Algorithms in Genome Research
 Winter 2022/2023

Exercises

Number 4, Discussion: 2022 December 09

1. Given the two sequences $x=$ AATTGCC and $y=$ ATGTGAATG, consider the following score function: match $=4$, mismatch $=-3$, indel $=-2$.
(a) Compute all optimal global alignments of x and y.
(b) Compute all optimal free-end gap alignments of x and y.
(c) Compute all optimal local alignments of x and y.
2. Affine gap costs for a gap of length ℓ are defined as $g(\ell)=d+e(\ell-1)$ where d is the gap initiation cost and e is the gap extension cost.
(a) Why should d not be chosen lower than e ?
(b) Show that affine gap costs are subadditive, i.e. $g\left(\ell_{1}+\ell_{2}\right) \leq g\left(\ell_{1}\right)+g\left(\ell_{2}\right)$, provided $e \leq d$.
(c) Compute an optimal global alignment with affine gap costs of the sequences $x=$ ATCCTAG and $y=$ ATTGCCCT, using the following scoring scheme: match $=3$, mismatch $=-2$, gap open $d=3$, gap extension $e=1$.
3. Let $p=$ TCAG be a pattern string and $t=$ AACGTCAGTCGAGTG be a text string and consider unit costs.
(a) Find all positions in t where an approximate occurence of p with up to $k=1$ errors ends.
(b) For each of these positions, give one corresponding alignment.
(c) Why is it useful in practice not to return all end positions? In the above example, which positions should be reported?
4. (from exercise sheet 3)

In an assembly strategy that is based on long reads only, overlapping long reads have to be detected. What are the challenges, and how could a dynamic programming algorithm be designed that solves this problem?

