DCJ-indel distance of natural genomes

Leonard Bohnenkämper, Marília D. V. Braga 20.01.2022

Given a pair of genomes \mathbb{A}, \mathbb{B} . Let $\Phi_G(m)$ be the copy number of family m in genome $G \in \{\mathbb{A}, \mathbb{B}\}$.

Non-Singular		Singular
	$\Phi_G(m)$ arbitrary	$\Phi_G(m) \leq 1$
Unbalanced	Natural	Singular
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary	genomes	Genomes
Balanced	Balanced	Canonical
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) = 0$	Genomes	Genomes

Given a pair of genomes \mathbb{A}, \mathbb{B} . Let $\Phi_G(m)$ be the copy number of family m in genome $G \in \{\mathbb{A}, \mathbb{B}\}$.

	Non-Singular	Singular
	$\Phi_G(m)$ arbitrary	$\Phi_G(m) \leq 1$
Unbalanced		
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary		
Balanced		
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) = 0$		

Given a pair of genomes \mathbb{A}, \mathbb{B} . Let $\Phi_G(m)$ be the copy number of family m in genome $G \in \{\mathbb{A}, \mathbb{B}\}$.

	Non-Singular	Singular		
	$\Phi_G(m)$ arbitrary	$\Phi_G(m) \leq 1$		
Unbalanced				
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary				
Balanced		original		
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) = 0$		DCJ model		

Given a pair of genomes \mathbb{A}, \mathbb{B} . Let $\Phi_G(m)$ be the copy number of family m in genome $G \in \{\mathbb{A}, \mathbb{B}\}$.

	Non-Singular		
	$\Phi_G(m)$ arbitrary		
Unbalanced		DCJ-Indel	
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary		model	
Balanced		original	
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) = 0$		DCJ model	

Given a pair of genomes \mathbb{A}, \mathbb{B} . Let $\Phi_G(m)$ be the copy number of family m in genome $G \in \{\mathbb{A}, \mathbb{B}\}$.

Non-Singula		Singular		
	$\Phi_G(m)$ arbitrary			
Unbalanced		DCJ-Indel		
I + () + () I + (
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary		model		
$\frac{ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) \text{ arbitrary}}{Balanced}$	ILP by	original		

Given a pair of genomes \mathbb{A}, \mathbb{B} . Let $\Phi_G(m)$ be the copy number of family m in genome $G \in \{\mathbb{A}, \mathbb{B}\}$.

	Non-Singular	Singular
	$\Phi_G(m)$ arbitrary	$\Phi_G(m) \leq 1$
Unbalanced	ILP	DCJ-Indel
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary	today	model
Balanced	ILP by	original
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) = 0$	Shao et al.	DCJ model

Given a pair of genomes \mathbb{A}, \mathbb{B} . Let $\Phi_G(m)$ be the copy number of family m in genome $G \in \{A, B\}$.

	Non-Singular	Singular
	$\Phi_G(m)$ arbitrary	$\Phi_G(m) \leq 1$
Unbalanced	ILP	DCJ-Indel
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) $ arbitrary	today	model
Balanced	ILP by	original
$ \Phi_{\mathbb{A}}(m) - \Phi_{\mathbb{B}}(m) = 0$	Shao et al.	DCJ model

NP-Hard

Natural Genomes and indels

There is no way to sort $(1\ 2\ 2\ \bar{3}\ 4)$ into $(1\ 2\ 3\ 2\ 2\ 4)$ by DCJs alone.

Natural Genomes and indels

There is no way to sort $(1\ 2\ 2\ \bar{3}\ 4)$ into $(1\ 2\ 3\ 2\ 2\ 4)$ by DCJs alone.

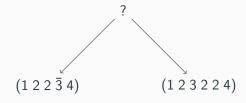
We need indel operations

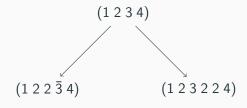
Natural Genomes and indels

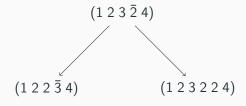
There is no way to sort $(1\ 2\ 2\ \bar{3}\ 4)$ into $(1\ 2\ 3\ 2\ 2\ 4)$ by DCJs alone.

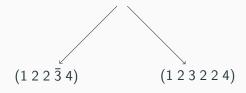
We need indel operations

→ But how many 2s to delete/insert?





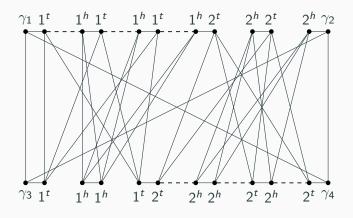




How to handle a shared family m with $\Phi_A(m) \neq \Phi_B(m)$

Exemplary Matching (EM)	Intermediate Matching (IM)	Maximal Matching (MM)
Exactly one occurrence matched	At least one occurrence matched	As many occurrences as possible matched
$n_m=1$ genes of family m matched	$1 \leq n_m \leq \min(\Phi_A(m), \Phi_B(m))$ genes of family m matched	$n_m = \min(\Phi_A(m), \Phi_B(m))$ genes of family m matched
Lowest common ancestor: Each shared marker occurs once		Lowest common ancestor: Each shared marker occurs at least as often as in the genome with fewer occurrences

Enforcing MM in the capped MRG



The capped MRG for MM Natural Genomes

Given two natural genomes \mathbb{A} , \mathbb{B} their capped multi-relational graph CMRG(\mathbb{A} , \mathbb{B}) is described as follows

- 1. $V = V(\xi(\mathbb{A})) \cup V(\xi(\mathbb{B})) \cup \Gamma$: There is a vertex for each extremity/cap in each genome.
 - Each vertex v has a label $\ell(v)$ corresponding to the extremity it represents.
- 2. $E = E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B}) \cup E_{\varepsilon} \cup E_{\varepsilon'} \cup E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$
 - $E_{\alpha}(\mathbb{G}) = \{uv : u, v \in V(\xi(\mathbb{G})) \text{ and } \ell(u)\ell(v) \in \alpha(\mathbb{G})\}$
 - $E_{\xi} = \{uv : u \in V(\xi(\mathbb{A})) \text{ and } v \in V(\xi(\mathbb{B})) \text{ and } \ell(u) = \ell(v)\}$
 - E_{ξ'} ... edges connecting caps

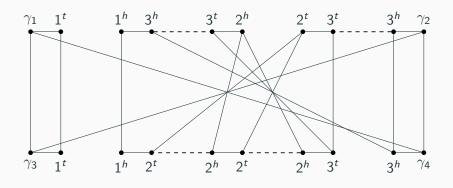
•

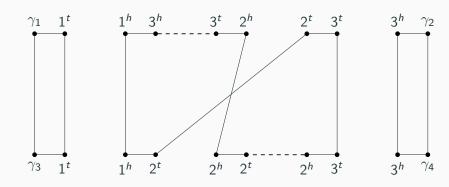
$$E_{ID}(\mathbb{G})=\{uv:u,v\in V(\xi(\mathbb{G})) \text{ and } u,v \text{ are extremities of}$$
 the same gene of family m with $\Phi_{\mathbb{G}}(m)>min(\Phi_{\mathbb{A}}(m),\Phi_{\mathbb{B}}(m))\}$

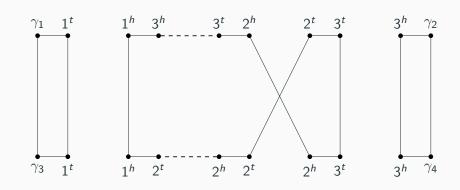
Consistent decompositions in the CMRG

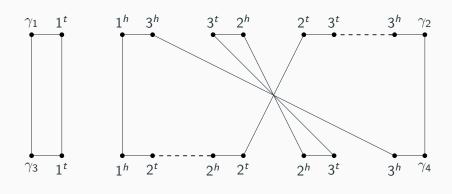
```
Capped consistent
decomposition Q[S, P]
```

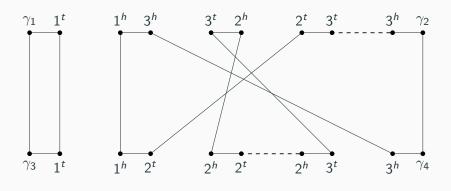
- is **induced** by a maximal sibling-set S and a maximal capping-set P is the union of S with P with all adjacency edges and indel edges of genes not matched in S covers all vertices of $CMRG(\mathbb{A},\mathbb{B})$ is composed of cycles only

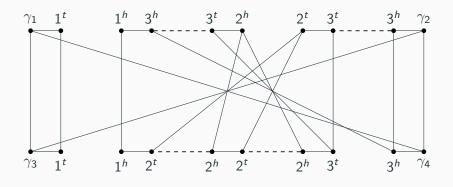












Finding the best decomposition

$$d_{DCJ}^{ID}(A,B) = \min_{S \in \mathfrak{S}_{MAX}, P \in \mathfrak{P}_{MAX}} \{d_{DCJ}^{ID}(Q[S,P])\} = n_* + p_* - \max_{S \in \mathfrak{S}_{MAX}, P \in \mathfrak{P}_{MAX}} \{w(Q[S,P])\}$$

 $\begin{cases} \mathfrak{S}_{\text{MAX}} \text{ is the set of all maximal sibling-sets of } \textit{CMRG}(\mathbb{A}, \mathbb{B}) \\ \mathfrak{P}_{\text{MAX}} \text{ is the set of all maximal capping-sets of } \textit{CMRG}(\mathbb{A}, \mathbb{B}) \\ n_* \text{ and } p_* \text{ are constant for any capped consistent decomposition}$

with
$$w(Q[S,P]) = |\mathcal{C}^Q| - \sum_{C \in \mathcal{C}^Q \cup \mathcal{S}^Q} (\lambda(C))$$

where

 \mathcal{C}^Q are cycles containing extremity edges \mathcal{S}^Q are circular singletons

Recap: Shao-Lin-Moret

Match the parts of the ILP to their function!

$$\mathsf{A} \qquad \ell_i \leq \ell_j + i (1 - \mathsf{x}_{\left\{v_i, v_j\right\}}) \qquad \forall \ \left\{v_i, v_j\right\} \in \mathsf{E}$$

$$\mathsf{B} \qquad \sum_{\{u,v\}\in \mathcal{E}} \mathsf{x}_{\{u,v\}} = 2 \qquad \forall \ u \in V$$

$$C i \cdot z_i \le \ell_i \forall 1 \le i \le |V|$$

D
$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

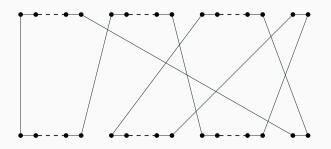
E
$$x_e = x_d$$
 $\forall e, d \in E_{\xi}$ such that

- 1 Each adjacency edge is in the decomposition
- 2 Sibling edges are only selected together
- 3 A cycle is only counted at the vertex with the smalles label
 - A decomposition consists only of simple cycles
- 5 Cycle labels of adjacent vertices are the same

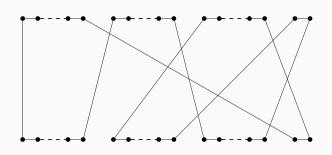
Recap: Capping and indels

	id	sources	linking AB-cycle	Т	Δn	Δc	$\Delta(2i)$	$\Delta \lambda$	Δd
[:	P WM	$AA_{AB} + BB_{AB}$	(AA_{AB}, BB_{BA})		+1	+1	0	-2	-2
9	Q WWMM	$2 \times AA_{AB} + BB_A + BB_B$	$(AA_{\mathcal{A}\mathcal{B}}, BB_{\mathcal{B}}, AA_{\mathcal{B}\mathcal{A}}, BB_{\mathcal{A}})$		+2	+1	0	-4	-3
	$MM\overline{W}$	$2 \times BB_{AB} + AA_A + AA_B$	$(BB_{AB}, AA_{B}, BB_{BA}, AA_{A})$		+2	+1	0	-4	-3
:		$AA_{AB} + BB_A + AB_{AB}$	$(AB_{AB}, AA_{BA}, BB_{A})$		+1.5	+1	-0.5	-3	-2
	MWW	$2 \times AA_{AB} + BB_A$	$(AA_{BA}, BB_A, AA_{AB}, BB_\varepsilon \prec \Gamma_B)$	U	+2	+1	0	-3	-2
	MNM	$AA_{\mathcal{A}\mathcal{B}} + BB_{\mathcal{B}} + AB_{\mathcal{B}\mathcal{A}}$	$(AB_{\mathcal{B}\mathcal{A}}, AA_{\mathcal{A}\mathcal{B}}, BB_{\mathcal{B}})$	l	+1.5	+1	-0.5	$-3 \\ -3$	$\left -2 \right $
	MWW	$2 \times AA_{\mathcal{A}\mathcal{B}} + BB_{\mathcal{B}}$	$(AA_{\mathcal{A}\mathcal{B}}, BB_{\mathcal{A}}, AA_{\mathcal{A}\mathcal{B}}, BB_{\varepsilon} \prec \Gamma_B)$	U	+2	+1	0	_	_ [
	MNW MMW	$BB_{\mathcal{A}\mathcal{B}} + AA_{\mathcal{A}} + AB_{\mathcal{B}\mathcal{A}} 2 \times BB_{\mathcal{A}\mathcal{B}} + AA_{\mathcal{A}}$	$(AB_{\mathcal{B}\mathcal{A}}, AA_{\mathcal{A}}, BB_{\mathcal{A}\mathcal{B}})$ $(BB_{\mathcal{B}\mathcal{A}}, AA_{\mathcal{A}}, BB_{\mathcal{A}\mathcal{B}}, AA_{\varepsilon} \prec \Gamma_{\mathcal{A}})$	ln	$+1.5 \\ +2$	$+1 \\ +1$	-0.5	-3 -3	$\begin{vmatrix} -2 \\ -2 \end{vmatrix}$
	MZW	$BB_{AB} + AA_{B} + AB_{AB}$	$(AB_{AB}, AA_{B}, BB_{BA})$	l' '	+1.5	+1	-0.5	-3	
		$2 \times BB_{AB} + AA_{B}$	$(BB_{AB}, AA_B, BB_{BA}, AA_\varepsilon \prec \Gamma_A)$	\cap	+2	+1	0.0	-3	$-\frac{2}{2}$
H	S ZN	$AB_{AB} + AB_{BA}$	(AB_{AB}, AB_{BA})		+1	+1	-1	-2	-1
	WM	$AA_A + BB_A$	(AA_A, BB_A)		+1	+1	0	-1	-1
	WM	$AA_{\mathcal{B}} + BB_{\mathcal{B}}$	$(AA_{\mathcal{B}}, BB_{\mathcal{B}})$		+1	$+\hat{1}$	0	$-\hat{1}$	-1
	$\overline{\text{MW}}$	$AA_{AB} + BB_{A}$	(AA_{BA}, BB_A)		+1	+1	0	-1	-1
	$\underline{W}\underline{M}$	$AA_{AB} + BB_{B}$	(AA_{AB}, BB_{B})		+1	+1	0	-1	-1
	WZ	$AA_{AB} + AB_{AB}$	$(AA_{BA}, BB_{\varepsilon} \prec \Gamma_B, AB_{AB})$	U	+1.5	+1	-0.5	-2	-1
	WN	$AA_{AB} + AB_{BA}$	$(AA_{AB}, BB_{\varepsilon} \prec \Gamma_B, AB_{BA})$	U	+1.5	+1	-0.5	-2	-1
	WW	$AA_{AB} + AA_{AB}$	$\left (AA_{\mathcal{A}\mathcal{B}}, BB_{\varepsilon} \prec \Gamma_B, AA_{\mathcal{B}\mathcal{A}}, BB_{\varepsilon} \prec \Gamma_B) \right $	U	+2	+1	0	-2	-1
	$M\overline{W}$	$BB_{AB} + AA_{A}$	(AA_A, BB_{AB})		+1	+1	0	-1	-1
	MW	$BB_{AB} + AA_{B}$	$(AA_{\mathcal{B}}, BB_{\mathcal{B}\mathcal{A}})$		+1	+1	0	-1	-1
	MZ	$BB_{AB} + AB_{AB}$	$(BB_{\mathcal{B}\mathcal{A}}, AB_{\mathcal{A}\mathcal{B}}, AA_{\varepsilon} \prec \Gamma_A)$	\cap	+1.5	+1	-0.5	-2	-1
	MN	$BB_{AB} + AB_{BA}$	$(BB_{AB}, AB_{BA}, AA_{\varepsilon} \prec \Gamma_A)$	\cap	+1.5	+1	-0.5	-2	-1
L	MM	$BB_{AB} + BB_{AB}$	$(BB_{\mathcal{A}\mathcal{B}}, AA_{\varepsilon} \prec \Gamma_A, BB_{\mathcal{B}\mathcal{A}}, AA_{\varepsilon} \prec \Gamma_A)$	\cap	+2	+1	0	-2	-1
)	1 ZZ <u>W</u> M	$2 \times AB_{AB} + AA_{B} + BB_{A}$	$(AB_{AB}, AA_{B}, BA_{BA}, BB_{A})$		+2	+1	-1	-4	-2
	NNWM	$2 \times AB_{\phi,a} + AA_{,a} + BB_{\phi}$	(ABo A AA A BA AD BBo)		+2	+1	-1	-4	-2

Recap: Indels via Transitions



Recap: Indels via Transitions



$$\lambda(C) = \frac{\aleph(C)}{2} + r(C)$$

with
$$r(C) = \begin{cases} 1 & \text{if } C \text{ is indel-enclosing} \\ 0 & \text{otherwise} \end{cases}$$

Set label to 0 on active indel-edge in $\ensuremath{\mathbb{A}}$

$$r_{v} \leq 1 - x_{\{u,v\}}$$

 $\forall \{u,v\} \in E_{ID}(\mathbb{A}),$

Set label to 0 on active indel-edge in
$$\mathbb{A}$$

$$r_v \leq 1 - x_{\{u,v\}} \qquad \qquad \forall \ \{u,v\} \in E_{ID}(\mathbb{A}) \,,$$
 Set label to 1 on active indel-edge in \mathbb{B}
$$r_{v'} \geq x_{\{u',v'\}} \qquad \qquad \forall \ \{u',v'\} \in E_{ID}(\mathbb{B})$$

Set label to 0 on active indel-edge in
$$\mathbb{A}$$

$$r_v \leq 1 - x_{\{u,v\}} \qquad \qquad \forall \ \{u,v\} \in E_{ID}(\mathbb{A})\,,$$
 Set label to 1 on active indel-edge in \mathbb{B}
$$r_{v'} \geq x_{\{u',v'\}} \qquad \qquad \forall \ \{u',v'\} \in E_{ID}(\mathbb{B})$$
 Record the transition in variable
$$t_{\{u,v\}} \geq r_v - r_u \qquad \qquad \forall \ \{u,v\} \in E$$

Set label to 0 on active indel-edge in
$$\mathbb{A}$$

$$r_{v} \leq 1 - x_{\{u,v\}} \qquad \qquad \forall \ \{u,v\} \in E_{ID}(\mathbb{A}) \,,$$
 Set label to 1 on active indel-edge in \mathbb{B}
$$r_{v'} \geq x_{\{u',v'\}} \qquad \qquad \forall \ \{u',v'\} \in E_{ID}(\mathbb{B})$$
 Record the transition in variable
$$t_{\{u,v\}} \geq r_{v} - r_{u} - (1 - x_{\{u,v\}}) \qquad \forall \ \{u,v\} \in E$$

What about r(C)?

$$\begin{split} w(Q[S,P]) &= |\mathcal{C}^Q| - \sum_{C \in \mathcal{C}^Q \cup \mathcal{S}^Q} (\frac{\aleph(C)}{2} + r(C)) = |\mathcal{C}^Q| - \frac{\aleph(Q)}{2} - \sum_{C \in \mathcal{C}^Q \cup \mathcal{S}^Q} r(C) \\ &= |\mathcal{C}^Q| - \frac{\aleph(Q)}{2} - |\{C \in \mathcal{C}^Q : C \text{ is indel-enclosing}\}| - |\mathcal{S}^Q| \\ &= |\{C \in \mathcal{C}^Q : C \text{ is not indel-enclosing}\}| - \frac{\aleph(Q)}{2} - |\mathcal{S}^Q| \end{split}$$

where $\mathcal{S}^{\it{Q}}$ are circular singletons in the decompostion,

$$r(C) = \begin{cases} 1 & \text{if } C \text{ is indel-enclosing} \\ 0 & \text{otherwise} \end{cases}$$

Removing indel-enclosing cycles from the count

Idea: Set the cycle label to 0.

$$\ell_i \leq i(1 - x_{\{v_i, v_i\}}) \quad \forall \ \{v_i, v_j\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$$

Counting circular singletons

Idea: Each circular chromosome $k \in K$ is a potential circular singleton.

$$\sum_{e \in E_{ID}(k)} x_e - |k| + 1 \le s_k \quad \forall k \in K$$

Final Objective Function

$$w(Q[S,P]) = |\{C \in \mathcal{C}^Q : C \text{ is not indel-enclosing}\}| - \frac{\aleph(Q)}{2} - |\mathcal{S}^Q|$$

Objective:

$$\texttt{Maximize} \ \sum_{1 \leq i \leq |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in \mathcal{K}} s_k$$

Match the following parts of the ILP to their function!

$$A \qquad \ell_i \leq i(1 - x_{\{v_i, v_i\}})$$

$$\forall~\{v_i,v_j\}\in E_{ID}(\mathbb{A})\cup E_{ID}(\mathbb{B})$$

$$B \qquad r_{\rm v} \le 1 - x_{\{u,v\}} \\ r_{\rm v'} \ge x_{\{u',v'\}}$$

$$\forall \{u, v\} \in E_{ID}(\mathbb{A}),$$

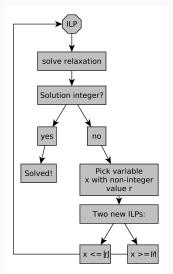
$$\forall \{u', v'\} \in E_{ID}(\mathbb{B})$$

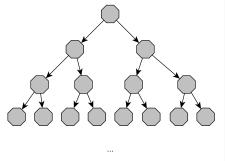
C
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}}) \quad \forall \{u,v\} \in E$$

$$D \qquad \sum_{e \in E_{id}^k} x_e - |k| + 1 \le s_k \qquad \forall k \in K$$

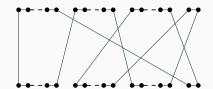
- Setting run-variable (preparing to find transitions)
- Removal of indelenclosing cycles
- 3 Recording transitions
- 4 Flagging circular singletons

Excursus: ILP solvers





Refinement - Restricting where transitions occurr



Only permit transitions in adjacencies in A

$$t_e = 0$$

$$\forall e \in E \setminus E_{\alpha}(\mathbb{A})$$

Only permit transitions next to indels

$$\sum_{\substack{d \in E_{ID}(\mathbb{A}), \\ d \cap e \neq \varnothing}} x_d - t_e \ge 0$$

$$\forall\ e\in E_\alpha(\mathbb{A})$$

Objective:

Maximize
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

(C.01)
$$x_e = 1$$

$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

(C.02)
$$\sum_{\{u,v\} \in E} x_{\{u,v\}} = 2 \quad \forall u \in V$$

$$\forall u \in V$$

(C.03)
$$x_e = x_d$$

$$\forall e, d \in E_{\xi}$$
 such that e and d are siblings

$$\mbox{(C.04)} \ \ell_i \leq \ell_j + i (1 - x_{\left\{v_i, v_j\right\}}) \ \forall \ \left\{v_i, v_j\right\} \in E \,, \label{eq:c.04}$$

(C.06)
$$i \cdot z_i \leq \ell_i$$
 $\forall \ 1 \leq i \leq |V|$

$$\forall \{v_i, v_i\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$$

(C.05)
$$\ell_i \leq i(1 - x_{\{v_i, v_j\}})$$

(C.07) $r_v \leq 1 - x_{\{u, v\}}$

$$\forall \{u,v\} \in E_{ID}(\mathbb{A}),$$

$$r_{v'} \ge x_{\{u',v'\}}$$

$$\forall \ \{u',v'\} \in E_{ID}(\mathbb{B})$$

(C.08)
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}}) \ \forall \ \{u,v\} \in E$$

(C.09)
$$\sum_{\substack{d \in E_{ID}(\mathbb{A}),\\ d \cap e \neq \emptyset}} x_d - t_e \ge 0 \qquad \forall e \in E_{\alpha}(\mathbb{A})$$

(C.10)
$$t_e = 0$$

$$\forall \ e \in E \setminus E_{\alpha}(\mathbb{A})$$

$$(C.11) \sum_{e \in E_{i}^{k}} x_{e} - |k| + 1 \le s_{k}$$

$$\forall k \in K$$

Domains:

$$(D.01)$$
 $x_e \in \{0,1\} \ \forall \ e \in E$

$$(D.02) \quad 0 \leq \ell_i \leq i \quad \forall \ 1 \leq i \leq |V|$$

(D.03)
$$z_i \in \{0, 1\} \quad \forall \ 1 \le i \le |V|$$

(D.04)
$$r_{V} \in \{0,1\} \ \forall \ V \in V$$

(D.05)
$$t_e \in \{0,1\} \quad \forall \ e \in E$$

(D.06)
$$s_k \in \{0,1\} \ \forall \ k \in K$$

Objective:

Maximize
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

(C.01)
$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

(C.02)
$$\sum_{\{u,v\}\in E} x_{\{u,v\}} = 2 \qquad \forall u \in V$$

(C.03)
$$x_n = x_d$$
 $\forall e, d \in E_e$ such that e and d are siblings

$$(\text{C.04}) \quad \ell_i \leq \ell_j + i (1 - \mathsf{x}_{\{v_i, v_j\}}) \quad \forall \ \{v_i, v_j\} \in E \,,$$

(C.06)
$$i \cdot z_i \leq \ell_i$$
 $\forall \ 1 \leq i \leq |V|$

Domains:

(D.01)
$$x_e \in \{0,1\} \ \forall \ e \in E$$

(D.02)
$$0 \le \ell_i \le i \quad \forall \ 1 \le i \le |V|$$

(D.03)
$$z_i \in \{0, 1\} \quad \forall \ 1 \le i \le |V|$$

(D.04) $r_V \in \{0, 1\} \quad \forall \ v \in V$

(D.05)
$$t_e \in \{0,1\} \ \forall \ e \in E$$

(D.06)
$$s_k \in \{0,1\} \ \forall \ k \in K$$

$$(\texttt{C.05}) \quad \ell_i \leq i(1 - x_{\{v_i, v_i\}}) \qquad \qquad \forall \ \{v_i, v_j\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$$

(C.07)
$$r_{V} \leq 1 - x_{\{u,V\}}$$
 $\forall \{u, V\} \in E_{ID}(\mathbb{A}),$ $r_{V'} \geq x_{\{u',V'\}}$ $\forall \{u', V'\} \in E_{ID}(\mathbb{B})$

(C.08)
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}}) \quad \forall \ \{u,v\} \in E$$

(C.09)
$$\sum_{\substack{d \in E_{ID}(\mathbb{A}),\\ d \cap e \neq \emptyset}} x_d - t_e \ge 0 \qquad \forall e \in E_{\alpha}(\mathbb{A})$$

(C.10)
$$t_e = 0$$
 $\forall e \in E \setminus E_{\alpha}(\mathbb{A})$

(C.11)
$$\sum_{e \in E_{id}^k} x_e - |k| + 1 \le s_k \qquad \forall k \in K$$

Shao et al.

Objective:

Maximize
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

$$(C.01) x_e = 1$$

(C.03) $x_e = x_d$

$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

(C.02)
$$\sum_{\{u,v\} \in E} x_{\{u,v\}} = 2 \qquad \forall u \in V$$

$$\forall e, d \in E_{\xi}$$
 such that e and d are siblings

$$\begin{array}{lll} (\text{C.04}) & \ell_i \leq \ell_j + i (1 - x_{\{v_i, v_j\}}) & \forall \ \{v_i, v_j\} \in E \ , \\ \\ (\text{C.06}) & i \cdot z_i \leq \ell_i & \forall \ 1 \leq i \leq |V| \end{array}$$

Domains:

(D.01)
$$x_e \in \{0,1\} \ \forall \ e \in E$$

(D.02)
$$0 \le \ell_i \le i \quad \forall \ 1 \le i \le |V|$$

(D.03)
$$z_i \in \{0,1\} \quad \forall \ 1 \le i \le |V|$$

(D.04)
$$r_{\nu} \in \{0,1\} \quad \forall \ \nu \in V$$

(D.05)
$$t_e \in \{0,1\} \ \forall \ e \in E$$

(D.06)
$$s_k \in \{0,1\} \quad \forall \ k \in K$$

(C.05)
$$\ell_i \leq i(1 - x_{\{v_i, v_i\}})$$
 $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$

$$\begin{array}{ll} (\text{C.07}) & r_{V} \leq 1 - x_{\{u,V\}} & \forall \; \{u,v\} \in E_{ID}(\mathbb{A}) \,, \\ & r_{v'} \geq x_{\{u',V'\}} & \forall \; \{u',v'\} \in E_{ID}(\mathbb{B}) \end{array}$$

(C.08)
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}}) \quad \forall \{u,v\} \in E$$

(C.09)
$$\sum_{\substack{d \in E_{ID}(\mathbb{A}),\\ d \cap e \neq \emptyset}} x_d - t_e \ge 0 \qquad \forall \ e \in E_{\alpha}(\mathbb{A})$$

(C.10)
$$t_e = 0$$
 $\forall e \in E \setminus E_{\alpha}(\mathbb{A})$

$$(C.11) \sum_{e \in E_{id}^{k}} x_{e} - |k| + 1 \le s_{k} \qquad \forall k \in K$$

DING extension

Objective:

$$\text{Maximize } \sum_{1 \leq i \leq |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

(C.01)
$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

$$\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{A})$$

(C.02)
$$\sum_{\{u,v\} \in E} x_{\{u,v\}} = 2 \qquad \forall u \in V$$
(C.03)
$$x_n = x_d \qquad \forall e, d \in V$$

$$\forall e, d \in E_{\xi}$$
 such that e and d are siblings

(C.04)
$$\ell_i \leq \ell_j + i(1 - x_{\{v_i, v_j\}}) \quad \forall \ \{v_i, v_j\} \in E,$$

(C.06) $i \cdot z_i < \ell_i \qquad \forall \ 1 < i < |V|$

and
$$d$$
 are siblings $\forall \{v_i, v_i\} \in E$.

$$\forall \ 1 \leq i \leq |V|$$

Domains:

(D.01)
$$x_e \in \{0,1\} \quad \forall \ e \in E$$

(D.02)
$$0 \le \ell_i \le i \quad \forall \ 1 \le i \le |V|$$

(D.03)
$$z_i \in \{0,1\} \quad \forall \ 1 \leq i \leq |V|$$

(D.04)
$$r_{v} \in \{0,1\} \quad \forall \ v \in V$$

(D.05)
$$t_e \in \{0,1\} \quad \forall \ e \in E$$

(D.06)
$$s_k \in \{0,1\} \quad \forall \ k \in K$$

$$(\texttt{C.05}) \quad \ell_i \leq i(1-x_{\{v_i,v_j\}}) \qquad \qquad \forall \ \{v_i,v_j\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$$

(C.07)
$$r_V \le 1 - \times_{\{u,v\}} \qquad \forall \{u,v\} \in E_{ID}(\mathbb{A}),$$

 $r_{V'} \ge \times_{\{u',v'\}} \qquad \forall \{u',v'\} \in E_{ID}(\mathbb{B})$

(C.08)
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}}) \quad \forall \{u,v\} \in E$$

(C.09)
$$\sum_{\substack{d \in E_{ID}(\mathbb{A}), \\ d \cap e \neq \emptyset}} x_d - t_e \ge 0 \qquad \forall e \in E_{\alpha}(\mathbb{A})$$

(C.10)
$$t_e = 0$$
 $\forall e \in E \setminus E_{\alpha}(\mathbb{A})$

$$(C.11) \sum_{e \in E_{id}^k} x_e - |k| + 1 \le s_k \qquad \forall k \in K$$

Circ. singleton handling

Objective:

Maximize
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

(C.01)
$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

(C.02)
$$\sum_{\{u,v\}\in E} x_{\{u,v\}} = 2 \quad \forall u \in V$$

(C.03)
$$x_e = x_d$$
 $\forall e, d \in E_{\xi}$ such that e and d are siblings

(C.04)
$$\ell_i \leq \ell_j + i(1 - x_{\{v_i, v_j\}}) \quad \forall \ \{v_i, v_j\} \in E,$$

(C.06)
$$i \cdot z_i \leq \ell_i$$
 $\forall \ 1 \leq i \leq |V|$

Domains:

- (D.01) $x_e \in \{0,1\} \ \forall \ e \in E$
 - (D.02) $0 \le \ell_i \le i \quad \forall \ 1 \le i \le |V|$
- (D.03) $z_i \in \{0, 1\} \quad \forall \ 1 \le i \le |V|$
- (D.04) $r_{V} \in \{0,1\} \quad \forall \ V \in V$
- (D.05) $t_e \in \{0,1\} \quad \forall \ e \in E$
- (D.06) $s_k \in \{0,1\} \ \forall \ k \in K$

(C.05)
$$\ell_i \leq i(1 - x_{\{v_i, v_i\}})$$
 $\forall \{v_i, v_j\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$

$$\begin{array}{ll} (\texttt{C.07}) & r_V \leq 1 - \times_{\{u,v\}} & \forall \ \{u,v\} \in E_{ID}(\mathbb{A}) \,, \\ & r_{V'} \geq \times_{\{u',v'\}} & \forall \ \{u',v'\} \in E_{ID}(\mathbb{B}) \end{array}$$

(C.08)
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}}) \quad \forall \ \{u,v\} \in E$$

(C.09)
$$\sum_{\substack{d \in E_{|D}(\mathbb{A}),\\ d \cap e \neq \varnothing}} x_d - t_e \ge 0 \qquad \forall \ e \in E_{\alpha}(\mathbb{A})$$

(C.10)
$$t_e = 0$$
 $\forall e \in E \setminus E_{\alpha}(\mathbb{A})$

(C.11)
$$\sum_{e \in E_{id}^k} x_e - |k| + 1 \le s_k \qquad \forall k \in K$$

Indel enclosing cycles

Objective:

Maximize
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

$$(C.01)$$
 $x_e = 1$

$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

(C.02)
$$\sum_{\{u,v\} \in E} x_{\{u,v\}} = 2 \qquad \forall u \in V$$

$$\forall u \in V$$

(C.03)
$$x_e = x_d$$

$$orall \ e,d \in E_{\xi} \ ext{such that} \ e \ ext{and} \ d \ ext{are siblings}$$

(C.04)
$$\ell_i \leq \ell_j + i(1 - x_{\{v_i, v_j\}}) \quad \forall \ \{v_i, v_j\} \in E,$$

(C.06) $i \cdot z_i < \ell_i \qquad \forall \ 1 < i < |V|$

(C.06)
$$i \cdot z_i \le \ell_i$$

(C.05) $\ell_i \le i(1 - x_{\{v_i, v_i\}})$

$$\forall \{v_i, v_i\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$$

(C.07)
$$r_{v} \leq 1 - x_{\{u,v\}}$$

 $r_{v'} \geq x_{\{u',v'\}}$

$$\forall \ \{u,v\} \in E_{ID}(\mathbb{A}) \,,$$

$$\begin{aligned} r_{v'} &\geq \times_{\{u',v'\}} & \forall \; \{u',v'\} \in E_{ID}(\mathbb{B}) \\ (\text{C.08}) & t_{\{u,v\}} &\geq r_v - r_u - (1 - \times_{\{u,v\}}) & \forall \; \{u,v\} \in E \end{aligned}$$

(C.09)
$$\sum_{\substack{d \in E_{ID}(\mathbb{A}), \\ d \cap e \neq \emptyset}} x_d - t_e \ge 0$$

$$\forall \ e \in E_{\alpha}(\mathbb{A})$$

$$(C.10)$$
 $t_e = 0$

$$\forall e \in E \setminus E_{\alpha}(\mathbb{A})$$

$$(C.11) \sum_{e \in E_{i}^{k}} x_{e} - |k| + 1 \le s_{k}$$

$$\forall k \in K$$

Transition counting

Domains:

(D.01)
$$x_e \in \{0,1\} \ \forall \ e \in E$$

(D.02)
$$0 \le \ell_i \le i \quad \forall \ 1 \le i \le |V|$$

(D.03)
$$z_i \in \{0,1\} \quad \forall \ 1 \le i \le |V|$$

(D.04)
$$r_v \in \{0,1\} \quad \forall \ v \in V$$

(D.05)
$$t_e \in \{0,1\} \quad \forall \ e \in E$$

(D.06)
$$s_k \in \{0,1\} \ \forall \ k \in K$$

Objective:

Maximize
$$\sum_{1 \le i \le |V|} z_i - \frac{1}{2} \sum_{e \in E} t_e - \sum_{k \in K} s_k$$

Constraints:

(C.01)
$$x_e = 1$$

$$x_e = 1$$
 $\forall e \in E_{\alpha}(\mathbb{A}) \cup E_{\alpha}(\mathbb{B})$

(C.02)
$$\sum_{\{u,v\} \in E} x_{\{u,v\}} = 2 \quad \forall u \in V$$

$$\forall u \in V$$

(C.03)
$$x_e = x_d$$

$$\forall e, d \in E_{\xi}$$
 such that e and d are siblings

$$\mbox{(C.04)} \ \ell_i \leq \ell_j + i (1 - x_{\left\{v_i, v_j\right\}}) \ \forall \ \left\{v_i, v_j\right\} \in E \,, \label{eq:c.04}$$

(C.06)
$$i \cdot z_i \leq \ell_i$$
 $\forall \ 1 \leq i \leq |V|$

$$\forall \{v_i, v_i\} \in E_{ID}(\mathbb{A}) \cup E_{ID}(\mathbb{B})$$

(C.05)
$$\ell_i \leq i(1 - x_{\{v_i, v_j\}})$$

(C.07) $r_v \leq 1 - x_{\{u, v\}}$

$$\forall \{u,v\} \in E_{ID}(\mathbb{A}),$$

$$r_{v'} \ge x_{\{u',v'\}}$$

$$\forall \ \{u',v'\} \in E_{ID}(\mathbb{B})$$

(C.08)
$$t_{\{u,v\}} \ge r_v - r_u - (1 - x_{\{u,v\}}) \ \forall \ \{u,v\} \in E$$

(C.09)
$$\sum_{\substack{d \in E_{ID}(\mathbb{A}),\\ d \cap e \neq \emptyset}} x_d - t_e \ge 0 \qquad \forall e \in E_{\alpha}(\mathbb{A})$$

(C.10)
$$t_e = 0$$

$$\forall \ e \in E \setminus E_{\alpha}(\mathbb{A})$$

$$(C.11) \sum_{e \in E_{i}^{k}} x_{e} - |k| + 1 \le s_{k}$$

$$\forall k \in K$$

Domains:

$$(D.01)$$
 $x_e \in \{0,1\} \ \forall \ e \in E$

$$(D.02) \quad 0 \leq \ell_i \leq i \quad \forall \ 1 \leq i \leq |V|$$

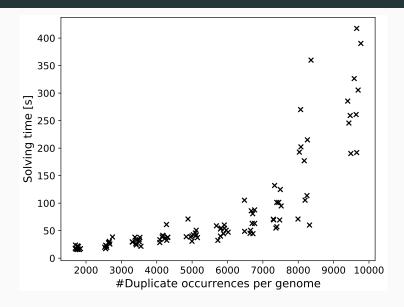
(D.03)
$$z_i \in \{0, 1\} \quad \forall \ 1 \le i \le |V|$$

(D.04)
$$r_{V} \in \{0,1\} \ \forall \ V \in V$$

(D.05)
$$t_e \in \{0,1\} \quad \forall \ e \in E$$

(D.06)
$$s_k \in \{0,1\} \ \forall \ k \in K$$

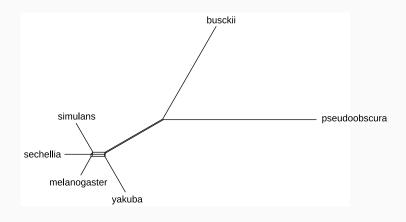
ILPs can be very fast



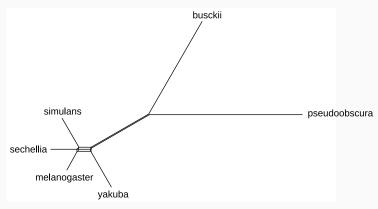
ILPs can be very fast

Genome	Max. multiplicity	#duplicate	#duplicate	d ^{id} DCJ	solving time [s]
pair	of dupl. marker	markers	occ.		
dbus-dmel	23	303	832	4661	6.02
dbus-dpse	17	361	934	4688	5.29
dbus-dsec	15	295	766	4710	5.64
dbus-dsim	13	281	721	4767	5.05
dbus-dyak	19	318	785	4756	5.00
dmel-dpse	23	469	1319	3799	32218.93
dmel-dsec	23	326	902	901	6.78
dmel-dsim	23	322	893	1093	5.73
dmel-dyak	23	362	972	1379	7.22
dpse-dsec	17	464	1227	3866	13.82
dpse-dsim	17	449	1198	3962	6.81
dpse-dyak	19	481	1259	3951	8.96
dsec-dsim	15	314	843	1138	5.67
dsec-dyak	19	354	903	1516	6.56
dsim-dyak	19	347	864	1661	23.07

Resolved Phylogeny



Resolved Phylogeny



Not quite, but for an improved procedure, stay tuned for next lecture :)

Literature

Gurobi mip solver introduction.

https://www.gurobi.com/resource/mip-basics/.

Accessed: 2021-01-26.

Bohnenkämper, L., Braga, M. D., Doerr, D., and Stoye, J. (0).

Computing the rearrangement distance of natural genomes.

Journal of Computational Biology, O(0):null.

PMID: 33393848.