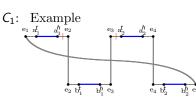
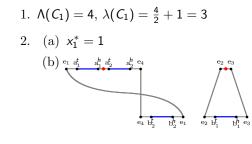
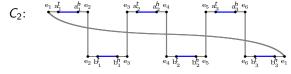
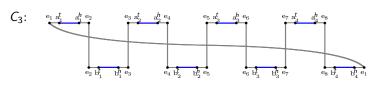
## Algorithms in Comparative Genomics

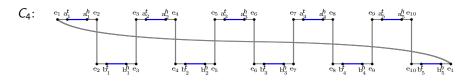

Universität Bielefeld, WS 2021/2022 Dr. Marília D. V. Braga · Leonard Bohnenkämper https://gi.cebitec.uni-bielefeld.de/teaching/2021winter/cg


## Exercise sheet 10, 13.1.2022


## Exercise 1 (Singular DCJ-indel - indel-potential)

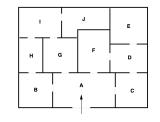
For each of the following cycles  $C_i$ :


- 1. Give the number of runs  $\Lambda(C_i)$  and compute the indel-potential  $\lambda(C_i)$ .
- 2. Let  $x_i$  be the length of a sequence of **internal gaining DCJ operations** transforming  $C_i$  into a set of shorter cycles  $C_i^1$ ,  $C_i^2$ , ...,  $C_i^{x_i+1}$ , such that,  $\lambda(C_i) = \sum \lambda(C_i^k)$  and for each  $C_i^k$ , we have  $\Lambda(C_i^k) = \lambda(C_i^k) \in \{1, 2\}$ .
  - (a) What is the minimum possible value of  $x_i$ , denoted by  $x_i^* = \min\{x_i\}$ ?
  - (b) Design a sequence with a minimum  $x_i^*$  DCJ operations for each  $C_i$ , always cutting on the top genome, resulting in shorter cycles  $C_i^1$ ,  $C_i^2$ , ...,  $C_i^{x_i^*+1}$  as described above. (For each DCJ operation, draw the cuts and the resulting cycles with the joins).









Hint: Here we have  $\Lambda(C_2) = 6$ . If the 1st DCJ splits the runs into 5+1, we still need a 2nd DCJ to split the cycle that receives the 5 runs. However, we can achieve our goal with only one DCJ, i.e.,  $x_2^* = 1$ .





## Exercise 2 (ILP formulation)

Example of a possible museum layout:



(7 pts)

Formulate an ILP to find the minimum number of guards for taking care of a museum

each guard stands at a door between rooms, taking care of two rooms at once;

each room must be taken care by at least one guard.

(11 pts)