Algorithms in Comparative Genomics

Universität Bielefeld, SS 2023

Dr. Marília D. V. Braga • Dr. Roland Wittler
https://gi.cebitec.uni-bielefeld.de/teaching/2023summer/cg
Exercise sheet 6, 19.5.2021

Exercise 1 (DCJ halving)

For each of the following duplicated genomes, compute the DCJ halving distance $h_{i}=h_{\text {DCJ }}\left(\mathbb{D}_{i}\right)$ and find a perfectly duplicated genome \mathbb{P}_{i} with a matching between the genes of \mathbb{P}_{i} and \mathbb{D}_{i}, giving a halving sorting scenario with h_{i} optimal DCJ operations that transform \mathbb{D}_{i} into \mathbb{P}_{i}.

1. $\mathbb{D}_{1}=\left\{\left[\begin{array}{llll}3 & 5 & \overline{4} & 2 \\ 5\end{array}\right],\left[\begin{array}{ll}2 & 1\end{array}\right],\left[\begin{array}{lll}3 & 4 & 1\end{array}\right]\right\}$
2. $\mathbb{D}_{2}=\{(35 \overline{4} 2 \overline{5}),(21 \overline{1} 34)\}$

Exercise 2 (Solution space of DCJ halving sorting)

Denote by $\rho \mathbb{G}$ the genome obtained after applying a DCJ operation ρ to a genome \mathbb{G}.
Now consider the duplicated genome:

$$
\mathbb{D}=\left\{\left[\begin{array}{llll}
\overline{4} & 1 & \overline{4} & \overline{3}
\end{array} 2\right],\left[\begin{array}{lll}
\overline{2} & 3 & 1
\end{array}\right],\left[\begin{array}{lll}
5 & \overline{5}
\end{array}\right]\right\} .
$$

List all possible optimal (1st step) DCJ halving operations that could be applied to \mathbb{D}, that is, the set of DCJ operations $R=\left\{\rho: \mathrm{h}_{\mathrm{DCJ}}(\mathbb{D})=\mathrm{h}_{\mathrm{DCJ}}(\rho \mathbb{D})+1\right\}$.

Exercise 3 (DCJ double distance)

Let \mathbb{S} be a singular circular genome and \mathbb{D} be a duplicated circular genome. Show that finding common adjacencies greedly between some perfectly duplicated genome $\mathbb{P} \in 2 \cdot \mathbb{S}$ and \mathbb{D} as a first step is an optimal approach towards the exact computation of the DCJ double distance $d_{D C J}^{2}(\mathbb{S}, \mathbb{D})$ (although in general the computation of the DCJ double distance is NP-hard).
Hint: the ambiguous breakpoint graph might be an useful tool for this task.

