
Topics of today:

More about framed conserved intervals and inversion distance

Relations
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>:

inversion ⇥ DCJ distance

DCJ ⇥ SCJ distance

inversion ⇥ SCJ distance

Singular DCJ-indel distance and sorting:

1. Indels: insertions and deletions

2. Relational graph of singular genomes

3. Runs and indel-potential

4. Deducting path recombinations

5. Restricted DCJ-indel model

:



Components are framed conserved intervals

Assuming that B = (1 2 3 ... 16), let us identify its framed conserved intervals with respect to

A = (1 4 2 3 5 7 6 8 16 14 15 13 11 12 10 9)

For given i � 1 and j � 1 such that i+j  n+1:

Conserved interval: interval of A composed of values i , i+1, ... , i+j (assuming n+1 ⌘ 1)

Framed conserved interval

(
direct: first element is i and last element is i+j ; or

reverse: first element is i+j and last element is i

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10], [16..10]

Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10]
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Identifying good and bad framed conserved intervals
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Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10]
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Component tree based on framed conserved intervals
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Component: framed conserved interval that is not a union of framed conserved intervals

Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10]
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Any rotation of the diagram gives the same component tree

Components: Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10]
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Any rotation of the diagram gives the same component tree

Components: Direct: [1..5]; [2..3]; [5..8]; [8..17] Reverse: [16..13]; [13..10]
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Any rotation of the diagram gives the same component tree
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Inversion ⇥ DCJ distance

For unichromosomal circular canonical genomes
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>>:

ddcj(A,B) = n � |C|

dinv(A,B) = ddcj(A,B) = n � |C|+ ⌧(⌥�)

and ⌧(⌥�) = h + f

A = ( 1 7̄ 4 5 3 6̄ 2̄ )

g1h�� g7h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g2t�� g1t

B = ( 1 2 3 4 5 6 7 )

n = |G?| = 7

|C| = 4

h = 0 and f = 0

dinv(A,B) = ddcj(A,B) = n � |C| = 7� 4 = 3
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Inversion ⇥ DCJ distance

A = ( 1 7 3 5̄ 4̄ 6 2 )

g1h�� g7h g7t�� g4t g4h�� g5t g5h�� g3t g3h�� g6h g6t�� g2h g2t�� g1t

B = ( 1 2 3 4 5 6 7 )

n = |G?| = 7

|C| = 4

ddcj(A,B) = n � |C| = 7� 4 = 3

h = 1 and f = 0

dinv(A,B) = n � |C|+ h = 7� 4 + 1 = 4
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SCJ ⇥ DCJ distance

A DCJ can correspond to

8
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>>>>>>>:

a single SCJ: operation creating or “destroying” a single adjacency

(fusion / fission / circularization / linearization)

two SCJs: operations rearranging one adjacency and one telomere

fours SCJs: operations rearranging two adjacencies

ddcj(Af ,Bf )  dscj(Af ,Bf )  4 ddcj(Af ,Bf )



SCJ ⇥ inversion distance

An inversion can correspond to

8
><

>:

two SCJs: inversion at the end of a linear chromosome

fours SCJs: inversion in the “middle” of a chromosome

2 dinv(Af ,Bf )  dscj(Af ,Bf )  4 dinv(Af ,Bf )



Quiz 1 - quick review

1 Which of the following statements about the inversion model are true?

A The inversion distance depends only on the number of cycles in the breakpoint diagram.

B A good component can always be sorted with (safe) split inversions.

C Every bad component in the diagram is a hurdle.

D If there is a bad component there is a hurdle in the diagram.

E If there are exactly two bad components there are two hurdles in the diagram.

F If there are exactly three bad components there are three hurdles in the diagram.

G A diagram needs at least six bad components to be a fortress.

H A diagram with an odd number of bad components can be a fortress.
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DCJ and indels

I DCJ: structural rearrangements

# translocation (DCJ)

# fusion (DCJ)

# inversion (DCJ)

I Modifying the content: insertions and deletions (indels)

# deletion



Singular DCJ-indel model

Recall that G? = G(A) \ G(B)

Let

(
A = G(A) \ G? (set of genes exclusive to genome A)
B = G(B) \ G? (set of genes exclusive to genome B)

Restrictions for indel operations:

I At most one chromosome can be deleted or inserted at once

I Only genes of set A can be deleted

I Only genes of set B can be inserted



Singular DCJ-indel model

Given two singular genomes A and B,...

Singular DCJ-indel Distance Problem: Compute the minimum number of DCJ and indel operations
required to transform A into B.

Denote by diddcj(A,B) the DCJ-indel distance of A and B.

Singular DCJ-indel Sorting Problem: Find a sequence of diddcj(A,B) DCJ and indel operations
that transform A into B.

First upper bound:

diddcj(A,B)  ddcj(Af
c ,Bf

c ) + |A|+ |B|

where

(
Af
c is the genome obtained from A by simply removing the genes of A

Bf
c is the genome obtained from B by simply removing the genes of B_FF-BBBzBzoo-amh•



Relational graph of singular genomes

Given two singular genomes A and B, their relational graph RG(A,B) = (V ,E) is described as follows:

1. V = V (⇠(A)) [ V (⇠(B)) : there is a vertex for each extremity of each gene in A

and a vertex for each extremity of each gene in B

Each vertex v has a label `(v), that corresponds to the extremity it represents.

2. E = E�(A) [ E�(B) [ E⇠ [ Eid(A) [ Eid(B), where:

I Adjacency edges:

(
E�(A) = {uv : u, v 2 V (⇠(A)) and `(u)`(v) 2 �(A)}

E�(B) = {uv : u, v 2 V (⇠(B)) and `(u)`(v) 2 �(B)}

I Extremity edges: E⇠ = {uv : u 2 V (⇠(A)) and v 2 V (⇠(B)) and `(u) = `(v)}

I Indel edges:

(
Eid(A) = {uv : `(u) = gt and `(v) = gh and g 2 A}

Eid(B) = {uv : `(u) = gt and `(v) = gh and g 2 B}



Graph model for the DCJ-indel distance of paralog-free genomes

10/39

Relational graph n = # common families (n = 7)

A

B

1 2 3 4 5
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Graph model for the DCJ-indel distance of paralog-free genomes

10/39

Relational graph n = # common families (n = 7)

A

B
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Graph model for the DCJ-indel distance of paralog-free genomes

10/39

Relational graph n = # common families (n = 7)

A

dcj

6=B : n > |C|+ |Pab|
2

A

B

8
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>>>:

one vertex per gene extremity

adjacency edges

extremity edges : n pairs of siblings

indel edges

each vertex has degree 1 or 2:

connected components:

cycles, AB-paths, AA- and BB-paths
S [ C Pab Paa Pbb

0-cycles (�2)-cycles

(
indel-enclosing

indel-free

|Pab| is even

length of a component: # of extremity edges
(
cycles, AA- and BB-paths have even length

AB-paths have odd length

A
dcj
=B : 2-cycles, 1-paths and

(
0-cycles

0-paths

2n=2|C|+|Pab| ) n = |C|+ |Pab|
2

MAHABHARAT

Amar



Graph model for the DCJ-indel distance of paralog-free genomes

10/39

Relational graph n = # common families (n = 7)

A

dcj

6=B : n > |C|+ |Pab|
2

A

B
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>>>:

one vertex per gene extremity

adjacency edges

extremity edges : n pairs of siblings

indel edges

each vertex has degree 1 or 2:

connected components:

cycles, AB-paths, AA- and BB-paths
S [ C Pab Paa Pbb

0-cycles (�2)-cycles

(
indel-enclosing

indel-free

|Pab| is even

length of a component: # of extremity edges
(
cycles, AA- and BB-paths have even length

AB-paths have odd length

A
dcj
=B : 2-cycles, 1-paths and

(
0-cycles

0-paths

2n=2|C|+|Pab| ) n = |C|+ |Pab|
2

MAHABHARAT

BABA



Graph model for the DCJ-indel distance of paralog-free genomes

10/39

Relational graph n = # common families (n = 7)

A

dcj

6=B : n > |C|+ |Pab|
2

A

B
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>>>:

one vertex per gene extremity

adjacency edges

extremity edges : n pairs of siblings

indel edges

each vertex has degree 1 or 2:

connected components:

cycles, AB-paths, AA- and BB-paths
S [ C Pab Paa Pbb

0-cycles (�2)-cycles

(
indel-enclosing

indel-free

|Pab| is even

length of a component: # of extremity edges
(
cycles, AA- and BB-paths have even length

AB-paths have odd length

A
dcj
=B : 2-cycles, 1-paths and

(
0-cycles

0-paths

2n=2|C|+|Pab| ) n = |C|+ |Pab|
2
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Graph model for the DCJ-indel distance of paralog-free genomes

10/39

Relational graph n = # common families (n = 7)

A

B
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>>>:

one vertex per gene extremity

adjacency edges

extremity edges : n pairs of siblings

indel edges

each vertex has degree 1 or 2:

connected components:

cycles, AB-paths, AA- and BB-paths
S [ C Pab Paa Pbb

0-cycles (�2)-cycles

(
indel-enclosing

indel-free

|Pab| is even

length of a component: # of extremity edges
(
cycles, AA- and BB-paths have even length

AB-paths have odd length

0 - AA- path⑦ - cycle
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adf.io?-&O0---...eW I

t

MARANAO

i \

' ' " '

ABB



Graph model for the DCJ-indel distance of paralog-free genomes

10/39

Relational graph n = # common families (n = 7) A

dcj

6=B : n > |C|+ |Pab|
2

A

B
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>>>:

one vertex per gene extremity

adjacency edges

extremity edges : n pairs of siblings

indel edges

each vertex has degree 1 or 2:

connected components:

cycles, AB-paths, AA- and BB-paths
S [ C Pab Paa Pbb

0-cycles (�2)-cycles

(
indel-enclosing

indel-free

|Pab| is even

length of a component: # of extremity edges
(
cycles, AA- and BB-paths have even length

AB-paths have odd length

A
dcj
=B : 2-cycles, 1-paths and

(
0-cycles

0-paths

2n=2|C|+|Pab| ) n = |C|+ |Pab|
2
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Relational graph of singular genomes

components can be indel-inclosing or indel-free

Every vertex has degree one or two:
RG(A,B) is a collection of paths and cycles

cycle with k edges in E⇠: k-cycle or ck
path with k edges n E⇠: k-path or pk

if k = 0 the component is a singleton

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

C = {ck : k�2} : set of cycles (k is even)

S = {ck : k=0} : set of circular singletons

PAA = {pk : starts and ends in A} :

set of AA-paths (k is even)

PBB = {pk : starts and ends in B} :

set of BB-paths (k is even)

PAB = {pk : starts in A and ends in B} :

set of AB-paths (k is odd)

|PAB| is even (E⇠ has 2n edges)

|PAA|+ |PBB|+ |PAB| = (A) + (B)

If Af
c = Bf

c ,
RG(A,B) has only 2-cycles and 1-paths:

2n = 2|C|+ |PAB| ) n = |C|+
|PAB|
2

Otherwise, if Af
c 6= Bf

c :

n > |C|+
|PAB|
2



Singular DCJ-indel model

Given two singular genomes A and B,...

Singular DCJ-indel Distance Problem: Compute the minimum number of DCJ and indel operations
required to transform A into B.

Denote by diddcj(A,B) the DCJ-indel distance of A and B.

Singular DCJ-indel Sorting Problem: Find a sequence of diddcj(A,B) DCJ and indel operations
that transform A into B.

First upper bound:

diddcj(A,B)  ddcj(Af
c ,Bf

c ) + |A|+ |B|

where

(
Af
c is the genome obtained from A by simply removing the genes of A

Bf
c is the genome obtained from B by simply removing the genes of B

n¥gggggqBBAoB@g@



Runs of indel-edges

Types of DCJ operation

8
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>:

�dcj = 0 (gaining): creates one cycle or two AB-paths
�dcj = 1 (neutral): does not change the number of cycles nor of AB-paths
�dcj = 2 (losing): destroys one cycle or two AB-paths

Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once

) Second upper bound:

diddcj(A,B)  n � |C|�
|PAB|
2

+
X

C2RG

⇤(C)

DCJ operations can modify the number of runs:

A DCJ operation can have

8
>>>>><

>>>>>:

�⇤ = �2 (merges two pairs of runs)

�⇤ = �1 (merges one pair of runs)

�⇤ = 0 (preserves the runs)

�⇤ = 1 (splits one run)

�⇤ = 2 (splits two runs)

AMBfffoAtM
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Runs of indel-paths / transitions between runs

16/39

One indel-enclosing cycle:

⇤⇥ ��~
indel-pathz }| {⇤⇥ �� ⇤⇥ ��

indel-pathz }| {⇤⇥ ��indel-pathz }| {

⇤⇥ ��{
q q q q q r q q r q q q q r q q q q q q r q q q
q q r q q q q q q r r q q q q r q q q q ⇤ = 4

indel edges , runs

Each run can be inserted/deleted at once

8
>><

>>:

Each indel-path can be inserted/deleted at once

Each run can be accumulated into one indel-path

with optimal DCJs

⇤(C) is the number of runs in cycle C

.MAMBBBbA%÷
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Runs of indel-edges

One indel-enclosing cycle:

⇤⇥ ��~
⇤⇥ �� ⇤⇥ ��

⇤⇥ �� ⇤⇥ ��{
q q q q q r r q q q q r q q q q r q q q
q q r q q q q q q r r q q q q r q q q q ⇤ = 4

indel edges , runs

⇤(C) is the number of runs in component C

⇤
0 cycles or paths

1 cycles, paths and singletons

2 cycles, paths

3 paths

4 cycles, paths

5 paths

6 cycles, paths
.
.
.

.

.

.

Each run can be inserted/deleted at once

) Second upper bound:

diddcj(A,B)  n � |C|�
|PAB|
2

+
X

C2RG

⇤(C)

$4s



Runs of indel-edges

Types of DCJ operation

8
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>:

�dcj = 0 (gaining): creates one cycle or two AB-paths
�dcj = 1 (neutral): does not change the number of cycles nor of AB-paths
�dcj = 2 (losing): destroys one cycle or two AB-paths

Each run can be accumulated with gaining DCJ operations and then inserted/deleted at once

) Second upper bound:

diddcj(A,B)  n � |C|�
|PAB|
2

+
X

C2RG

⇤(C)

DCJ operations can modify the number of runs:

A DCJ operation can have

8
>>>>><

>>>>>:

�⇤ = �2 (merges two pairs of runs)

�⇤ = �1 (merges one pair of runs)

�⇤ = 0 (preserves the runs)

�⇤ = 1 (splits one run)

�⇤ = 2 (splits two runs)

mas

=



Runs can be merged and accumulated in both genomes

Singular genomes

8
>>>>>>>>><

>>>>>>>>>:

A = [ a1 2̄ 1 ā2 3̄ ]

B = [ b1 1 b2 2 3 ]

A sequence of 3 operations
sorting A into I = [ 1̄ 2 3 ]

A : -� -� �a1 2̄ 1 ā2 3̄

# inversion

� -� � �1̄ 2 ā1 ā2 3̄

deletion #
� -�1̄ 2 3̄

inversion #
I : � - -1̄ 2 3

B : - - - - -b1 1 b2 2 3
" inversion

-� � - -b1 b̄2 1̄ 2 3
" deletion

A sequence of 2 operations
sorting B into I = [ 1̄ 2 3 ]

)

A sequence of 5 operations
sorting A into B

A : -� -� �a1 2̄ 1 ā2 3̄

# inversion

� -� � �1̄ 2 ā1 ā2 3̄

deletion #
� -�1̄ 2 3̄

inversion #
� - -1̄ 2 3
# insertion

-� � - -b1 b̄2 1̄ 2 3
# inversion

B : - - - - -b1 1 b2 2 3



Merging runs with “internal” gaining DCJ operations

An gaining DCJ operation applied to two adjacency-edges belonging to the same indel-enclosing component
can decrease the number of runs:

⇤⇥ ��~
⇤⇥ �� ⇤⇥ ��

\⇤⇥ ��/ ⇤⇥ ��y
q q q q q r r q q q q r q q q q r q q q
q q r q q q q q q r r q q q q r q q q q  ⇤⇥ ��~

⇤⇥ �� ⇤⇥ ��
| ⇤⇥ ��⇤⇥ ��~

q q q q q r r q q q q qp p q q
q q r q q q q q q r r q qp p r q q q q +

|⇤⇥ ��q q q q q q
q q

⇤ = 4  2 + 1 = 3 (�⇤=�1)

DCJ-sorted (or short) components: 2-cycles and 1-paths (and 0-cycles and 0-paths)

Long components: k-cycles (with k � 4) and k-paths (with k � 2)

DCJ-sorting a long component C : transforming C into a set of DCJ-sorted components

Indel-potential �(C) of a component C :

minimum number of runs that we can obtain by DCJ-sorting C with gaining DCJ operations



Indel-potential � of a cycle C
⇤(C) = 0, 1, 2, 4, 6, 8, ...

We will show that �(C) depends only on the value ⇤(C): denote �(C) = �(⇤(C))

⇤(C) = 1 ) �(1) = 1

⇤(C) = 2 ) �(2) = 2

⇤(C) � 4 : ⇤(C) = o1 + o2 such that o1 and o2 are odd, and assume o1 � o2

two resulting cycles:

(
one with o1 � 1 runs

one with either 1 run (if o2 = 1) or with o2 � 1 runs (if o2 � 3)

) �(4) = �(2) + �(1) = 2 + 1 = 3

) �(6) =

(
�(2) + �(2) = 2 + 2 = 4

�(4) + �(1) = 3 + 1 = 4

) �(8) =

(
�(4) + �(2) = 3 + 2 = 5

�(6) + �(1) = 4 + 1 = 5

⇤ �
0 0
1 1
2 2
4 3
6 4
8 5
.
.
.

.

.

.

Induction:

(
hypothesis: �(⇤(C)) = ⇤(C)

2 + 1

base cases: �(1) = 1 and �(2) = 2

Induction step: in general, for ⇤(C) � 4, we can state �(⇤(C)) = �(⇤(C)� 2) + �(1)

=

✓
⇤(C)� 2

2
+ 1

◆
+ 1

=
⇤(C)

2
+ 1

:* ¥:



Indel-potential � of a path P

⇤(P) = 0, 1, 2, 3, 4, 5, 6, 7, 8, ...

If ⇤(P) = 1 is odd ) �(P) = 1

If ⇤(P) � 2 is even ) �(P) = ⇤(P)
2 + 1

If ⇤(P) � 3 is odd ) �(P) = �(⇤(P)� 1)

In general, for ⇤(P) � 1, we can state �(⇤(P)) =

⇠
⇤(P) + 1

2

⇡

⇤ �
0 0
1 1
2 2
3 2
4 3
5 3
6 4
7 4
.
.
.

.

.

.



Indel-potential � of a component C

If C is a singleton: �(C) = 1

If C is a cycle:

�(C) =

8
><

>:

0 if ⇤(C) = 0 (C is indel-free)

1 if ⇤(C) = 1
⇤(C)
2 + 1 if ⇤(C) � 2

If C is a path:

�(C) =

(
0 if ⇤(C) = 0 (C is indel-free)l

⇤(C)+1
2

m
if ⇤(C) � 1

In general, for any component C :

�(C) =

(
0 if ⇤(C) = 0 (C is indel-free)l

⇤(C)+1
2

m
if ⇤(C) � 1

⇤ �
0 0 paths and cycles
1 1 paths, cycles and singletons
2 2 paths and cycles
3 2 paths
4 3 paths and cycles
5 3 paths
6 4 paths and cycles
7 4 paths
.
.
.

.

.

.

Third upper bound: diddcj(A,B)  n � |C|�
|PAB|
2

+
X

C2RG

�(C)

(gaining DCJ operations + indels sorting components separately)



Types of DCJ operation

DCJ-types of DCJ operation

8
><

>:

�dcj = 0 (gaining): creates one cycle or two AB-paths
�dcj = 1 (neutral): does not change the number of cycles nor of AB-paths
�dcj = 2 (losing): destroys one cycle or two AB-paths

Indel-types of DCJ operation

8
>>>>><

>>>>>:

�� = �2 : decreases the overall indel-potential by two

�� = �1 : decreases the overall indel-potential by one

�� = 0 : does not change the overall indel-potential

�� = 1 : increases the overall indel-potential by one

�� = 2 : increases the overall indel-potential by two

E↵ect of a DCJ operation ⇢ on the third upper bound: ��
dcj(⇢) = �dcj(⇢) +��(⇢)

DCJ Operations that can decrease the third upper bound:

8
><

>:

�dcj = 0 (gaining) and �� = �2 : ��
dcj = �2

�dcj = 0 (gaining) and �� = �1 : ��
dcj = �1

�dcj = 1 (neutral) and �� = �2 : ��
dcj = �1

I By definition: any “internal” gaining DCJ operation ⇢ (applied to a single component)
has ��(⇢) � 0 and, consequentely, ��

dcj(⇢) � 0

I Any losing DCJ operation ⇢ has ��
dcj(⇢) � 0

=



DCJ operations involving cycles

I Any DCJ operation involving two cycles is losing and has ��
dcj � 0

(cannot decrease the DCJ-indel distance)

⇤ �
0 0
1 1
2 2
4 3
6 4
8 5
.
.
.

.

.

.

I A DCJ operation ⇢ applied to a single cycle C can be:

I Gaining, with ��
dcj(⇢) � 0 (cannot decrease the DCJ-indel distance)

I Neutral (�dcj(⇢) = 1):

If ⇤(C) � 4, the DCJ ⇢ can merge at most two pairs of runs: �⇤(⇢) � �2 and ��(⇢) � �1

) Any neutral DCJ operation applied to a single cycle has ��
dcj � 0

(cannot decrease the DCJ-indel distance)

If singular genomes A and B are circular, the graph RG(A,B) has only cycles (and eventually singletons).

In this case:

diddcj(A,B) = n � |C|+
X

C2RG

�(C)



Quiz 2

1 Which of the following statements about the DCJ-indel model are true?

A Any gaining DCJ operation applied to a single component has ��
dcj � 0.

B Any gaining DCJ operation has ��
dcj � 0.

C Any DCJ operation has ��
dcj � 0.

D Any DCJ that decreases the number of runs has �� < 0.

E If the input genomes are circular, we can obtain an optimal sequence of DCJ operations
and indels that sort each component of the relational graph separately.

0

¥
Dna ①

8



DCJ operations involving paths

I Any DCJ operation involving a path and a cycle is losing and has ��
dcj � 0

(cannot decrease the DCJ-indel distance)

⇤ �
0 0
1 1
2 2
3 2
4 3
5 3
6 4
7 4
.
.
.

.

.

.

I A DCJ operation ⇢ applied to a single path P can be:

I Gaining, with ��
dcj(⇢) � 0 (cannot decrease the DCJ-indel distance)

I Neutral (�dcj(⇢) = 1):

If ⇤(P) � 4, the DCJ ⇢ can merge at most two pairs of runs: �⇤(⇢) � �2 and ��(⇢) � �1

) Any neutral DCJ operation applied to a single path has ��
dcj � 0

(cannot decrease the DCJ-indel distance)



Path recombinations can have �
�
dcj  �1

An gaining (deducting) path recombination with ��
dcj = �2:

Sources Resultants

(
P

� = 2 + 2 = 4) (
P

� = 2 + 0 = 2)

AA + BB AB + AB
2 runs + 2 runs 3 runs + no run

q q q qe2

/ q q q qe3

\

q q q q
e1

q q q q
e4

!
gaining
DCJ

q q q q dqe2 q q qe3

q q q q
e1

q q q
e4

qd
q

AABA + BBAB =

8
><

>:

ABBAB + AB"

(ABABA + AB")

(ABA + ABB)

(all variants have ��
dcj=�2)

Deducting path recombinations

have ��
dcj  �1

General DCJ-indel distance formula:

diddcj(A,B) = n � |C|�
|PAB|
2

+
X

C2RG

�(C)� �,

where � is the value obtained by optimizing deducting path
recombinations



Optimizing deducting path recombinations (for computing �)

Run-type of a path

8
>>>>><

>>>>>:

" ⌘ " (empty)

ABAB ...A ⌘ A (odd)

BABA ...B ⌘ B (odd)

ABAB ...AB ⌘ AB (even)

BABA ...BA ⌘ BA (even)

Path types

8
>>>><

>>>>:

AA",AAA,AAB,AAAB(⌘AABA)

BB", BBA, BBB,BBAB(⌘BBBA)

AB", ABA, ABB, ABAB, ABBA
) an AB-path is always read from A to B

Deducting path recombinations that allow the best reuse of the resultants:

sources resultants �� �dcj ��
dcj

AAAB + BBAB • + • �2 0 �2

AAAB + BBA • + ABBA �1 0 �1
AAAB + BBB • + ABAB �1 0 �1

AAA + BBAB • + ABAB �1 0 �1
AAB + BBAB • + ABBA �1 0 �1

AAA + BBA • + • �1 0 �1
AAB + BBB • + • �1 0 �1

sources resultants �� �dcj ��
dcj

AAAB + AAAB AAA + AAB �2 +1 �1
BBAB + BBAB BBA + BBB �2 +1 �1

AAAB + ABAB • + AAA �2 +1 �1
AAAB + ABBA • + AAB �2 +1 �1

BBAB + ABAB • + BBB �2 +1 �1
BBAB + ABBA • + BBA �2 +1 �1

ABAB + ABBA • + • �2 +1 �1

Path recombinations with ��
dcj = 0 creating resultants that can be used in deducting recombinations:

sources resultants �� �dcj ��
dcj

AAA + ABBA • + AAAB �1 +1 0
AAB + ABAB • + AAAB �1 +1 0

BBA + ABAB • + BBAB �1 +1 0
BBB + ABBA • + BBAB �1 +1 0

sources resultants �� �dcj ��
dcj

AAA + BBB • + ABAB 0 0 0
AAB + BBA • + ABBA 0 0 0

ABAB + ABAB AAA + BBB �2 +2 0
ABBA + ABBA AAB + BBA �2 +2 0

Sources:

W : AAAB

W : AAA
W : AAB

M : BBAB

M : BBA
M : BBB

Z : ABAB

N : ABBA

a.
↳
.



Optimizing deducting path recombinations (for computing �)

Deducting chain of path recombinations

8
>>>><

>>>>:

transforming 2⇥ AAAB + BBA + BBB

into 3⇥ AB" + ABB

with overall ��
dcj = �3

AAAB + BBA AB" + ABBA
2 runs + 1 run no run + 2 runs

� = 2 + � = 1 � = 0 + � = 2

q q q qe2
/ q q q qe3

\

q q q q
e1

q q
!

gaining
DCJ

(��
dcj=�1) qc

q
q q q e2 q qc e3 q q/

q q q q
e1

q &

AAAB + BBB AB" + ABAB (��
dcj=�1)

2 runs + 1 run no run + 2 runs neutral !
� = 2 + � = 1 � = 0 + � = 2 DCJ

q q q qe5
/ q q\

q q q q
e4

q q q q
e6

!
gaining
DCJ

(��
dcj=�1) qc

q
q q qe5
\ q qc

q q q q
e4

q q q
e6

%

AB" + ABB
no run + 3 runs
� = 0 + � = 2

qc
q

q q q e2 q q e3 qc
q q q q

e1

q q qe5 q q
q q q q

e4

q q q
e6



id sources resultants �
�
dcj scr

P WM AAAB BBAB —– —– —– —– 2 ⇥ • �2 �1

Q WWMM 2 ⇥ AAAB BBA+BBB —– —– —– —– 4 ⇥ • �3 �3/4

MMWW AAA+AAB 2 ⇥ BBAB —– —– —– —– 4 ⇥ • �3 �3/4

T WZM AAAB BBA ABAB —– —– —– 3 ⇥ • �2 �2/3
WWM 2 ⇥ AAAB BBA —– AAB —– —– 2 ⇥ • �2 �2/3

WNM AAAB BBB ABBA —– —– —– 3 ⇥ • �2 �2/3
WWM 2 ⇥ AAAB BBB —– AAA —– —– 2 ⇥ • �2 �2/3

MNW AAA BBAB ABBA —– —– —– 3 ⇥ • �2 �2/3
MMW AAA 2 ⇥ BBAB —– —– BBB —– 2 ⇥ • �2 �2/3

MZW AAB BBAB ABAB —– —– —– 3 ⇥ • �2 �2/3
MMW AAB 2 ⇥ BBAB —– —– BBA —– 2 ⇥ • �2 �2/3

S ZN —– —– ABAB+ABBA —– —– —– 2 ⇥ • �1 �1/2

WM AAA BBA —– —– —– —– 2 ⇥ • �1 �1/2
WM AAB BBB —– —– —– —– 2 ⇥ • �1 �1/2

WM AAAB BBA —– —– —– ABBA • �1 �1/2

WM AAAB BBB —– —– —– ABAB • �1 �1/2

WZ AAAB —– ABAB AAA —– —– • �1 �1/2

WN AAAB —– ABBA AAB —– —– • �1 �1/2

WW 2 ⇥ AAAB —– —– AAA+AAB —– —– —– �1 �1/2

MW AAA BBAB —– —– —– ABAB • �1 �1/2

MW AAB BBAB —– —– —– ABBA • �1 �1/2

MZ —– BBAB ABAB —– BBB —– • �1 �1/2

MN —– BBAB ABBA —– BBA —– • �1 �1/2

MM —– 2 ⇥ BBAB —– —– BBA+BBB —– —– �1 �1/2



id sources resultants �
�
dcj scr

M ZZWM AAB BBA 2 ⇥ ABAB —– —– —– 4 ⇥ • �2 �1/2

NNWM AAA BBB 2 ⇥ ABBA —– —– —– 4 ⇥ • �2 �1/2

N ZWM AAB BBA ABAB —– —– ABBA 2 ⇥ • �1 �1/3

ZZW AAB —– 2 ⇥ ABAB AAA —– —– 2 ⇥ • �1 �1/3

ZZM —– BBA 2 ⇥ ABAB —– BBB —– 2 ⇥ • �1 �1/3

NWM AAA BBB ABBA —– —– ABAB 2 ⇥ • �1 �1/3

NNW AAA —– 2 ⇥ ABBA AAB —– —– 2 ⇥ • �1 �1/3

NNM —– BBB 2 ⇥ ABBA —– BBA —– 2 ⇥ • �1 �1/3

Sources:

W : AAAB

W : AAA
W : AAB

M : BBAB

M : BBA
M : BBB

Z : ABAB

N : ABBA

DCJ-indel distance formula:

diddcj(A,B) = n � |C| �
|PAB|

2
+

X

C2RG

�(C) � �,

where � is the value obtained by optimizing deducting path recombinations:

� = 2P + 3Q + 2T + S + 2M + N

the values P, Q, T , S, M and N refer to the corresponding number of
chains of deducting path recombinations of each type and can be obtained by a

greedy approach (simple top-down screening of the table)



Singular DCJ-indel model - summary

DCJ-indel distance: diddcj(A,B) = n � |C|�
|PAB|
2

+
X

C2RG

�(C)� �,
where � is the value obtained by opti-
mizing deducting path recombinations

A and B are circular: diddcj(A,B) = n � |C|+
X

C2RG

�(C)

Sorting genome A into genome B (with a minimum number of DCJs):

1. Apply all P, Q, T , S, M and N chains of deducting path recombinations, in this order.

2. For each component C 2 RG(A,B):
2.1 Split C with gaining DCJs (that have �� = 0) until only components with at most two runs are

obtained and the total number of runs in all new components is equal to �(C).
2.2 Accumulate all runs in the smaller components derived from C with gaining DCJ operations (that

have �� = 0).
2.3 Apply gaining DCJ operations (that have �� = 0) in the smaller components derived from C until

only DCJ-sorted components exist.
2.4 Delete all runs in the DCJ-sorted components derived from C .

Computing the distance and sorting can be done in linear time.



Singular DCJ-indel sorting: trade-o↵ between DCJ and indels

The presented sorting algorithm maximizes gaining DCJs with �� = 0 (minimizing indels).

However, these gaining DCJs can often be replaced by

(
neutral DCJs with �� = �1

losing DCJs with �� = �2

+

There is a big range of possibilities between the presented sorting algorithm and
a sorting algorithm that minimizes gaining DCJs with �� = 0 (maximizing indels)



Restricted DCJ-indel-distance (singular linear genomes)

general DCJ-indel sorting restricted DCJ-indel sorting

-� -� - - -� -b a c u g f e v d

# inversion

-� -� - - -� -a b c u g f e v d

# inversion

- - -� - - -� -a b c u g f e v d

excision #
- -a b - - - - -� �c d g f e v u \

deletion #
- -a b - - - - -c d g f e

excision #
- - - - - - -a b c d g e f

reincorporation #
- -a b - - - - -c d e g f \

reincorporation #
- - - - - - -a b c d e f g

# insertion

- - - - - - - - -a b x y c d e f g

-� -� - - -� -b a c u g f e v d

# inversion

-� -� - - -� -a b c u g f e v d

# inversion

- - -� - - -� -a b c u g f e v d

excision #
- - - - - - -� �a b c d g f e v u

reincorporation #
- - - - - -� � -a b c d f e v u g

excision #
- - - - -� � - -a b c d e v u g f \

reincorporation #
- - - - - -� � -a b c d e f v u g

deletion #
- - - - - - -a b c d e f g

# insertion

- - - - - - - - -a b x y c d e f g

In any sorting sequence, it is always possible to

(
move deletions down

move insertions up

S : general sequence of DCJ and indel operations sorting linear A into linear B

S  S 0 = Sins � Sdcj � Sdel  R = Sins � Rdcj � Sdel and |S | = |S 0| = |R|



Quiz 3

1 Which of the following statements about the DCJ-indel model are true?

A A sequence of DCJ operations and indels that sort each component of the relational graph
separately is always optimal.

B An optimal sequence of DCJ operations and indels sorting one singular genome into
another can have gaining, neutral and losing DCJs.

C The DCJ-indel distance can be distinct from the restricted DCJ-indel distance.

2 The best known algorithm for the restricted DCJ-indel sorting runs in...

A O(n) time.

B O(n log n) time.

C O(n2) time.

✗

0

✗

0
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