Algorithms in Comparative Genomics

Universität Bielefeld, WS 2021/2022
Dr. Marília D. V. Braga • Leonard Bohnenkämper
https://gi.cebitec.uni-bielefeld.de/teaching/2021winter/cg

Exercise sheet 10, 13.1.2022

Exercise 1 (Singular DCJ-indel - indel-potential)

For each of the following cycles C_{i} :

1. Give the number of runs $\Lambda\left(C_{i}\right)$ and compute the indel-potential $\lambda\left(C_{i}\right)$.
2. Let x_{i} be the length of a sequence of internal gaining DCJ operations transforming C_{i} into a set of shorter cycles $C_{i}^{1}, C_{i}^{2}, \ldots, C_{i}^{x_{i}+1}$, such that, $\lambda\left(C_{i}\right)=\sum \lambda\left(C_{i}^{k}\right)$ and for each C_{i}^{k}, we have $\Lambda\left(C_{i}^{k}\right)=\lambda\left(C_{i}^{k}\right) \in\{1,2\}$.
(a) What is the minimum possible value of x_{i}, denoted by $x_{i}^{*}=\min \left\{x_{i}\right\}$?
(b) Design a sequence with a minimum x_{i}^{*} DCJ operations for each C_{i}, always cutting on the top genome, resulting in shorter cycles $C_{i}^{1}, C_{i}^{2}, \ldots, C_{i}^{x_{i}^{*}+1}$ as described above. (For each DCJ operation, draw the cuts and the resulting cycles with the joins).

3. $\Lambda\left(C_{1}\right)=4, \lambda\left(C_{1}\right)=\frac{4}{2}+1=3$
4. (a) $x_{1}^{*}=1$

C_{2} :

Hint: Here we have $\Lambda\left(C_{2}\right)=6$. If the 1st DCJ splits the runs into $5+1$, we still need a 2 nd DCJ to split the cycle that receives the 5 runs. However, we can achieve our goal with only one DCJ, i.e., $x_{2}^{*}=1$.
C_{3} :

C_{4} :

Exercise 2 (ILP formulation)

Example of a possible museum layout:

Formulate an ILP to find the minimum number
of guards for taking care of a museum $\left\{\begin{array}{l}\text { each guard stands at a door between rooms, } \\ \text { taking care of two rooms at once; } \\ \text { each room must be taken care by at least one guard. }\end{array}\right.$

