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Definition 1. The character set C(S) of a string is S is the (unordered) set of characters
that constitute S:

C(S) := {S[i] | i = 1..|S|}

Example 1. S = biadkfblhdba, C(S) = {a, b, d, f, h, i, k, l}

An interval of a string is represented by [i, j] := [i, i + 1, .., j] and corresponds to the
indices of its bounds.

Example 2. Interval [5, 8] of S = biadkfblhdba is associated with substring S[5, 8] =
kfbl.

Of particular interest to us are intervals that are maximal, which means that the inter-
val cannot be extended to its left or right without changing its character set. Maximality
can be sub-divided into left- and right-maximality.

Definition 2. An interval [i, j] in string S is left-maximal iff i = 1 or C(S[i, j]) 6=
C(S[i−1, j]), it is right-maximal iff j = |S| or C(S[i, j]) 6= C(S[i, j+1]). It is maximal,
if its both left- and right-maximal.

Example 3. Interval [1, 6] of S = biadkfblhdba is left-maximal, but not right-maximal.
Interval [1, 7] is maximal (and so are many other intervals of S).

Definition 3. A pair of intervals [i, j] and [i′, j′] of two strings S and T , respectively,
is common, iff their character sets are identical, i.e., C(S[i, j]) = C(T [i′, j′]).

Example 4. S = biadkfblhdba, T = iecdblfhkbhea, intervals [4, 11] of S and [4, 11]
of T are maximal common intervals.

This leads to the following problem statement:

Problem 1. Given two strings S and T , find all their maximal common intervals.
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Didier’s Algorithm

The algorithm implements the following strategy to identify maximal common intervals
of two strings S and T :

1. Iterate through each position i of S, fixing i as left bound of all intervals of S that
are examined in the current iteration.

2. Identify positions in T that correspond to the character S[i]. Mark these positions
as (trivial) intervals.

3. Successively move the right bound j of S from i to |S|. In each such move, do as
follows:

a) To ensure right-maximality, move j to the rightmost position such that char-
acter set C(S[i, j]) has exactly one more character than the character set
C(S[i, j′]) corresponding to the substring of its preceding position j′ < j. For
further reference, let c be this new character.

b) If S[i− 1] = c, i.e., S[i, j] is not left-maximal, go to Step 1 and continue with
next position i′ = i + 1.

c) Extend all intervals in T to the right and left if c is neighboring their current
bounds; merge intervals; or create new intervals only consisting of j.

d) Let T [k, l] be such an (updated) interval. Report an interval pair [i, j], [k, l]
iff C(S[i, j]) = C(T [k, l]).

Note that marked intervals in T are left- and right-maximal by construction.
The new right bound j for Step 3a can be identified in constant time using a table

that tracks the leftmost occurrences of characters in string S[i, |S|]:

Definition 4. The rank of a character c in string S is the number of different characters
that occur up to and including the leftmost occurrence of c in S.

The ranks of all characters are stored in a rank table called Rank. Pos is a table
that maps each rank to the leftmost position of the corresponding character in S. If a
character does not occur, then its rank is infinite and its position undefined.

Example 5. S = biadkfblhdba, the Rank and Pos table of S are:

character a b c d e f g h i j k l

Rank 3 1 ∞ 4 ∞ 6 ∞ 8 2 ∞ 5 7

rank 1 2 3 4 5 6 7 8

Pos 1 2 3 4 5 6 8 9
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We can now use Rank and Pos in Step 3a to determine the next right bound j of
S. Let j′ be the bound before the move, then S[j′ + 1] is the new character c. Then
j = Pos[Rank[c] + 1]− 1 is the next right-maximal bound in S.

We now construct a data structure very similar to the set of intervals associated to
vector R of a generator of common intervals in permutations.

Definition 5. Given table Rank, the rank interval of a position p in T is the largest
interval [k, l], k ≤ p ≤ k, such that max ({Rank[c] | c in C(T [k, l])}) = Rank[T [p]].

Didier’s Algorithm pre-computes all rank intervals and stores them in a table called
Int. Rank intervals enable constant time extension of each marked interval in Step 3c
of the strategy.

One last challenge remains unsolved: How can the equality of character sets C(T [k, l])
and C(S[i, j]) in Step 3d be tested efficiently? For this, Didier uses another concept,
called the rank-nearest successor, which is determined by computing rank distances be-
tween positions of string T :

Definition 6. Given a table Rank, the rank distance d(p, p′) of two positions p, p′ of
string T is d(p, p′) = max ({Rank[c] | c ∈ C(T [p, p′])}).

Definition 7. Let p be a position in T and P the set of positions of rank Rank[T [p]]+1.
If P is empty, p does not have a successor. Otherwise, let pleft be the greatest position
in P smaller than p, if it exists, and pright be the smallest position in P greater than
p, if it exists. If only one of both exists, the rank-nearest successor is pleft or pright,
respectively. If both exist, the rank-nearest succesor is

(i) pleft if d(p, pleft) ≤ d(p, pright), or

(ii) pright otherwise.

The path of rank-nearest successors spans a forest in T , which Didier’s Algorithm
follows from the leaves to the roots. Following this path is ingenious, because it is
clear that all characters the corresponding interval [i, j] in S will be visited one by one.
Assume we followed a path of rank-nearest successors and arrived at position pr. To
test whether the rank interval [p, p′] of position pr is a common interval, it suffices to
check whether all positions previously encountered on this path are within the bounds
of [p, p′].

More formally, let pr be the r-th position of a path that follows rank-nearest successors
from a position p1 of string T with Rank[T [p1]] = 1 to its rank-nearest successor p2
with Rank[T [p2]] = 2, etc, to position pr with Rank[T [pr]] = r. Further, let pk and
pl the outermost positions observed on this path, i.e., pl = min ({p1, . . . , pr}) and pk =
max ({p1, . . . , pr}). The rank interval [p, p′] of position pr has the same character set as
C(S[i, j]), where j := Pos[r + 1]− 1], iff [pk, pl] ⊆ [p, p′].

Didier precomputes rank-nearest successors and stores them in a table called Succ.
The full algorithm is described in pseudo-code in Algorithm 1.
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Algorithm 1 Didier’s Algorithm
Input: Two strings S and T
Output: List of all maximal common intervals between S and T

1: for i = 1, . . . , |S| do
2: Compute tables Pos and Rank w.r.t. S[i, |S|]
3: Compute table of intervals Int for T
4: Compute table Succ for T
5: Initialize list List with positions in T of rank 1 and their corresponding rank intervals
6: while List is not empty do
7: (y, [pk, pl])← the first element of List verifying [pk, pl] ⊆ Int[y]
8: ry ← Rank[T [y]]
9: j ← Pos[ry + 1]− 1

// test if there are locations to output
10: if i = 1 or Rank[S[i− 1]] > ry then
11: report ([i, j], Int[y])
12: previous ← Int[y]
13: for each following element (y, [pk, pl]) in List do
14: if [pk, pl] ⊆ Int[y] and Int[y] 6= previous then
15: report ([i, j], Int[y])
16: previous ← Int[y]
17: end if
18: end for
19: end if

// compute the next level
20: for each element (y, [pk, pl]) in List do
21: remove (y, [pk, pl]) from List
22: if Succ[y] exists and y is the leftmost index with minimal rank distance to Succ[y] among

positions of the list having the same successor then
23: y ← Succ[y]

// update path bounds
24: if y < pk then
25: pk ← y
26: end if
27: if y > pl then
28: pl ← y
29: end if
30: append (y, [pk, pl]) to List
31: end if
32: end for
33: end while
34: end for

Runtime. Each position i in string S is used once as left bound, hence the outer for
loop contributes O(|S|) time. For each fixed i, table Rank can be computed in O(|S|)
time, whereas tables Int and Succ can be computed in O(|T |) time (no proof). The
number of positions visited when following all paths of rank-nearest successors in T
cannot exceed |T |. In each step, tracking and extending the path’s bounds and testing
whether the path’s bounds are within the current rank interval can be performed in
constant time. Thus, the algorithm overall takes O(n2) time, where n := max(|S|, |T |).
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