Algorithms in Comparative Genomics

Universität Bielefeld, WS 2021/2022 Dr. Marília D. V. Braga · Leonard Bohnenkämper https://gi.cebitec.uni-bielefeld.de/teaching/2021winter/cg

Exercise sheet 5, 18.11.2021

Exercise 1 (DCJ halving)

(8 pts)

For each of the following duplicated genomes, compute the DCJ halving distance $h_i = h_{DCJ}(\mathbb{D}_i^f)$ and find a perfectly duplicated genome \mathbb{P}_i^f with a matching between the genes of \mathbb{P}_i^f and \mathbb{D}_i^f , giving a halving sorting scenario with h_i optimal DCJ operations that transform \mathbb{D}_i^f into \mathbb{P}_i^f .

- 1. $\mathbb{D}_1^f = [3\ 5\ \overline{4}\ 2\ \overline{5}] [2\ 1] [3\ 4\ 1]$
- 2. $\mathbb{D}_{2}^{f} = (35\overline{4}2\overline{5}) (21\overline{1}34)$

Exercise 2 (Solution space of DCJ halving sorting)

(4 pts)

Denote by $\rho \mathbb{G}$ the genome obtained after applying a DCJ operation ρ to a genome \mathbb{G} .

Now consider the duplicated genome:

$$\mathbb{D}^f = [\bar{4} \ 1 \ \bar{4} \ \bar{3} \ 2] \ [\bar{2} \ 3 \ 1] \ [5 \ \bar{5}].$$

List all possible optimal (1st step) DCJ halving operations that could be applied to \mathbb{D}^f , that is, the set of DCJ operations $R = \{\rho : h_{\text{DCJ}}(\mathbb{D}^f) = h_{\text{DCJ}}(\rho \mathbb{D}^f) + 1\}.$

Exercise 3 (DCJ double distance)

(6 pts)

Let \mathbb{S}^f be a singular circular genome and \mathbb{D}^f be a duplicated circular genome. Show that finding common adjacencies greedly between some perfectly duplicated genome $\mathbb{P}^f \in 2 \cdot \mathbb{S}^f$ and \mathbb{D}^f as a first step is an optimal approach towards the exact computation of the DCJ double distance $\mathrm{d}^2_{\mathrm{DCJ}}(\mathbb{S}^f,\mathbb{D}^f)$ (although in general the computation of the DCJ double distance is NP-hard).

Hint: the ambiguous breakpoint graph might be an useful tool for this task.