcal{M}$ and \mathcal{N} chains of deducting path recombinations, in this order.
2. For each component $C \in R G(\mathbb{A}, \mathbb{B})$:
2.1 Split C with gaining $D C J s$ (that have $\boldsymbol{\Delta}_{\boldsymbol{\lambda}}=\mathbf{0}$) until only components with at most two runs are obtained and the total number of runs in all new components is equal to $\lambda(C)$.
2.2 Accumulate all runs in the smaller components derived from C with gaining DCJ operations (that have $\Delta_{\lambda}=0$).
2.3 Apply gaining DCJ operations (that have $\boldsymbol{\Delta}_{\boldsymbol{\lambda}}=\mathbf{0}$) in the smaller components derived from C until only DCJ-sorted components exist.
2.4 Delete all runs in the DCJ-sorted components derived from C.

Computing the distance and sorting can be done in linear time.

Singular DCJ-indel sorting: trade-off between DCJ and indels

The presented sorting algorithm maximizes gaining DCJs with $\Delta_{\lambda}=0$ (minimizing indels).

However, these gaining DCJs can often be replaced by $\left\{\begin{array}{l}\text { neutral DCJs with } \Delta_{\lambda}=-1 \\ \text { losing DCJs with } \Delta_{\lambda}=-2\end{array}\right.$
\Downarrow

There is a big range of possibilities between the presented sorting algorithm and a sorting algorithm that minimizes gaining DCJs with $\Delta_{\lambda}=0$ (maximizing indels)

Restricted DCJ-indel-distance (singular linear genomes)
general DCJ-indel sorting

restricted DCJ-indel sorting

$$
\xrightarrow{a} \mid \xrightarrow[\downarrow]{b} \underset{\text { inversion }}{c} \xrightarrow{c} \xrightarrow{\text { c. }} \xrightarrow{\text { g }} \xrightarrow{e}
$$

$$
\xrightarrow{a} \xrightarrow{b} \xrightarrow{c} \mid \stackrel{\leftrightarrow}{u} \xrightarrow[\text { exision }]{g} \xrightarrow{f} \xrightarrow{e} \stackrel{\text { l }}{ }_{v} \mid \xrightarrow{d}
$$

$\xrightarrow{a} \xrightarrow{b_{l}} \xrightarrow{y} \xrightarrow{c} \xrightarrow{d} \xrightarrow{e} \xrightarrow{g}$

In any sorting sequence, it is always possible to $\left\{\begin{array}{l}\text { move deletions down } \\ \text { move insertions up }\end{array}\right.$
S : general sequence of DCJ and indel operations sorting linear \mathbb{A} into linear \mathbb{B} $S \quad \rightsquigarrow \quad S^{\prime}=S_{\mathrm{INS}} \oplus S_{\mathrm{DCJ}} \oplus S_{\mathrm{DEL}} \quad \rightsquigarrow \quad R=S_{\mathrm{INS}} \oplus R_{\mathrm{DCJ}} \oplus S_{\mathrm{DEL}} \quad$ and $\quad|S|=\left|S^{\prime}\right|=|R|$

Quiz 3

1 Which of the following statements about the DCJ-indel model are true?
2 A sequence of DCJ operations and indels that sort each component of the relational graph separately is always optimal.

B An optimal sequence of DCJ operations and indels sorting one singular genome into another can have gaining, neutral and losing DCJs.

X The DCJ-indel distance can be distinct from the restricted DCJ-indel distance.

2 The best known algorithm for the restricted DCJ-indel sorting runs in...

A $O(n)$ time.
B $O(n \log n)$ time.
C $O\left(n^{2}\right)$ time.

References

Double Cut and Join with Insertions and Deletions
(Marília D.V. Braga, Eyla Willing and Jens Stoye)
JCB, Vol. 18, No. 9 (2011)

Sorting Linear Genomes with Rearrangements and Indels
(Marília D. V. Braga and Jens Stoye)
TCBB, vol 12, issue 3, pp. 500-506 (2015)

